
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 1, PP. 35–41
Manuscript received December 31, 2011; revised March 2012. DOI: 10.2478/v10177-012-0005-7

Synthesis of FSMs Based on Architectural
Decomposition with Joined Multiple Encoding

Arkadiusz Bukowiec

Abstract—The method of synthesis of the logic circuit of finite
state machine (FSM) with Mealy’s outputs is proposed in this
paper. Proposed method is based on the innovate encoding of
microinstructions split into subsets. Code of microinstruction
is represented as a part of current state code and code of
microinstruction inside of current subset. It leads to realization
of FSM as s double-level structure. It leads to diminishing of
number of variables required for encoding of microinstructions.
Such approach permits to decrease the number of required
outputs of combinational part of FSM.

Keywords—Boolean algebra, circuit synthesis, Field Pro-
grammable Gate Arrays, sequential circuits.

I. INTRODUCTION

F INITE state machines (FSMs) with Mealy’s outputs [1],
[2] are one of the most popular method of control units

(CUs) design. Nowadays, field programmable gate arrays
(FPGAs) are used very often for implementation of logic
circuits of FSMs [3], [4]. One of the main features of FPGA
is existence of logic elements with restricted number of
inputs [5]. On the other hand, logic functions of FSMs have
much more arguments than number of inputs of typical logic
element. This imbalance leads to necessity of decomposition
of logic functions describing the behavior of FSM [6], [7],
[8]. The negative results of functional decomposition are
both increasing a number of levels of the FSM circuit and
decreasing of a digital system performance in comparison to
single-level implementation of control unit.

One of methods of decreasing a number of logic functions
depending on big number of arguments is multi-level imple-
mentation of FSM [9], [10]. Such methods required additional
internal variables and very often consume more hardware
then single-level implementation of FSM. But, this issue can
be resolved by usage of both, logic elements and embedded
memory blocks, that are available in modern FPGA devices.

The method of decreasing of a number of functions de-
pending of logic conditions and internal variables of FSM is
proposed in given article. There is proposed method of joined
multiple encoding of microinstructions. A set of microinstruc-
tion is divided into subsets based on a current state [11]. Then,
subset are joined into pairs [12]. Each pair is identified based
on a part of state code [13]. Next, microinstruction are en-
coded separately in each pair of subsets. The microinstruction
encoding leads to decrease the number of implemented logic
functions by combinational part of the logic circuit. And the

This work was supported by the Ministry of Science and Higher Education
of Poland. Research grant no. N516 513939 for years 2010-2013.

A. Bukowiec is with the Institute of Computer Engineering and Electronics,
University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland (e-mail:
a.bukowiec@iie.uz.zgora.pl).

x2/y2

a1

a2

a3a4

a5

x1x2/y1

x1x2/y1y2

x2/y1y2 x2/y2

x2/y2

x2x3/y2

x2x3/y2y3

x3/y3y4
x3/-

x1/y1y5

x1x3/y3y4 x1x3/y2y3

(a) State diagram

.i 3

.o 5

.s 5

.p 13

.r a1
11- a1 a2 10000
01- a1 a3 11000
-0- a1 a4 01000
-1- a2 a3 11000
-0- a2 a4 01000
-1- a3 a3 01000
-00 a3 a4 01000
-01 a3 a5 01100
--1 a4 a5 00110
--0 a4 a3 00000
1-- a5 a1 10001
0-1 a5 a5 00110
0-0 a5 a4 01100

(b) KISS2

Fig. 1. Example of FSM S1.

joining of subsets leads to decrease size of memory decoder.
In overall it leads to balanced usage of different kind of logic
resources.

II. RUDIMENTS

A finite state machine is a mathematical model of behavior
composed of a finite set of input symbols, a finite set of states,
a finite set of output symbols, transitions and actions. It is
represented as 6-tuple:

S = 〈X,Y,A, a1, δ, ω〉, (1)

where:
X is a finite set of input symbols, X = {x1, . . . , xL};
Y is a finite set of output symbols, Y = {y1, . . . , yN};
A is a finite non empty set of states, A =

{a1, . . . , aM};
a1 is the initial state, a1 ∈ A;
δ is a transition function, defined as a function of a

state and input symbols:

δ : A×X → A; (2)

ω is an output function, in case of Moore model [14]
defined as a function of a state:

ω : A→ Y, (3)

and in case of Mealy model [15] defined as a function
of a state and input symbols:

ω : A×X → Y. (4)

One of the most popular methods of representation of
FSMs is KISS2 text format [16]. It is a text file (Fig. 1b)

36 A. BUKOWIEC

representation of one-dimensional state transition table [1],
[2]. A file in this format consists of two parts: header and
table. The header includes information about the number of
inputs .i, the number of outputs .o, the number of table
products .p, the number of states .s, and the initial state
(optional) .r. The table describes the behavior (transitions) of
a FSM. It consists of four columns: a logic condition, a current
state, a next state, and output variables. The ’–’ sign in logic
condition means that this input variable does not affect this
transition. The ’0’ value means that negation of this variable
should be placed in a logic condition and the ’1’ value that
its affirmation should be placed in a logic condition.

III. SYNTHESIS METHODS

Logic circuit of Mealy FSM can be described as system of
logic functions:

Φ = Φ(X,Q),

Y = Y (X,Q),
(5)

where Q = {Q1, . . . , QR} is a set of internal variables, that
are used to encode states of FSM am ∈ A, and R = log2M ;
Φ = {D1, . . . , DR} is a set of excitation functions. This
system is formed based on transition table (e.g. described
in KISS2 file) during logic synthesis process. It is also the
basis to form single-level logic circuit of FSM, called P
(Fig. 2a) [1], [2]. Here the combinational circuit P implements
system of excitation functions and microoperations (5) and it
is implemented with use of logic elements in FPGAs. The
register RG implements the memory of FSM and it has D
type inputs as a rule.

In this structure, the total number of logic functions imple-
mented by combinational circuit P is equal to:

nP(P) = R+N. (6)

One of the known methods of reduction of this value is
application of the maximal encoding of microinstructions [2].
Let transition table has T different microinstructions Yt ⊆ Y .
Let encode each microinstruction Yt by binary code K(Yt)
with N1 = dlog2 T e bits, where N1 < N . Let use variables
zn ∈ Z = {z1, . . . , zN1

} for representation of these codes.
In this case, the logic circuit of FSM can be implemented
with a double-level structure PY (Fig. 2b) [1], [2]. Here,
the combinational circuit P implements system of excitation
functions and microinstructions encoding:

Φ = Φ(X,Q),

Z = Z(X,Q),
(7)

but the number of implemented logic functions is reduced to:

nPY(P) = R+N1. (8)

The register RG has exactly the same function like in a
previous structure. The additional circuit Y implements system
of microinstruction decoder:

Y = Y (Z), (9)

and, because of its regular structure, it can be implemented
with use of embedded blocks in FPGAs. However, the value

of (8) is still relatively big in comparison to (6) and it does
not assure reduction of the number of required logic elements
to implementation of combinational circuit P [17]. It makes
that application of this structure in FPGAs not effective.

Further reduction of the number of implemented logic
functions can be satisfied by application of multiple encoding
of microinstructions [10], [13]. Let divide set of microin-
structions Υ = {Y1, . . . , YT } into subsets based on current
state am. It leads to existence of M subsets Υ(am) ⊆ Υ,
Υ = {Υ(a1), . . .Υ(aM)} and microinstruction Yt ∈ Υ(am)
iff it is executed during any transition from state am. Let
encode each microinstruction Yt ∈ Υ(am) by binary code
Km(Yt) with N0 = dlog2 T0e bits where:

T0 = max(|Υ(a1)|, . . . , |Υ(aM)|). (10)

Let use variables ψn ∈ Ψ = {ψ1, . . . , ψN0
} for representation

of these codes. In this case code of microinstruction K(Yt)
is represented by concatenation of multiple code of microin-
struction Km(Yt) and code of current state K(am):

K(Yt) = Km(Yt) ∗K(am). (11)

Digital circuit of FSM with such encoding can be implemented
with a double-level structure PY0 (Fig. 2c) [17], [11]. Now,
the combinational circuit P implements system of excitation
functions and microinstructions multiple encoding:

Φ = Φ(X,Q),

Ψ = Ψ(X,Q),
(12)

and the number of implemented logic functions is equal to:

nPY0
(P) = R+N0. (13)

The register RG has exactly the same function like in previous
structures. There is also additional circuit Y. It implements
system of microinstruction multiple decoder:

Y = Y (Ψ, Q), (14)

and it also can be implemented with use of embedded blocks
in FPGAs. In this case, the value of (13) gives possibility to re-
duce the number of required logic elements for implementation
of combinational circuit P [17]. Unfortunately, implementation
of the microinstruction multiple decoder Y, represented by
system (14), can lead to not effective usage of embedded
memory block of FPGAs.

IV. SYNTHESIS METHODS WITH JOINED MULTIPLE
ENCODING

The idea of presented in this article method of synthesis
is based on joining of microinstructions subsets into pair. It
leads to possibility of identification of microinstruction only
with use of a part of a current state code. This solution causes
that the microinstruction decoder memory size is decreased
twice and there is no need to implement any additional logic
functions by combinational circuit.

Let join subsets Υ(am) into pairs Υm′′

m′ = Υ(am′) ∪
Υ(am′′)1 and all such pair create a set ΥP. The number of ele-
ments of all pairs Υm′′

m′ should be equalized. Iff M < 2dlog2 Me

1Each pair is represented as a sum of two subsets.

SYNTHESIS OF FSMS BASED ON ARCHITECTURAL DECOMPOSITION WITH JOINED MULTIPLE ENCODING 37

P

RG

Y

Q

Φ

X

(a) P

P

RG

Y

Q

Φ

X Z
Y

(b) PY

P

RG

Y

Q

Φ

X Ψ

Y

(c) PY0

Fig. 2. Structures of logic circuit of FSM.

Fig. 3. Structure of logic circuit of PYJ FSM.

then 2dlog2 Me−M the biggest subsets Υ(am) should be joined
into pair with empty set ∅ (Υ∅

m′ = Υ(am′)∪∅)). The remain
subsets are joined into pair by the rule: The biggest with the
smallest. Next, let encode states am′ and am′′ of each pair by
binary codes K(am′) and L(am′′) with R bits. These codes
should differ only on the least significant bit QR. Now, let
encode microinstruction for each pair of subsets by binary
code Km′′

m′ (Yt) on NC = dlog2 TCe bits, where

TC =
M,M
max

m′=1,m′′=1
(|Υ(m

′′

m′)|). (15)

Application of this is effective only if condition:

NC = N0 (16)

is satisfied. Otherwise, the number of logic function imple-
mented by combinational circuit is increased and length of
multiple code of microinstruction is also increased. It causes
also that memory size is not reduced. But, for typical control
algorithms condition (16) should be satisfied.

Let us use variables ψn ∈ Ψ = {ψ1, . . . , ψNC
} for

representation of the code Km′′

m′ (Yt). When such encoding is
applied, there is required to use concatenation of multiple code
of microinstruction Km′′

m′ (Yt) and part of the code of current
state K(am)[1 : (R− 1)]:

K(Yt) = Km′′

m′ (Yt) ∗K(am)[1 : (R− 1)]. (17)

for one to one representation of the code of microinstruction
K(Yt).

For this encoding, the logic circuit of FSM can be im-
plemented with a double-level structure PYJ (Fig. 3). Here,
the combinational circuit P implements system of excitation
functions and microinstructions joined multiple encoding:

Φ = Φ(X,Q),

Ψ = Ψ(X,Q),
(18)

1: T0 = 0
2: Υ = ∅
3: for m = 1 to M do
4: Υ(States[m]) = ∅
5: for h = 1 to H do
6: if AM(h)==States[m] then
7: Υ(am)→ADD(YH(h))
8: end if
9: end for

10: Υ→ADD(Υ(States[m]))
11: if (Υ(States[m])→COUNT> T0) then
12: T0 = Υ(States[m])→COUNT
13: end if
14: end for

Fig. 4. Algorithm of creation and division of microinstructions.

and the number of implemented logic functions is equal to:

nPYJ
(P) = R+NC . (19)

Because of (16) this value is unchanged in comparison to
previous method. And it still can be implemented using logic
blocks of FPGA without big impact on the logic blocks
number. The register RG has exactly the same function like
in previous structures. There is also circuit Y. It implements
system of microinstruction joined multiple decoder:

Y = Y (Ψ, Q[1 : R− 1]), (20)

and it also can be implemented with use of embedded blocks
in FPGAs. Because the address word is shorter by one bit in
comparison to PY0 structure the size of memory is decreased
twice.

The whole synthesis process includes following steps:
1. Creation and division of microinstructions set. Let us create

set of microinstructions Υ = {Y1, . . . , YT } by readout all
unique microinstructions Yt from transition table. Then, this
set is divided into M subsets based on current state Am.
Each subset Υ(am) ⊆ Υ consists only of microinstructions
that are executed during any transition from state am.
Implemented algorithm (Fig. 4) is optimized and creates
divided subsets directly from transition table.

2. Joining of microinstruction subsets into pairs. Let us join all
subsets Υ(am) into pair Υm′′

m′ by applying rule described
above and i9mplemented in algorithm shown in Figure 5.

38 A. BUKOWIEC

1: Υ→SORT
2: ΥP = ∅
3: MP = 2dlog2 Me −M
4: if MP > 0 then
5: for m = 1 to MP do
6: ΥP (m) = ∅
7: ΥP (m)→ am′ = Υ[m]→ am
8: ΥP (m)→ADDELEM(Υ[m])
9: ΥP (m)→ am′′ = Υ[m]→ ∅

10: ΥP →ADD(ΥP (m))
11: end for
12: end if
13: for m = MP + 1 to M−MP

2 do
14: ΥP (m) = ∅
15: ΥP (m)→ am′ = Υ[m]→ am
16: ΥP (m)→ADDELEM(Υ[m])
17: ΥP (m)→ am′′ = Υ[m]→ am
18: ΥP (m)→ADDELEM(Υ[M − (m− (MP + 1))])
19: ΥP →ADD(ΥP (m))
20: end for

Fig. 5. Algorithm of joining of microinstructions.

3. Encoding of microinstructions. Let us encode each microin-
struction Yt in each pair Υm′′

m′ by binary code Km′′

m′ (Yt)
(Fig. 6).

4. Encoding of states. There is required a special encoding
of states to satisfy the possibility of encoding of microin-
struction with usage of partial code of current state. So,
let us encode states am′ and am′′ defining each pair Υm′′

m′

by following binary codes K(am′) and K(am′′). It assures
that these codes differ only on least significant bit QR. The
algorithm presented in Figure 7 overwrites existing trivial
binary encoding that is used by other synthesis methods by
new codes.

5. Formation of direct structural table of FSM PYJ. This table
is formatted based on original transition table by adding
columns with: code of current state K(am), code of next
state K(as), excitation functions Φh that are equal to 1
to switch the FSM memory form code K(am) to K(as),
and by replacing microinstruction column Yh by column
Ψh. The column Ψh consists variables that are equal to
1 in adequate code Km′′

m′ (Yt). This table is a basis for
formation of the system (18). The application for synthesis
omits this step because all data for this table is created in
previous steps and the table is required only for presentation
purpose and manual synthesis. The application store the
FSM model in table that are red from KISS2 file and
additional collections.

6. Formation of table of microinstruction decoder. This table
has columns: Km′′

m′ (Yt), K(am)[1 : (R − 1)], K(Yt). This
table is basis for formation of the system (20). From similar
reason like in previous step this table is also not created by
the application for synthesis. The application creates the
description of Y circuit in Verilog HDL in this step.

7. Formation of logic equations. This step is required to form
Boolean equations describing the system (18). They are
created based on direct structural table of FSM PYJ as

1: K(ΥP) = ∅
2: for m = 1 to

∣∣ΥP
∣∣ do

3: K(ΥP (m)) = ∅
4: for t = 1 to

∣∣ΥP[m]
∣∣ do

5: K(ΥP (m))→ADD(INTTOBIN(t,NC))
6: end for
7: K(ΥP)→ADD(K(ΥP (m)))
8: end for

Fig. 6. Algorithm of encoding of microinstructions.

1: for m = 1 to
∣∣ΥP

∣∣ do
2: K(A)[ΥP[m] → am′ → m] =INTTOBIN((m − 1) ∗

2,R)
3: if ΥP[m]→ am′′ 6= ∅ then
4: K(A)[ΥP[m] → am′′ → m] =INTTOBIN((m ∗

2− 1,R)
5: end if
6: end for

Fig. 7. Algorithm of encoding of states.

sum of products in typical way [1], [2]. The application for
synthesis builds equations in Verilog HDL. These equations
create description of P circuit.

8. Implementation of logic circuit into FPGA. The combi-
national circuit P and the register RG are implemented
with use of standard logic blocks. The circuit P with use
of look-up tables and the register RG with D type flip-
flops. The decoder Y is implemented with use of embedded
memory blocks. The address is represented by (17) and
microinstructions from sets Υm′′

m′ creates content of this
memory.
To satisfy such implementation, the whole circuit could
be described with use of HDLs in approbate way, and
then it should be passed into third party synthesis &
implementation tools. The logic equations of the system
(18) of combinational circuit P should be described with
use of continuous assignment. The register RG should be
described as R-bits D type flip-flop with use of standard
synthesis template [18], [19]. The circuit Y has to be
described as process with clock signal on the sensitivity
list. It should be trigged by opposite edge of clock signal
than the register RG. It satisfies that outputs are stable after
one clock cycle [17]. The reset signal should be described
as synchronous one and the content of the memory could
be described with use of case statement with address as
a selector. Additionally, there have to be added special
synthesis directive to permit implementation with use of
embedded memory blocks. The syntax of this directive
depends on selected FPGA vendor. The top-level module
could be described as connection of instantiated compo-
nents.

V. METHOD APPLICATION ON EXAMPLE

The synthesis process described in previous section will be
illustrated on example FSM S1 (Fig. 1) [17]. There is M = 5
states in this FSM and they create the set A = {a1, . . . , a5}.

SYNTHESIS OF FSMS BASED ON ARCHITECTURAL DECOMPOSITION WITH JOINED MULTIPLE ENCODING 39

There is also N = 5 microoperations Y = {y1, . . . , y5}. These
microoperations create T = 7 microinstructions

Υ =


Y1 = {y1}, Y2 = {y1, y2}, Y3 = {y2},
Y4 = {y2, y3}, Y5 = {y3, y4},
Y6 = ∅, Y7 = {y1, y5}

 .

There is required to use N1 = dlog2 T e = 3 bits to encode
all microinstructions in case of application of PY structure
(Fig. 2b). It means, that the combinational circuit P have to
implement nPY(P) = R + N1 = 6 logic functions and the
decoder Y can be implemented as a memory block with 3-bit
address and 5-bit word.

The application of PY0 structure (Fig. 2c) is also possible.
In this case, there is required to use N0 = dlog2 T0e = 2 bits
to encode microinstructions. And now, that the combinational
circuit P has to implement nPY0

(P) = R + N0 = 5 Boolean
functions and the decoder Y can be implemented with use of
a memory block with 5-bit address and and 5-bit word. It can
be noticed that there is required to store more words in the
memory but size of memory block does not change because
the number of available block is not exceeded. Of course in
other cases it can be exceeded and then the application of
proposed method with joined encoding can be helpful.

The synthesis with joined multiple encoding of microin-
structions into PYJ structure (Fig. 3) starts with division
of microinstructions set into subsets based on current state
(step 1). In our example, there is M = 5 such subsets:
Υ(a1) = {Y1, Y2, Y3}, Υ(a2) = {Y2, Y3}, Υ(a3) = {Y3, Y4},
Υ(a4) = {Y5, Y6}, and Υ(a5) = {Y4, Y5, Y7}. Next, there is
required to join these subsets into pairs (step 2). This is the
most important step of this synthesis method. Because, for the
example FSM S1, the condition M < 2dlog2 Me is satisfied the
three biggest subsets are joined with empty set ∅ into pair.
So, there are created four pairs: Υ∅

1 = {Y1, Y2, Y3}, Υ∅
5 =

{Y4, Y5, Y7}, Υ∅
2 = {Y1, Y2}, and Υ4

3 = {Y3, Y4, Y5, Y6}.
Now, the microinstruction can be encoded with binary code
Km′′

m′ (Yt) (step 3). In our case there is required to use
NC = dlog2 TCe = 2 bits to represent this code and encoding
looks as follow: K∅

1 (Y1) = 00, K∅
1 (Y2) = 01, K∅

1 (Y3) = 10,
K∅

5 (Y4) = 00, K∅
5 (Y5) = 01, K∅

5 (Y7) = 10, K∅
2 (Y1) = 00,

K∅
2 (Y2) = 01, K4

3 (Y3) = 00, K4
3 (Y4) = 01, K4

3 (Y5) = 10,
and K4

3 (Y6) = 11. To encode microinstructions there is
required to use adequate state encoding (step 4). Because
codes of states K(am′) and K(am′′) have to differ on one last
least significant bit QR the states could be encoded as follow:
K(a1) = 000, K(a2) = 010, K(a3) = 100, K(a1) = 101,and
K(a5) = 110 for our example. It can be noticed that codes
001, 111, and 011 can not be assigned to any state because
subsets Υ(am′) depending on states a1, a5, and a2 are joined
with empty set ∅. Now, the transformed direct structural table
of FSM PYJ (step 5.) can be created. It is presented in Table I
for example FSM S1. There is also required to create table of
the decoder Y (step 6). It describes content of the memory. It
is presented in Table II for example FSM S1. Based on the
transformed DST (Tab. I) there can be formed logic equations
of system (18) (step 7). For our example FSM S1, there can

TABLE I
TRANSFORMED DST OF THE MEALY FSM S1

am K(am) as K(as) Xh Ψh Φh h

a1 000 a2 010 x1 x2 −− D2 1
a3 100 x1 x2 ψ2 D1 2
a4 101 x2 ψ1 D1 D3 3

a2 010 a3 100 x2 −− D1 4
a4 101 x2 ψ2 D1 D3 5

a3 100 a3 100 x2 −− D1 6
a4 101 x2 x3 −− D1 D3 7
a5 110 x2 x3 ψ2 D1 D2 8

a4 101 a5 110 x3 ψ1 D1 D2 9
a3 100 x3 ψ1 ψ2 D1 10

a5 110 a1 000 x1 ψ1 −− 11
a5 110 x1 x3 ψ2 D1 D2 12
a4 101 x1 x3 −− D1 D3 13

TABLE II
TABLE OF DECODER Y

K(am)[1 : 2] Km′′
m′ (Yt) Yt t0

Q1Q2 ψ1ψ2 y1y2y3y4y5

00 00 10000 1
00 01 11000 2
00 10 01000 3
01 00 11000 4
01 01 01000 5
10 00 01000 6
10 01 01100 7
10 10 00110 8
10 11 00000 9
11 00 01100 10
11 01 00110 11
11 10 10001 12

TABLE III
PARAMETERS OF MEALY FSM S1

P PY PY0 PYJ

n(P) 8 6 5 5
n(RG) 3 3 3 3
n(Y) 0 40 160 80

be formed, for example:

D3 = Q1Q2Q3 x2 +Q1Q2Q3 x2 +Q1Q2Q3 x2 x3

+ Q1Q2Q3 x1 x3,

ψ2 = Q1Q2Q3 x1 x2 +Q1Q2Q3 x2 +Q1Q2Q3 x2 x3

+ Q1Q2Q3 x2 x3 +Q1Q2Q3 x1 x3.

It can be noticed that these equations are not minimized ones.
This proceed is not required at logic synthesis level because it
would be preformed by third party synthesis & implementation
tools in next step. This step finishes logic synthesis process.
Now, the key parameters, like number of logic equations or
number of memory bits, of logic circuit can be calculated. The
Table III presents these parameters for FSM S1, where
n(P) is a number of logic equations implemented by the

combinational circuit P,
n(RG)is a number of D type flip-flops in the register RG,
n(Y) is a number of used memory bits in the decoder Y.

40 A. BUKOWIEC

module S1 P (x , Q, p s i , D) ;
input [1 : 3] x ;
input [1 : 3] Q;
output [1 : 2] p s i ;
output [1 : 3] D;

a s s i g n p s i [1] = ˜ x [2] & ˜Q[1] & ˜Q[2] & ˜Q[3]
| x [3] & Q[1] & ˜Q[2] & Q[3]
| ˜ x [3] & Q[1] & ˜Q[2] & Q[3]
| x [1] & Q[1] & Q[2] & ˜Q [3] ;

. . .
a s s i g n D[3] = ˜ x [2] & ˜Q[1] & ˜Q[2] & ˜Q[3]

| ˜ x [2] & ˜Q[1] & Q[2] & ˜Q[3]
| ˜ x [2] & ˜ x [3] & Q[1] & ˜Q[2] & ˜Q[3]
| ˜ x [1] & ˜ x [3] & Q[1] & Q[2] & ˜Q[3] ;

endmodule

Fig. 8. Verilog description of combinational circuit P.

module S1 RG (c lk , r e s , D, Q) ;
input c lk , r e s ;
input [1 : 3] D;
output [1 : 3] Q;
reg [1 : 3] Q;

always @(posedge c l k or posedge r e s)
i f (r e s)

Q <= 3 ’ b0 ;
e l s e

Q <= D;
endmodule

Fig. 9. Verilog description of register RG.

Now, the logic circuit can be prepared for implementation
(step 8). First, the whole circuit is described in Verilog HDL.
The combinational circuit P is described using continues
assignment based on equations received in step 7 (Fig. 8).
The register RG is described as 3-bits D type flip-flop with
asynchronous reset signal and trigged by rising edge of clock
signal (Fig. 9). There was used standard synthesis template
[18], [19] for this purpose. The circuit Y is described with
use of one process trigged by falling edge of the clock
signal (Fig. 10). The content of the memory is described
with use of case statement and it was taken from the table
of decoder Y (Tab. II) that was received in step 6. There
is also set special synthesis attribute bram_map to yes to
satisfy implementation into embedded memory blocks. This
is attribute for Xilnix devices, and in case od different vendor
devices it should be replaced by different one. Finally, the top-
level module is described as instantiation of already described
components (Fig. 11). Their connections should be adequate to
the logic structure presented in Figure 3. Now, such description
can be passed into third party synthesis & implementation
tools. In this case, there was used Xilnix ISE with XST, and
the obtained results are shown in Table IV.

The application of this method with joined multiple en-
coding reduce the memory size by two and do not affect
the number of implemented logic functions in comparison
with well known method multiple encoding. The presented
in Table III parameters of example FSM S1 shows this

module S1 Y (c lk , p s i , Q, y) ;
input c l k ;
input [1 : 2] p s i ;
input [1 : 2] Q;
output [1 : 5] y ;
reg [1 : 5] y ;

/ / s y n t h e s i s a t t r i b u t e bram map o f S1 Y i s
y e s

always @(negedge c l k)
case ({Q, p s i })

4 ’ b0000 : y = 5 ’ b10000 ;
4 ’ b0001 : y = 5 ’ b11000 ;
4 ’ b0010 : y = 5 ’ b01000 ;
. . .

endcase
endmodule

Fig. 10. Verilog description of decoder Y.

module S1 (c lk , r e s , x , y) ;
input c lk , r e s ;
input [1 : 3] x ;
output [1 : 5] y ;
wire [1 : 3] d ;
wire [1 : 3] q ;
wire [1 : 2] p s i ;

S1 RG UD (. c l k (c l k) , . r e s (r e s) , .D(d) ,
.Q(q)) ;

S1 P UP (. x (x) , .Q(q) ,
.D(d) , . p s i (p s i)) ;

S1 Y UY (. c l k (c l k) , . p s i (p s i) , .Q(q [1 : 2]) ,
. y (y)) ;

endmodule

Fig. 11. Verilog description of top-level module.

TABLE IV
IMPLEMENTATION RESULTS OF MEALY FSM S1

P PY PY0 PYJ

Slices 10 9 8 7
LUTs 18 16 14 13
FFs 3 3 3 3

BRAMs – 1 1 1

dependence. Although, the implementation results depends
also on functional decomposition of logic equations process
and state encoding, and it cause that the number of utilized
logic elements could change. It have to be mentioned that
encoding of states for both synthesis method is different
because the proposed method with joined multiple encoding
required special state encoding algorithm. Additionally, the
number of embedded memory blocks is the same for all
synthesized structures because of small size of example FSM
S1. In case of bigger examples, the value of n(Y) parameter
has also influence on number of utilized embedded memory
blocks.

SYNTHESIS OF FSMS BASED ON ARCHITECTURAL DECOMPOSITION WITH JOINED MULTIPLE ENCODING 41

VI. SUMMARY

There was proposed method of synthesis and double-level
structure of a digital device implementing an FSM. This struc-
ture is dedicated to presented synthesis method. The synthesis
method is based on the multiple encoding of microinstructions
of a state machine and structural decomposition of its logic
circuit. This method was adapted for synthesis process into
FPGA devices. It takes advantage of features of new FPGA
devices like embedded memory blocks. The utilization of such
resources leads to reduce the number of required standard logic
blocks, like LUTs, for implementation of a control unit. The
proposed method is also oriented on reduction of memory size.

REFERENCES

[1] S. I. Baranov, Logic Synthesis for Control Automat. Boston: Kluwer
Academic Publishers, 1994.

[2] A. Barkalov and L. Titarenko, Logic Synthesis for FSM-based Control
Units, ser. Lecture Notes in Electrical Engineering. Berlin: Springer-
Verlag, 2009, vol. 53.

[3] Z. Salcic, VHDL and FPLDs in Digital Systems Design, Prototyping
and Customization. Boston: Kluwer Academic Publishers, 1998.

[4] H. Kubátová, “Finite state machine implementation in FPGAs,” in
Design of Embedded Control Systems, M. Adamski, A. Karatkevich,
and M. Wȩgrzyn, Eds. New York: Springer, 2005, pp. 177–187.

[5] J. Jenkins, Designing with FPGAs and CPLDs. Upper Saddle River,
NJ: Prentice Hall, 1994.

[6] C. Scholl, Functional Decomposition with Application to FPGA Synthe-
sis. Boston: Kluwer Academic Publishers, 2001.

[7] M. Rawski, H. Selvaraj, T. Łuba, and P. Szotkowski, “Application
of symbolic functional decomposition concept in FSM implementa-
tion targeting FPGA devices,” in Proceedings of the 6th International
Conference on Computational Intelligence and Multimedia Applications
ICCIMA’05, Las Vegas, NV, 2005, pp. 153–158.

[8] G. Borowik, M. Rawski, G. abiak, A. Bukowiec, and H. Selvaraj,
“Efficient logic controller design,” in Fifth International Conference
on Broadband and Biomedical Communications IB2Com’10, Malaga,
Spain, 2010, pp. [CD–ROM].

[9] M. Adamski and A. Barkalov, Architectural and Sequential Synthesis
of Digital Devices. Zielona Góra: University of Zielona Góra Press,
2006.

[10] A. Bukowiec and A. Barkalov, “Structural decomposition of finite state
machines,” Electronics and Telecommunications Quarterly, vol. Vol. 55,
no. No. 2, pp. 243–267, 2009.

[11] A. Bukowiec, “Synthesis of Mealy FSM with multiple shared encoding
of microinstructions and internal states,” in Proceedings of IFAC Work-
shop on Programmable Devices and Embedded Systems PDeS’06, Brno,
Czech Republic, 2006, pp. 95–100.

[12] ——, “Architectural synthesis of FSMs with joined multiple encoding,”
Electrical Review, vol. Vol. 2011, no. No. 11, pp. 150–153, 2011.

[13] A. Bukowiec, A. Barkalov, and L. Titarenko, “FSMs implementation
into FPGAs with multiple encoding of states,” in Proceedings of IEEE
East-West Design & Test Symposium EWDTS’08. Lviv, Ukraine: IEEE,
2008, pp. 72–75.

[14] E. F. Moore, “Gedanken-experiments on sequential machines,” in Au-
tomata Studies, ser. Annals of Mathematical Studies, C. E. Shannon and
J. McCarthy, Eds. Princeton, NJ: Princeton University Press, 1956,
vol. 34, pp. 129–153.

[15] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell
System Technical Journal, vol. Vol. 34, no. No. 5, pp. 1045–1079, 1955.

[16] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide.
version 3.0.” Microelectronics Center of North Carolina, Research
Triangle Park, NC, Tech. Rep. 1991-IWLS-UG-Saeyang, 1991. [Online].
Available: http://jupiter3.csc.ncsu.edu/b̃rglez/Cite-BibFiles-Reprints-
home/Cite-BibFiles-Reprints-Central/BibValidateCentralDB/Cite-
ForWebPosting/1991-IWLSUG-Saeyang/1991-IWLSUG-
Saeyang guide.pdf

[17] A. Bukowiec, Synthesis of Finite State Machines for FPGA devices
based on Architectural Decomposition, ser. Lecture Notes in Control and
Computer Science. Zielona Góra: University of Zielona Góra Press,
2009, vol. 13.

[18] P. Eles, K. Kuchcinski, and Z. Peng, System Synthesis with VHDL.
Norwell: Springer, 1998.

[19] D. Thomas and P. Moorby, The Verilog Hardware Description Language,
5th ed. Norwell, MA: Kluwer Academic Publishers, 2002.

