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Abstract: Identifi cation of coeffi cients determining fl ow resistance, in particular Manning’s roughness 
coeffi cients, is one of the possible inverse problems of mathematical modeling of fl ow distribution in looped 
river networks. The paper presents the solution of this problem for the lower Oder River network consisting 
of 78 branches connected by 62 nodes. Using results of six sets of fl ow measurements at particular network 
branches it was demonstrated that the application of iterative algorithm for roughness coeffi cients identifi cation 
on the basis of the sensitivity-equation method leads to the explicit solution for all network branches, independent 
from initial values of identifi ed coeffi cients.

INTRODUCTION

River networks are frequently occurring natural objects that have signifi cant economic 
infl uence as fresh water supply sources and sewage recipients. Additionally, river 
networks may create serious problems due to fl ooding. Therefore, the recognition of their 
behavior, including principles of fl ow distribution between particular riverbeds as well as 
development of research methods and computational techniques for river networks are 
important tasks of great practical signifi cance. 

Looped networks are a separate type of river networks and a topologic alternative 
to dendritic networks. Looped networks require special attention due to the fact that any 
localized activity, such as construction of hydrotechnical structures, new intakes and/or 
discharges, dredging etc., may result in changes of fl ows in other remote regions of 
the network. These networks may also create unexpected, although serious numerical 
problems [14]. Thus, the fl ow in looped networks should be analyzed comprehensively 
by appropriate mathematical tools. This need is most likely one of the reasons for the 
limited number of relevant scientifi c sources concerning looped networks. Nevertheless, 
dendritic networks also cannot be perceived as well-known objects; some computational 
concepts are still being examined [22].
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The inverse problem is usually defi ned as identifi cation of parameters for 
mathematical model of a given phenomenon or object, performed on the basis of 
recorded values of modeled variables, under the assumption that the form of operator 
transforming vector of input values to output is fi xed and known. The inverse problem 
can be presented either as discrete (at fi nite number of parameters invariable in space and 
time), also called the parameters’ estimation, or as a continuous one, where parameters 
vary in space and/or time. On the other hand, the determination of the transformation 
operator using a set of input/output vectors is known as the system identifi cation 
problem [2]. In the case of river network fl ow modeling, the set of possible inverse 
problems contains, among others, the determination of Manning roughness coeffi cients 
or absolute roughness for particular network branches.

If the complete data set is available, i.e. real water surface elevations at all the 
nodes and fl ows at all the branches are given, the inverse problem for the entire network 
is equivalent to a set of independent inverse problems for each network branch. The 
network structure is then inessential and if the problem concerns only one of the fl ow 
parameters, its solution is uniquely determined and requires no additional assumptions. 
In an incomplete data set there exists an infi nite number of solutions in general; 
thus, additional conditions are necessary to obtain fi nite and acceptable number of 
solutions. The problem of solvability of those cases was analyzed among others by 
Altman and Boulos [1]. Practically, the uniquely determined solution can be obtained 
by the formulation of the inverse problem as an optimization problem with constraints 
resulting from measured data values and e.g. from analysis of the network sensitivity 
to roughness coeffi cients of particular branches (equality constraints) and from the fact 
that identifi ed coeffi cients should vary within reasonable, practical domains (inequality 
constraints).

Research carried out hitherto on inverse problems for river networks is practically 
limited to the estimation of the Manning roughness coeffi cients only. In the majority of 
cases the records for stages and/or fl ows at unsteady motion have been used. Becker and 
Yeh [4, 5] adopted as a solution the optimization problem referring to the minimization of 
an objective function being a sum of squares of differences between measured and modeled 
stages. Similar assumptions, but related to dendritic networks only, were further applied 
by some researchers, e.g. [10, 18, 19, 20]. The concept of inverse problem formulation 
as an optimization problem was generally accepted and developed in several papers, 
e.g. [7, 13, 24]. Ding et al. [9] distinguish three methods for this problem solving: the 
infl uence-coeffi cient method, the adjoint-equation method and the sensitivity-equation 
method.

The infl uence-coeffi cient method consists of seeking an objective function extreme 
by changing the roughness of particular network branches in turn; therefore, some of the 
direct search algorithms, like Hooke and Jeeves’ or Rosenbrock’s methods can be applied. 
The infl uence-coeffi cient method was also used by Becker and Yeh [4, 5].

The adjoint-equation method consists of the formulation of the inverse problem as 
a variational one. Liggett and Chen [17] applied this method to the looped water-supply 
network while Atanov et al. [3] used it to the roughness identifi cation of trapezoidal 
channels.

The sensitivity-equation method transforms the inverse problem to the solution of 
relevant optimization problem, whilst constraints can be determined using the so-called 
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sensitivity matrix where the elements are the reactions of stages/fl ows within the network 
to variations of optimized values.

It is worthy of notice that the above methods are not the only possibilities of the 
inverse problem solution; some hopes can be set on genetic algorithms as relatively new 
approach [21].

Despite some systematization of inverse problem solution methods for networks 
one should notice that the issue still does not belong to well-recognized ones. As recently 
as 2000 Ramesh et al. formulated an opinion about insuffi ciencies concerning those 
methods and the situation has not been improved since. Many papers discuss networks 
with simple structure, e.g. consisting of two [24] or three loops [7]. Han [12] applied the 
variant of the infl uence-coeffi cient method (in a version of “trial-and-error procedure”) 
to the looped network of channels consisting of 145 branches and 92 nodes, but assumed 
arbitrarily the possibility of roughness changes within a set of four values only, which 
has simplifi ed the optimization problem considerably. In addition, the National Center for 
Hydroscience and Engineering, Mississippi, developing mathematical modeling of river 
networks for many years, among others CCHE1D and CCHE2D models [8, 23], deals 
with dendritic networks only.  

This paper discusses the solution of the inverse problem, defi ned as Manning’s 
roughness coeffi cients identifi cation, for the lower Oder River looped network consisting 
of 78 branches connected by 62 nodes.

THE LOWER ODER RIVER NETWORK

The Oder River ranks second in Poland and 12–14th in Europe with regard to length and 
basin area. Mean fl ow at the river outlet into the Szczecin Lagoon connected to the Baltic 
Sea exceeds 500 m3s-1. The lower Oder network is located at the 60 km long stretch 
between water gauge stations at Widuchowa and Trzebież (Fig. 1). Downstream from 
Widuchowa the riverbed splits into two parallel branches – the East Oder and the West 
Oder, connected transversely in a few places and forming a looped network. Both main 
branches run through municipality of Szczecin and join again some kilometers upstream 
from the outlet to the Szczecin Lagoon. The network also comprises Dąbie Lake which 
has an average depth of about 2.6 m and with an area of about 54 sq. km ranks 4th in 
Poland in terms of the area. 

The Oder River’s channel bathymetry is stable; a comparison of cross-sections for 
particular branches measured in the period 2009–2010 with the archival data originating 
from the seventies of the 20th century does not show any signifi cant differences in the bed 
elevations. However, Dąbie Lake is permanently getting more shallow and silty. Cross-
sections of the network main branches are regular, rectangular or parabolic as a rule, with 
mean depths of particular branches varying from 2–3 m to 8–9 m. Depths may reach 
approximately 14 m locally.

Riverbeds of the East and the West Oder are sandy with fi ne and medium fractions 
prevailing. Bottoms of the remaining branches are muddy with organic silts of different 
thickness, characterized by thixotropic structure [16], with spatially differentiated 
additions of unputrefi ed organic matters (shells, parts of plants). These additions may 
affect the parameters of the fl ow shear stresses (absolute roughness, Manning’s roughness 
coeffi cient).



108 JACEK KURNATOWSKI

HYDROMETRIC MEASUREMENTS WITHIN THE LOWER ODER NETWORK

The Lower Oder River network is located entirely within the zone of non-uniform 
fl ow (static backwater) caused by the Szczecin Lagoon interference.  Thus, any of water 
gauge cross-sections within the network has no stage-fl ow relation determined and the 
standard hydrologic data records of this area contain water stages only, whilst fl ows have 
not been recorded. An additional problem is created by the very low water surface slopes 
in the network channels. Mean slope between the Widuchowa and Trzebież gauges at 
average fl ows can be estimated as about 4·10-6 whilst in the neighborhood of Dąbie Lake 
and downstream (so in the region of the highest network density) this slope is reduced 
to the order of magnitude 10-7. This fact makes calibration of a mathematical model 
using stages recorded at gauges located within the area (e.g. the Szczecin water gauge) 
impossible, because of the practically indistinguishable stage values at neighbouring 
gauges. Therefore, hitherto all existing mathematical models of fl ow distribution within 
the network had to be identifi ed using stages at border gauges (Widuchowa and Trzebież) 
only, which allowed the calibration of the so-called global (averaged) roughness coeffi cient 
for the entire network [15], but did not differentiate this coeffi cient for particular network 
branches.

In the 2009–2010 time frame of research project No. N N525 168435 managed by 
the author and fi nanced from research funds of the Polish Ministry of Science and Higher 
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Fig. 1. The lower Oder River location
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Education several sets of fl ow measurements using ADCP technique were taken within 
the lower Oder network. Measurements were aimed towards identifi cation of roughness 
coeffi cients for particular branches and carried out with the four-beam equipment 
Workhorse Rio Grande 1200 kHz device made by Teledyne Technologies Co., with work 
capability ranging from 0.7 m to over 20 m with velocity resolution of 0.001 ms-1. Fig. 
2 presents the scheme of the lower Oder, used in the mathematical modeling of fl ows 
within the network [15] with conventionally assumed positive fl ow directions for each 
branch. The scheme contains 78 branches connected by 62 nodes, which forms a looped 
structure with 17 independent loops. Branches, in which fl ows were measured in each 
set are marked in bold. Their positions allow fl ow determination at almost every network 
branch (except some simple, three-branched loops having no essential infl uence on the 
whole network, e.g. the loop consisting of branches Nos. 23, 25 and 26). Flow values at 
each branch can be determined either by direct measurements or from fl ow balances in 
relevant nodes. The balance equation for a network node has the form:

 =

=+
ik

i
ii QQ

1
0 0η

 

(1)

...where:
k  – number of branches belonging to a node (i = 1,2,...k),
ηi = 1 for a branch i assumed conventionally as infl owing to the node,
ηi = -1 for a branch i assumed conventionally as outfl owing from the node,
Qi  – fl ow at branch i [m3s-1],
Q0 –  algebraic sum of additional water infl ows and outfl ows (intakes and 

discharges) for a node [m3s-1].

From the total measurements taken, the group of six sets that may be regarded as 
representing steady fl ow cases were selected. These measurement sets were carried out 
under nearly windless conditions and are characterized by small errors of fl ow balance 
closure at each node. Next, the measured fl ows were corrected in accordance with the 
principle of fl ow balance at each node, which was performed by solving the optimization 
problem, with the objective function being a sum of squares of relative fl ow corrections, 
using the formula:

 =

−M

i i

ii

Q
QQ
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*
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(2)

...where:
M – number of network branches submitted to correction, 
Qi

* – measured fl ow at branch i, 
Qi  – corrected (balanced) fl ow at branch i,

with constraints given by the equation (1). Flows in the East Oder and the West Oder were 
assumed as the invariants due to their insensibility to the short term wind infl uence and 
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relatively high variability of the stage at the Trzebież gauge affecting fl ow fl uctuations in 
northern branches of the network. Next, corrected fl ows at each branch Q were compared 
with values of fl ows Qm obtained by mathematical modeling of fl ow distribution within the 
network at one roughness coeffi cient (global roughness) common for the whole network 
[15]. Global roughness was selected in such a way to assure the modeled difference of 
the water table elevations at the Widuchowa and the Trzebież gauges to be equal to the 
measured values, as taken on a given day of measurements. 

The results of comparison of Q and Qm values are given in Table 1. Large 
discrepancies between measures and modeled fl ows are noticeable. As a rule, the nature of 
those discrepancies is similar for all measurements, e.g. for Przekop Mieleński (branches 
Nos. 16, 29 and 31) modeled fl ows are underestimated signifi cantly in relation to the 
measured ones whilst modeled fl ows in branches of Duńczyca (No. 28), East Duńczyca 
(No. 30), Dąbski Nurt (No. 35) and Dąbska Struga (No. 37) are overestimated. Therefore, 
the solution of the inverse problem by appropriate differentiation of the roughness 
coeffi cients for particular branches is necessary.

INVERSE PROBLEM FOR THE LOWER ODER NETWORK

Identifi cation of roughness coeffi cients for the lower Oder network was performed using 
the sensitivity method and the formulating of the appropriate optimization problem. 
Formulation of the problem required making an assumption, which would determine the 
form of the minimized objective function. Such an assumption was necessary to obtain 
the set of branches’ roughness coeffi cients, with relative values variance as minimal as 
possible. This leads to the following problem formulation:

For the network consisting of M branches and for any initial roughness vector 
n = [n1, n2,...nM] at given weighting coeffi cients vector r = [r1, r2,...rM]  fi nd the vector of 
roughness corrections Δn = [Δn1, n2,...nM] that at given linear constraints satisfi es the 
condition:

 
( )

2

1

_
min

=

−Δ+
M

i
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(3)

that may be rearranged as follows:

 =

−Δ+Δ
M

i
iiii nnnnr

1

_
2 2min

 

(4)

where n– is an average network roughness (e.g. global one). Coeffi cients ri theoretically 
can be assumed arbitrarily as of any value; nevertheless, e.g. the assumption ri = 1 for 
any i leads to the situation where branches with relatively small section factors and high 
real roughness coeffi cients will produce an unnatural decrease of identifi ed values for 
these coeffi cients, also compensated by unjustifi ed increase of roughness for smooth, 
large riverbeds with high fl ow capacities. Hence, the following weights coeffi cients were 
assumed:
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 r1 = Qi
2 (5)

This relation results from the fact that at a given section factor the product n2Q2 is 
proportional to the water slope; next, the global roughness of the lower Oder River is 
basically determined by conditions at branches with high fl ows (the East Oder, Regalica) 
whilst branches with smaller fl ows (e.g. Dąbski Nurt, Dąbska Struga, Duńczyca) would 
not affect this value signifi cantly even at these branches full cut-off. Since the global 
roughness is identifi ed on the base of conformity of measured and calculated water level 
slopes, assumption (5) ensures small deviations of large channels’ roughness from the 
global value.

Linear constraints of the problem (4) can be formulated using sensitivity matrix D:

(6)
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where {p1, ... ps} is a set of numbers of s branches with measured fl ows and ZW denotes 
water surface elevation at the Widuchowa gauge. The gauge of Trzebież is a reference 
gauge in this case. Therefore, the constraints have the form of a linear set of equations:

 D·ΔnT = PT (7)

...where:
Δn = {Δn1, ... ΔnM}

 },,,{ 00
1

0
1

m
WW

m
psps

m
pp ZZQQQQ −−−=P  (8)

whilst upper indices denote: „0” – measured values, “m” – current calculated values. 
Particular elements of matrix D are functions of vector n components and require updating 
at each change of this vector.

The optimization problem defi ned above is a quadratic programming problem 
where objective function is a sum of quadratic and linear forms with linear constraints. 
Quadratic programming is one of the standard optimization problems and can be solved 
by many methods [11]. 

The solution algorithm for the problem of roughness coeffi cients identifi cation for 
the lower Oder network appears as follows:
Step 1.  Calculate the network average (global) roughness and assume any initial 

components of roughness coeffi cients vector.
Step 2.  For given boundary conditions: water surface elevation at the Trzebież gauge, 

global fl ow QG and wind direction/velocity calculate fl ows at particular network 
branches and water surface elevation at the Widuchowa gauge.
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Step 3.  Verify the conditions of conformity of measured and calculated fl ows and 
conformity of calculated and measured water surface elevation at Widuchowa. 
If fulfi lled, go to Step 7, otherwise go to Step 4.

Step 4.  Determine elements of sensitivity matrix D changing the roughness coeffi cients 
for consecutive branches.

Step 5.  Solve quadratic programming problem (4) with constraints (7).
Step 6.  Introduce corrections of roughness vector components being a solution of 

quadratic programming problem and go to Step 2.
Step 7.  End of calculations.

This method of calculations leads to the identical fi nal roughness vector for the 
whole network independently of the initial values.

Table 2 shows the results of roughness coeffi cient identifi cation for main branches 
as relative values (in proportion to the global roughness). The last column contains values 
averaged excluding extremely different elements (emphasized by italic). 

The course and the fi nal results of the calculations lead to the following remarks:
1.  For each investigated measurement set the satisfying consistency between 

measured and calculated fl ow values was obtained after introducing the sensitivity 
matrix D consisting of ten rows (nine fl ow measurements and the Widuchowa 
water stage).  

2.  For the majority of network branches the relative roughness values were similar 
for all measurement sets. This fact allows to assume mean values as representative 
for the whole investigated fl ow range. The exceptions are:
a)  branches directly connected with Dąbie Lake (Dąbski Nurt No. 35, Dąbska 

Struga No. 37, the East Duńczyca No. 30, Orli Przesmyk No. 17). The 
roughness values for these branches are signifi cantly differentiated. This 
results from temporary variations of fl ow parameters caused by unsteady wind 
actions on the lake, that is noticeable particularly at low global fl ows;

b)  Skośnica (No. 43), which indicates permanent and statistically signifi cant 
tendency of relative roughness increase with the global fl ow, that excludes 
possibility of mean value (in brackets) acceptance as a suffi ciently precise 
generalization. Since the velocities in Skośnica are generally low (a few cm/s), 
it is possible that this variability results from various fl ow regimes including 
hydraulically smooth fl ow regime at low global network fl ows.

3.  In general, the obtained roughness values are consistent with the ones estimated 
on the basis of morphological features of riverbeds [6]. Worthy of special notice 
are:
a)  very high roughness values of Orli Przesmyk (No. 17), Dąbski Nurt (No. 35), 

Dąbska Struga (No. 37), the East Duńczyca (No. 30) and particularly of 
Duńczyca between Parnica and Przekop Mieleński (No. 28) with the averaged 
roughness about 0.090 (after Chow [6], the roughness coeffi cient about 0.100 
is typical for very weedy natural streams). Indeed, the specifi ed branches are 
relatively shallow, with very rich riparian vegetation and dense reeds;

b)  low roughness values at part of the Szczecin – Świnoujście waterway (Przekop 
Mieleński as a whole, Odra Czajcza – Nos. 13 and 14) varying between 73% 
and 95% of the global roughness. These branches are distinguished from other 
branches by maintenance works carried on along the waterway and by intensive 
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ship motion; therefore, the hypothesis about all riverbed form destruction as 
an effect of motion of vessels with large draft cannot be neglected. The branch 
of the East Parnica (No. 33) located in the close vicinity of the Szczecin 
– Świnoujście waterway and considered an element of the upstream Oder 
River inland waterway, with the roughness of about 85% of the global value 
can be included into this group as well. On the other hand, it should be noted 
that navigable riverbeds with large widths (Domiąża, Regalica, the East Oder) 
do not differ signifi cantly from the global roughness conditions; 

c)  Mienia (No. 34) being a spatial extension of Regalica, with roughness 
coeffi cient about 20% higher than global value and the roughness of Regalica 
itself. Analysis of bed material samples at this site reveals exceptionally high 
content of unputrefi ed organic matter including lignifi ed plant stems, what is 
likely the reason of the relatively high roughness;

d)  Odra Gryfi a (No. 15), also with roughness about 20% higher than global value. 
Contrary to Mienia, the bed of Odra Gryfi a is clean, bottom silty sediments 
are homogenous, without any additions that may increase the roughness [16]; 
however, this branch is a place of permanent mooring of big vessels and the 
fl oating docks of the Szczecin Ship Repair Yard “Gryfi a” S.A. whose hulls 
narrow the bed cross-section, what seems like an increase in the roughness.

Identifi ed roughness coeffi cients  for all network branches are shown in Fig. 3 as 
values belonging to relevant ranges of relative roughness.

CONCLUSIONS

The course of the calculations presented above proves that the solution of the inverse 
problem perceived as the identifi cation of roughness coeffi cients for particular branches 
of a looped river network can be performed effectively using the sensitivity method. It 
is applicable even for networks with complicated structure, having several independent 
branch cycles. This solution does not require introduction of any additional conditions 
regarding roughness variability, whilst the obtained values of roughness coeffi cients 
do not contradict the standard values for the given riverbed types. Application of an 
iterative algorithm leads to the explicit solution regardless of the initial estimation of the 
roughness coeffi cients. Minimized objective function should include weight coeffi cients 
as determined by the fl ow quantities attributed to particular branches.
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