
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 1, PP. 27–34
Manuscript received December 31, 2011; revised March 2012. DOI: 10.2478/v10177-012-0004-8

UML Modelling in Rigorous Design Methodology
for Discrete Controllers

Grzegorz Łabiak, Marian Adamski, Michał Doligalski, Jacek Tkacz, and Arkadiusz Bukowiec

Abstract—The paper presents an application of UML technol-
ogy in a discrete system development process. In the process at the
analysis stage UML diagrams are fundamental tool. The outcome
of this stage is a basis for formal models exploited at the design
stage, where the design is symbolically verified and treated as a
rule-based system. Two formal models of good graphical appeal
are proposed: Petri nets and state machine diagrams. Both are
heavily using Boolean expressions what makes that design can
easily be implemented in modern programmable structures.

Keywords—UML modelling, binary controller, decomposition,
digital synthesis, formal analysis, verification.

I. INTRODUCTION

D ISCRETE system is a system with countable number of
states. One of such systems is a discrete control system,

where the controller generates signals to the controlled object
and the controlled object responds to the controller (Fig. 1) [1].
Moreover, the controller receives signals from an operator and
generates signals to the operator. For an engineer the design
of the system mainly involves the control unit design and the
controlled object and its behaviour are requirements given by
a client. If the signals are of binary value the controller is a
binary controller and can be produced as a digital circuit (eg.
FPGA or CPLD) [2], [3].

Fig. 1. Discrete control system.

The Discrete system development process (Fig. 2) consists
of the four following phases: analysis, design, implementation
and maintenance. The main goal of the system analysis is
requirements definition and feasibility study (both functional,
technological and economical). The outcome of the analysis
phase is informal and makes ground for formal specification

This work was supported by the Ministry of Science and Higher Education
of Poland. Research grant no. N516 513939 for years 2010-2013.

G. Łabiak, M. Adamski, M. Doligalski, J. Tkacz and A. Bukowiec are
with the Institute of Computer Engineering and Electronics, University of
Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland (e-mails: {g.labiak,
m.adamski, m.doligalski, j.tkacz, a.bukowiec}@iie.uz.zgora.pl).

Fig. 2. Discrete system development process.

(eg. FSM, Petri nets, statechart diagrams). Formal specification
is the main goal of the next stage, mainly, design phase. The
main tool of the analysis phase is UML technology [4].

After the system takes formal form it can be formally and
automatically verified using, for example, model checking
techniques [1], [5] (applied to statechart diagrams as a state
oriented system) or can be treated as a dynamic inference
system based on Gentzen logic (applied to Petri nets) [1].
In comparison with testing and simulation formal verification
(model checking technique) proves that given property holds
for every state of the discrete system, while testing verifies
only small subset of space of possible states. Having formal
model transformed into rule-based decision system allows to
state about validity of the system in straightforward way and
any transformation (eg. minimization for logic synthesis) of
the specification (eg. Petri net) preservers its meaning.

Implementation is the last technological phase. After the
system works in accordance with defined requirements and
is well formed (eg. free from deadlocks, livelocks and traps)
it can be mapped into technological resources. At this stage
the discrete system can be subject to testing. In maintenance
phase correctly designed and produced system is functioning
as it was desired and can be modified in accordance with the
newly emerged needs. The whole development process (Fig.2)
is repeated and the system is reimplemented.

II. UML MODELLING

An application of UML technology in discrete system de-
sign at analysis stage is very similar to its original application
in software engineering. Its main goal is to create simplified
blue print of the system under design, and the process involves
stages as follows:



28 G. ŁABIAK, M. ADAMSKI, M. DOLIGALSKI, J. TKACZ, A. BUKOWIEC

YT1 YT2

YV1 YV2

Aggregate

feeder

Content

feeder

Water

feeder

Scales

Content

mixer

YV3

YM

Mixer

arm

XN1

XN2

XF1

XF3

XF2

Timer
XF4

Fig. 3. Schematic diagram of process plant.

• Object-oriented analysis – the goal of this process, usu-
ally performed at the beginning, is not making an object
abstraction of real world entities but identification of
material object in real world (ie. controlled object), eg.
controller, operator, scale, valve. This process uses mainly
UML class and object diagrams.

• Functional analysis – the goal of this process is a descrip-
tion what the system performs and what the controlled
objects identified at the previous stage do. This process
uses UML use case diagrams and describes relationships
between particular functionalities.

• Behaviour analysis – the goal of this stage is to describe
how particular functionalities are executed and which
object takes part in it. The UML diagrams useful at this
stage are: activities, sequential, collaboration and state
machine.

The last stage should give solid but not formal framework for
further formal description in Petri nets or statechart diagrams.
It is note worthy that in the discrete system design activity
diagrams and state machine model play the same role like
class diagram in software engineering. Both can be easily
transformed into their formal counterparts, namely, Petri nets
and statechart diagrams respectively.

III. THE EXAMPLE

A designer assignment is to design control algorithm of a
technological process [6], [7]. The technological process is
carried out in a chemical plant depicted in Fig. 3. The process
mixes two substrates contained in two containers (called Ag-
gregate feeder and Content feeder) in water environment. The
two substrates are measured up sequentially in one scale and
next are mixed together in main container (Content mixer) for
a given period of time. The process is repeated over and over.
To optimize time consumed by whole process the substrate
from Aggregate feeder can be measured out simultaneously
with mixing final product of previous technological cycle.

At first glance at chemical plant designer can identify its
main objects. These objects are presented in Fig. 4. Three of
them Aggregate, Content and Water are of CContainer class,

Controller : CController

Aggregate : CContainer Content : CContainer

Scale : CScale

Water : CContainer

Mixer : CMixer

Fig. 4. Object diagram with main controlled objects.

Controller

Substrate preparation

Process

Filling aggregate feeder

Filling content feeder

Filling water feeder

Mixing

Unloading product

1

1

1

1

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 5. Use case diagram of the control system.

as they play role of simple container, the rest are of its own
class, namely, CController, CScale and CMixer.

After having informally acquainted and identified control
system designer can formulate main functions of the control
object. For the control system (in sense of Fig. 1) its two main
functions are Substrate preparation and Process. Further in-
depth analysis allows to determine more detailed functions
which are included in main functions. Use case diagram from
Fig. 5 presents these functions. Stereotype «include» commu-
nicates that simple use cases (eg. Filling aggregate feeder)
make up more general use cases (eg. Substrate preparation).
In the diagram the controller object is an actor, namely, this
means that controller object starts interactions in the control
system.

Object diagram and use case diagram allow to define basic
UML artefacts (eg. objects nad system functions) upon which
abstract model can be build. Next designer can specify how
system objects interact each other to perform given function.
Sequential diagrams and 7) in two dimensions describe how
particular objects exchange communications in order to ex-
ecute system functions. In one dimension (horizontally) are
placed objects and in the second dimension (vertically) is
placed axis of time. Arrows symbolize exchanged messages
and labels placed above them are conditions which must
be met to generate message. In case of control system the
conditions are binary signals, actuators and sensors which,
respectively, open/close valves or inform about liquid level
in containers.

Fig. 6 presents sequential diagram for the use case Substrate
preparation. Every interaction starts from actor object, namely
from Controller. Substrate preparation involves preparing sep-



UML MODELLING IN RIGOROUS DESIGN METHODOLOGY FOR DISCRETE CONTROLLERS 29

YT1

YT2

XN1

XN2

YV1

XF1

YV1

XF1

YV2

XF2

Controller Aggregate Content Scale Water

Fig. 6. Sequential diagram for the use case Preparation substrates.

Controller Mixer

YM

XF4

YV3

XV3

Fig. 7. Sequential diagram for the use case Process.

arately two components and water. Fig. 7 presents sequential
diagram for Process use case. This relatively simple function-
ality is only responsible for mixing product and its unloading.

The main goal of UML modeling is to prepare abstract
model of complex system. Such a model should not be as com-
plex as modeled system. It should contain as much information
as it is needed to comprehend main function of the system,
its basic internal working and to visualize them graphically.
UML language is very plentiful of diagrams and constructs
and hence designer must make reasonable trade-off between
UML potential and his/her needs. Other UML diagrams which
could be useful in controller design are collaboration diagrams,
deployment diagrams, activity diagrams and state machine.
The two latter diagrams can be basis upon which formal model
of the controller is specified. The two formal models are state-
machine-based model and Petri nets. Next two chapters present
in detail application of these two models in synthesis of digital
controller.

IV. STATE MACHINE BASED APPROACH

UML state machine diagrams are formal, state based method
of behavioral specification. Ability to model concurrent pro-
cesses, exception handling [8] and hierarchy allows the use
of state machine diagram in the process of logic controllers
specifications. User-friendly interface makes it easy to develop
diagrams, but the lack of formal methods makes it difficult
to formally verify the controller. In the proposed approach,

CS1

S1

do/YT1

S2 S3

do/YV1

S4

do/Z2

S5

do/Z1

S6

do/YT2

S7

do/YV1

S8

S9

do/YM

S10

do/YV3

S11 S12

[XN1] [Z1] [XF1] [Z3]

[Z2] [XN2] [XF1] [XF2]

[XF4] [XF3]

[XF3][XF2]

do/YV2

do/Z3

Fig. 8. UML state machine diagram.

UML state machine diagrams are front-end of the behavioral
specifications, Petri nets are the back-end.

For given industrial process the UML state machine diagram
was elaborated (Fig. 8). In order to accurately compare the
two approaches, developed diagram implements the control
algorithm described using Petri net (Fig. 11).

State machine diagram consists of two levels of abstraction.
At the first level there is only one pseudostate (initial) and
composite state CS1. At the second level of abstraction, the
composite state exists. It consists of three concurrent sub-
machines. In order to properly implement control algorithm
mapping, the synchronization through variables is necessary
[9]. Three global variables Z1, Z2, Z3 are broadcast in states
S5, S4, S8. In this particular case exceptions handling mecha-
nism is not required.

As it was said, the UML state machine diagram is only the
user interface and next step of the logic controller developing
process is transformation into Petri net. Lack of exceptions
handling mechanism in the logic controller, allowed to trans-
form state machine model into the interpreted Petri net (Fig. 9).
The top level of abstraction of the state machine corresponds to
the Net0 subnet, it consists only of two places: P1 and MP1.
Second level of abstraction consists of submachine described
in composite state CS1, which corresponds to Net1 subnet.
Net1 subnet is started when macroplace MP1 is marked.

The transition T init2 has guard condition specified as T init1.
It is a global variable, specified in Net1 subnet, where it is the
macroplace MP1 initial transition. Subnet Net2 implements
three concurrent area from composite state CS1.

At the RTL level, the logic controller is decomposed into
two blocks, each for one subnet (Fig. 10). In the proposed
approach, the hierarchy is maintained at every stage of the
design process.

This may cause a slight increase in the use of hardware
resources, which is acceptable because this way of decom-
position makes it easier to carry out the process of the logic
controller module based partial reconfiguration [3].



30 G. ŁABIAK, M. ADAMSKI, M. DOLIGALSKI, J. TKACZ, A. BUKOWIEC

P
init

XF3

P11

t11 XF2

YV2

P12

t12

XN1

YT1P1

t1

Z1

P2

t2

XF1

YV1P3

t3

Z3

Z2P4

t4

Z2

Z1P5

t5

XN2

YT2P6

t6

XF1

YV1P7

t7

XF2

Z3P8

t8

XF4

YMP9

t9

XF3

YV3P10

t10

t
init

1t
init

2

Net1Net0

t
init

1

P
init

MP1

Fig. 9. State machine based Petri net.

Net0

Clock

Reset

Net1

Reset Reset

Tinit1

XN1

XN2

XF1

XF2

XF3

XF4

Tinit1

XN2

XN1

XF4

XF3

XF2

XF1

Tinit1

Tinit1

Tinit1

Tinit1

Tinit1

Tinit1

XN1

XN2

XF1

XF2

XF3

XF4

Fig. 10. Top-level module of state machine Petri net based.

V. PETRI NET BASED APPROACH

This approach shows how to design logic controller using
only Petri net specification. The usage of Petri net allows
to preform analysis process using well known and effective
algorithms [10], [11]. Additionally, by application of coloring
and decomposition into linked state machines (LSMs) logic
controller can be implemented as a distributed system without
use of any transitional specifications [12]. The whole design
process is illustrated by analysis and synthesis of example
Petri net (Fig. 11). This Petri net describes control process of
industrial mixer of aggregate with content and water presented
in chapter III.

A. Analysis of Petri Net by Using Sequent Calculus System

The proposed method of analyzing of Petri net checks
liveness and looks for any possible defects [13]. When Petri
net is correct the coloring is preformed. Colored Petri net is

P1

P2 P3

P4

P5

P6

P7

P9

P8

P10

P11

t1

t2

t3

t4

t5

t6

t7

t8

t9

XN1

XF1

XN2

XF1 XF2

XF4

XF3

YT1

YV1

YT2

YV1 YV2

YV3

YM

[C1]

[C1] [C2]

[C1 C2]

[C1 C2]

[C1 C2]

[C2]

[C3]

[C3]

[C2 C3]

[C2 C3]

Fig. 11. Interpreted colored Petri net.

required for synthesis purpose. The analyzing and coloring
are done with use of sequent deduction system. To simplify
the calculation process Petri net is replaced by equivalent
macronet [11].

1) Gentzen deduction system: The sequent is a formalized
statement used for deduction and calculi [14]. In the sequent
calculus, sequents are used for specification of judgment that
are characteristic to deduction system. The sequent is defined
as a ordered pair (Γ,∆), where Γ and ∆ are finite sets of for-
mulas, and Γ = {A1, A2, . . . , Am}, ∆ = {B1, B2, . . . , Bn}.
Instead of (Γ,∆) it is used notation with use of turnstile
symbol Γ ` ∆. Γ is called the antecedent and ∆ is a
succedent of the sequent. The sequent Γ ` ∆ is satisfiable
for the valuation v iff for the same valuation v the formula∧m

i=1 Ai →
∨n

j=1 Bj is satisfied. In proposed implementation
of Gentzen system there are defined ten rules of elimination
of logic operators. For each operator (negation, disjunction,
conjunction, implication and equivalency), there are defined
two rules of its elimination. First rule is used when the
operator is located in antecedent and the second one when
it is located in succedent. The elimination process is repeated
while only normalized sequents are received. The normalized
sequent is a sequent without any logical operators. Sequent
is a tautology iff it has the same formula in a antecedent
and a succedent. The located tautology sequents could be
removed from further normalization. Iff all received sequents
are tautology the analyzed sequent is also tautology. When
one of received sequents is not a tautology it means that it is
a counter example for analyzed sequent.



UML MODELLING IN RIGOROUS DESIGN METHODOLOGY FOR DISCRETE CONTROLLERS 31

TABLE I
MACRONET DEFINITION

Macroplaces Places

MP1 {P1, P2}
MP2 {P3}
MP3 {P4, P5, P6}
MP4 {P7}
MP5 {P8, P9}
MP6 {P10, P11}

MP1 MP2

MP3

MP4

MP6

MP5

t2

t5

t6

t8

XF1

XF3

[C1] [C2]

[C1 C2]

[C2] [C3]

[C2 C3]

Fig. 12. Interpreted colored Petri macronet.

2) Analysis and coloring: Original Petri net is replaced by
equivalent macronet [11] to simplify analysis and coloring
processes. To receive equivalent macronet each sequential
chain of places have to be replaced by one macroplace. For
our example all sequential chain of places with corresponding
macroplaces are shown in Table I and received macronet is
shown in Figure 12.

First step of analysis is generation of sequent formulae for
conducted Petri macronet. Such sequent is generated twice:
once for siphons and once for traps. For macronet presented
in Fig. 12 there are two sequents: SS describes siphons and
ST describes traps:

SS :((MP1 + MP2)→MP3)·
(MP3 → (MP4 + MP1))·
((MP4 + MP5)→MP6)·
(MP6 → (MP2 + MP5))) `;

ST :(MP3 → (MP1 + MP3))·
((MP4 + MP1)→MP3)·
(MP6 → (MP4 + MP5))·
((MP2 + MP5)→MP6)) `;

Then there are generated proof trees for both sequents. Pro-
posed Gentzen system is effective and original realization
of algorithm of sequent normalization [14], [15]. This tool
is suitable for solving combinational problems in the digital

TABLE II
SIPHONS AND TRAPS

Minimal siphons Minimal traps

MP1,MP3 `; MP1,MP3 `;
MP2,MP3,MP4,MP6 `; MP2,MP3,MP4,MP6 `;
MP5,MP6 `; MP5,MP6 `;

system design. It is able to transform very complicated behav-
ioral descriptions into simple expressions. During deduction
process system generates tree proof that is formal proof for
this process. For considered example following results were
received (left side of the sequents S0, S5 and S7 are minimal
siphons and left side of the sequents T3, T4 and T3 are
minimal traps):

S0 :MP2,MP3,MP4,MP6 `;

S1 :MP3,MP4,MP5,MP6 `;

S2 :MP1,MP2,MP3,MP6 `;

S3 :MP1,MP3,MP5,MP6 `;

S4 :MP1,MP2,MP3 `MP4,MP5;

S5 :MP1,MP3 `MP4,MP5,MP6;

S6 :MP4,MP5,MP6 `MP1,MP2;

S7 :MP5,MP6 `MP1,MP2,MP3;

S8 : `MP1,MP2,MP3,MP4,MP5,MP6;

T0 :MP1,MP3,MP4,MP6 `;

T1 :MP1,MP3,MP4 `MP2,MP5;

T2 :MP1,MP3,MP5,MP6 `;

T3 :MP1,MP3 `MP2,MP5,MP6;

T4 :MP2,MP3,MP4,MP6 `;

T5 :MP2,MP3,MP5,MP6 `;

T6 :MP2,MP5,MP6 `MP1,MP4;

T7 :MP5,MP6 `;MP1,MP3,MP4;

T8 : `MP1,MP2,MP3,MP4,MP5,MP6;

Siphons S1 and S3 and S6 are reduced respectively by smaller
siphons S7. Siphons S2 and S4 are reduced by smaller siphons
S5. Traps T0 and T5 and T6 are reduced respectively by
smaller traps T7 by analogy. No siphons and traps are de-
scribed by S8 and T8 sequents (they have not left side of
the sequent where places have positive value). The minimal
sets of siphons and traps for our example Petri macronet are
shown in Table II. Basing on algorithm for finding all siphons
and traps in Petri net and checking dependencies between sets
of siphons and traps, it is possible to answer the question if
Petri net is live. Analyzed Petri net is live because all minimal
siphons contain marked traps in initial marking.

The adjacency graph of concurrency (Fig. 13a) is created
based on the typical reachability graph. The generation of
reachability graph has exponential complexity. The lists of
concurrent places is presented in Table III. Products of logical
expressions define concurrency in analyzed Petri macronet.
The monotone characteristic sequent (SC) of Petri net discrete



32 G. ŁABIAK, M. ADAMSKI, M. DOLIGALSKI, J. TKACZ, A. BUKOWIEC

MP1

MP2

MP3

MP4

MP5

MP6

(a) Adjacency graph of concur-
rency

MP1

MP2

MP3

MP4

MP5

MP6

(b) Graph of invariants

Fig. 13. Adjacency graph of concurrency and graph of invariants.

TABLE III
CONCURRENT PLACES

List of concurrent places Logical expressions

MP1,MP2,MP5 (MP1 ·MP2 ·MP5)

MP3,MP5 (MP3 ·MP5)

MP1,MP4,MP5 (MP1 ·MP4 ·MP5)

MP1,MP6 (MP1 ·MP6)

TABLE IV
INVARIANTS OF THE PETRI MACRONET

Invariant Color Places
Ci Pi

MP1,MP3 `; C1 {P1, P2, P4, P5, P6}
MP2,MP3,MP4,MP6 `; C2 {P3, P4, P5, P6, P7, P10, P11}
MP1,MP5 `; – –
MP5,MP6 `; C3 {P9, P8, P10, P11}

space is as follows:

SC : ` (MP1 ·MP2 ·MP5), (MP3 ·MP5),

(MP1 ·MP4 ·MP5), (MP1 ·MP6);

After sequent calculation following sets of them were re-
ceived (Tab. IV). Each color corresponds to one invariant. The
invariant MP1, MP5 was rejected because it contained more
than one initially marked place (Fig. 13b).

B. From Petri Net to LSMs

The transformation form Petri net to LSMs is based on
decomposition of Petri net using symbolic deduction method.
The decomposition algorithm will be described generally on
an example (in detail it was described in [15], [16]). During
the process a Petri net is divided into a set of subnets. These
subnets have to satisfy some restriction, e.g. a subnet must
include only places which are sequential to each other or
cannot contain multi-input or multi-output transitions [16].
Decomposition of Petri net can be based on coloring of Petri
macronet. For decomposition invariants are used. Following al-
gorithm is based on the known method of coloring not oriented
graphs [10], [15]. The coloring of sample Petri net is presented
in Table IV. If it is possible to color Petri net, it means that

(a) subnet C1

MP2

MP3

MP4

MP6

t2

t5

t6

t8

XF1 * P6

XF3

P2

P8

(b) subnet C2

MP5

MP6

t6

t8 XF3 * P11

P7

(c) subnet C3

Fig. 14. Decomposed Petri macronet into macrosubnets.

this Petri macronet could be decomposed into macrosubnets.
Each color corresponds to one macrosubnet. Because multi-
input and multi-output transition occurs in more than one
macrosubnet there have to be added or extended approbate
firing condition. This extension of condition consists of logic
conjunction of all its input places from other macronets and it
is made in conjunction with already existing firing condition.
There are four such transitions in our example Petri net, two
multi-input: t2 and t6 and two multi-output: t5 and t8. In case
of multi-input transition firing condition in all macrosubnet
have to be modified. In our example, the transition t2 occurs
in macrosubnets C1 and C2 and there have to be added P3

as firing condition of this transition in macrosubnet C1 and
P2 in macrosubnet C2. P8 and P7 have to be added to the
transition t6 in macrosubnet C2 and in macrosubnet C3 by
analogy. In case of multi-output transition firing condition do
not have to be modified in first macrosubnet where it occurs.
The transition t5 occurs in macrosubnets C1 and C2 and there
have to be added P6 as firing condition of this transition in
macrosubnet C2. There is no need to add any condition in
macrosubnet C1 because there is only one input place P6 into
this transition t5. P11 have to be added to the transition t8 in
macrosubnet C3 by analogy. Macrosubnets for our example
Petri macronet are presented in Figure 14.

Now, macrosubnets can be transformed into LSMs. Each
macrosubnet represents one FSM. Because such macrosubnets
satisfy all restrictions mentioned in the beginning of this
paragraph they can be transformed to FSMs. The macrosubnet
represented by first color C1 is transformed in this way
(Fig. 15a):

• Each macroplace is replaced by sequence of states cor-
responding to places from original Petri Net;

• Each transition is converted into FSM transition;
• If firing condition consist a place, the additional input

signal xpm have to be created. Also the additional output
signal ypm have to be added to adequate FSM, that



UML MODELLING IN RIGOROUS DESIGN METHODOLOGY FOR DISCRETE CONTROLLERS 33

P1

P2

P4

P5

P6

XN1

XP3

XF1

XN2

XF1

RESET

YT1YT1

YV1YV1

YT2YT2

YV1

YP6

YV1

YP6

YP2YP2

(a) FSM C1

P10

P7

MP3

P3

XF4

XP8

XF1 * XP6

XP2

YV3

YP11

YV3

YP11

YMYM

RESET

P11

XF3

YP3YP3

YP7YP7

(b) FSM C2

RESET

MP6

P8

P9

XP7

XF3 * XP11

XF2

YV2YV2

YP8YP8

(c) FSM C3

Fig. 15. Decomposed Petri net into LSMs.

consists state Pm, as Moore type output, that is generated
in this state Pm.

Following macrosubnet represented by following colors Ci are
transformed in this way (Figs. 15b-15c):

• Each macroplace, that do not occurred in previous macro-
subnets represented by colors from C1 to Ci−1, is re-
placed by sequence of states corresponding to places from
original Petri Net;

• Each macroplace, that occurred in any previous macro-
subnets represented by colors from C1 to Ci−1, is re-
placed by one state corresponding to this macroplace.
This state does not generate any output signals;

• Transitions and its conditions are converted in the same
way like for macrosubnet represented by first color C1.

Received LSMs for our example Petri net are presented in
Figure 15. There have to be added transition form state to itself
(called itself transition) in all received FSMs if corresponding
transition in Petri net or macrosubnet has any condition. The
itself transition go from and into the same state like considered
transition. The condition of this itself transition is the negation
of condition of firing transition. This step is required to hold
the state. Sometimes, these transitions are not presented in
graphical representation to make it more readable and they can
be also omitted in some templates of behavioral description in
HDLs because variable that store the state also hold its value.
In our example these transition are not added because there is
used one of such VHDL templates to describe FSMs.

To implement whole system it is required to create top-level
module that connects LSMs together. In general, the top-level
module should satisfy these conditions:

• All FSMs should have the same clock and reset signals;
• All FSMs should have input signals belonging to the

subset of the same set of input signals;
• Additional output signals ypm should be connected with

corresponding additional input signals xpm in others
FSMs;

• In case of an output signal could be generated under con-

FSM

C1

Clock

Reset

FSM

C2

FSM

C3

Reset Reset Reset

XN1

XN2

XF1

XP3

YT1

YT2

YV1

YP2

YP6

XF1

XF3

XF4

XP2

XP6

XP8

YV3

YM

YP3

YP11

YP7

XF2

XF3

XP7

XP11

YV2

YP8XN1

XN2

XF1

XF2

XF3

XF4

YV2

YM

YV3

YV1

YT2

YT1

Fig. 16. Top-level module of LSMs implemented Petri net.

TABLE V
SYNTHESIS RESULTS OF THE PETRI NET

Logic Utilization
Structure

PN SMs LSMs

Number of Slices 7 12 8
Number of Slice Flip Flops 11 14 13
Number of 4 input LUTs 12 16 15

trol from more than one component, corresponding output
signals from all FSMs should be connected together in
final output signal via OR-gate.

For our example the top-level module is presented in Fig-
ure 16.

VI. SUMMARY

Presented examples were synthesized into device from
Xilinix Virtex family. The obtained results of device utilization
are shown in Table V in the column SMs are shown results
for the state machine based approach and in the column LSMs
are shown results for the decomposed Petri net into LSMs.
All models were described as behavioral description in VHDL
[17]. For comparison purpose in the column PN are presented
results after synthesis of behavioral description oriented on
places in VHDL [18] of initial Petri net. Increased use of hard-
ware resources is the price of friendlier forms of modeling. The
slight increase in resources is negligible in view of currently
produced, very roomy reprogrammable digital circuits. The
advantage of LSMs is possibility of distributed implementation
[12]. In this case each FSM can be implemented into different
integrated circuit. It gives possibility to place each part of
controller near to adequate control object.

UML diagrams make that designer better understand work-
ing of the system under design. Doing so the model specifies,
documents and visualizes different aspects of the system
making that further changes of the system or changes in the
client requirements can efficiently be applied. UML language
is very rich in different semantic structures and the designer
should make balanced trade-off. UML model should be sim-
ple enough to communicate main functionalities and internal
working of the system under design. Doing so UML model
is informal, but state machine and activity diagrams can be
solid base for formal models, like Petri nets or FSMs. The
formal models give advantage of application of verification
(well formed model) and synthesis algorithms.



34 G. ŁABIAK, M. ADAMSKI, M. DOLIGALSKI, J. TKACZ, A. BUKOWIEC

REFERENCES

[1] M. Adamski, M. Węgrzyn, and A. Karatkevich, Design of embedded
control systems. New York: Springer, 2005.

[2] G. Łabiak and G. Borowik, “Statechart-based controllers synthesis in
fpga structures with embedded array blocks,” International Journal of
Electronics and Telecommunications, vol. Vol. 56, no. no 1, pp. 13–24,
2010.

[3] M. Doligalski and M. Węgrzyn, “Partial reconfiguration-oriented design
of logic controllers,” Proceedings of SPIE : Photonics Applications
in Astronomy, Communications, Industry, and High-Energy Physics
Experiments 2007, vol. Vol. 6937, p. [10], 2007.

[4] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Lan-
guage. User Guide. New York: Addison Wesley Longman, Inc., 1999.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, Massachusetts: The MIT Press, 1999.

[6] P. Misurewicz, “Lectures on real-time microprocessor control systems,”
in Lecture Notes. Twin Cities: University of Minnesota, 1976.

[7] L. Gniewek and J. Kluska, “Hardware implementation of fuzzy Petri net
as a controller,” IEEE Transactions on Systems, Man, and Cybernetics
– Part B: Cybernetics, vol. Vol. 34, no. No. 3, pp. 1315–1324, 2004.

[8] M. Doligalski and M. Adamski, “Exceptions and deep history state
handling using dual specification,” Electrical Review, no. No. 9, pp.
123–125, 2010.

[9] G. čabiak and M. Adamski, “Concurrent processes synchronisation
in statecharts for FPGA implementation,” in Proceedings of IEEE
East-West Design & Test Symposium EWDTS’08, Kharkov National
University of Radioelectronics. Lviv, Ukraine: Lviv, The Institute of
Electrical and Electronics Engineers, Inc., 2008, pp. 59–64.

[10] K. Biliński, M. Adamski, J. Saul, and E. Dagless, “Petri-net-based algo-
rithms for parallel-controller synthesis,” IEE Proceedings – Computers
and Digital Techniques, vol. Vol. 141, no. No. 6, pp. 405–412, 1994.

[11] A. Karatkevich, Dynamic Analysis of Petri Net-Based Discrete Systems,
ser. Lecture Notes in Control and Information Sciences. Berlin:
Springer-Verlag, 2007, vol. 356.

[12] A. Bukowiec and L. Gomes, “Partitioning of Mealy finite state ma-
chines,” in Preprints of the 4th IFAC Workshop Discrete-Event System
Design DESDes’09, Gandia Beach, Spain, 2009, pp. 21–26.

[13] A. Wȩgrzyn, “Parallel algorithm for computation of deadlocks and
traps in Petri nets,” in 10th IEEE International Conference Emering
Technologies and Factory Automation ETFA’05, vol. 1, Universita di
Catania. Catania, Italy: Piscataway, IEEE Operation Center, 2005, pp.
143–148.

[14] J. H. Gallier, Logic for Computer Science: Foundations of Automatic
Theorem Proving. New York: Harper & Row Publishers, 1985.
[Online]. Available: http://www.cis.upenn.edu/ jean/gbooks/logic.html

[15] J. Tkacz, “State machine type colouring of Petri net by means of using a
symbolic deduction method,” Measurement Automation and Monitoring,
vol. Vol. 53, no. No. 5, pp. 120–122, 2007.

[16] M. Adamski, “Petri nets in ASIC design,” Applied Mathematics and
Computer Science, vol. Vol. 3, no. No. 1, pp. 169–179, 1993.

[17] M. Zwoliński, Digital System Design with VHDL, 2nd ed. New Jersy:
Prentice Hall, 2004.

[18] M. Puczyńska, G. Łabiak, and P. Wolański, “Programowa implementacja
konwersji sieci petriego na jȩzyk VHDL,” in Materiały III Krajowej
Konferencji Naukowej Reprogramowalne Układy Cyfrowe RUC 2000,
Szczecin, Poland, 2000, pp. 285–291.


