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Estimation of Two Sinusoids in a Very Short Signal
Rafał Rytel-Andrianik

Abstract—In the paper, the estimation of the parameters
(frequency, amplitude, phase) of two complex-valued sinusoids
embedded in a white gaussian circular additive noise is con-
sidered. In this context, it is answered what is the minimal
necessary number of signal samples needed to reliably estimate
all the parameters of both sinusoids. The Cramer-Rao bounds
and maximum likelihood estimator are used in the analysis. The
answer to the posed question is not straightforward. It is shown
that three signal samples are enough only if the difference of
phases between both sinusoids meets certain condition, otherwise
estimation results are ambiguous. The use of four signal samples
has the advantage that reliable estimates can be obtained irre-
spectively of this phase difference.
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I. INTRODUCTION

THE problem of estimating multiple complex sinusoids

in noise is well known and has many applications,

particularly in the areas where signal frequency has some

physical interpretation. For example in echolocation systems

(radar, sonar, ultrasonography) signal frequency is related to

the observed object speed by the Doppler effect. Two frequen-

cies in a received signal occur if two objects simultaneously

reflect transmitted wave. Additionally, the transmitted wave is

sometimes modulated in such a way that target distance is

also encoded in signal frequency (for example – frequency

modulated continuous wave radar). Another application is

an analysis of vibrations based on recorded acoustic signals

(for example generated by rotating machinery parts) or based

on directly recorded accelerometer signals. Yet another ap-

plication is in linear antenna arrays [1] where frequency of

a received signal corresponds to the direction of wave arrival.

Two complex sinusoidal components occur if two signals

arrive to an array. If the two sources of radiation are observed

at similar angles then the problem of resolution occurs.

The easiest and the most straightforward way to obtain

good frequency resolution is by ensuring long measurement

time interval (for time signals) or large aperture (for arrays).

Additionally the number of samples must be sufficient to

unambiguously measure all the needed signal parameters. In

some applications it is not difficult to increase number of

samples even much beyond necessary minimum, but there are

applications where the number of signal samples should be as

small as possible. For example in Doppler radar more samples

would mean increased pulse repetition frequency (and this is

limited by range ambiguity) or longer time on target (slower
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space search); additionally in military radar more identical

pulses means easier job for electronic counter measures. In

array signal processing, samples correspond to array elements,

and an increase in number of array elements would increase

costs. Longer signals also mean more computationally de-

manding algorithms, thus more costly hardware and bigger

energy consumption.

Hence the question arises: what is the minimal necessary

number of signal samples that must be used in order to reliably

estimate frequencies (along with other parameters) of two

complex sinusoids? Although a large literature corresponds

to frequency estimation of multiple sinusoids, this question

seems to be not answered. We fill the gap in this paper.

We begin with defining a signal model. Then we analyze

Cramer-Rao lower bounds for estimated parameters, and in

another section we present maximum likelihood estimates. As

a last section we conclude the paper.

A. Signal Model

The analyzed signal model comprises of two complex-

valued sinusoids (or cisoids – the short term cisoid is some-

times used in the literature to describe single complex-valued

tone) in a complex circular white gaussian noise ξ(n) with

variance σ2. The frequency of the first sinusoid is denoted as

f1 and its complex amplitude as ã1 = a1e
jφ1 where a1 is (real,

positive) amplitude and φ1 is a constant phase. Parameters of

the second complex sinusoid are denoted as: frequency f2,

amplitude a2, phase φ2 and complex amplitude ã2 = a2e
jφ2 .

That is, the signal model is:

x(n) = ã1 · e
j2πf1n + ã2 · e

j2πf2n + ξ(n), (1a)

or equivalently:

x(n) = a1 · e
j(2πf1n+φ1) + a2 · e

j(2πf2n+φ2) + ξ(n). (1b)

We assume that this signal is observed during the discrete-

time interval

n = −
N − 1

2
, ...,

N − 1

2
, (2)

so that the measurement interval is symmetric with respect

to n = 0. We note that such a definition implies that for an

even number of signal samples, the values of n are not integer,

for example for N = 4 we have n ∈ [−1.5,−0.5, 0.5, 1.5].
We also note that the typical name “initial phase” for φ1 or

φ2 cannot be used, here. To explain this, let us focus on the

first complex sinusoid. We see from the equation (1) that the

instantaneous phase of this signal is 2πf1n + φ1. Thus φ1

represents value of this instantaneous phase for n = 0. As this

is the center of the signal observation interval, the parameter

φ1 should rather be named “median phase” or “central phase”,

but not “initial phase”.
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We assume that all the parameters of both complex sinusoids

are unknown and are to be estimated. Thus the vector of

unknown parameters is

Θ = [f1, a1, φ1, f2, a2, φ2]. (3)

The SNR will be defined as a ratio of power of the first

complex sinusoid to the noise variance, that is:

SNR =
a21
σ2

. (4)

What is the minimal number N of signal samples needed to

estimate all the parameters in the vector Θ? It is obviously not

enough to have N = 1 data point; two signal samples (N = 2)

could be enough if there was only one sinusoid in the signal.

In the case (1) of two sinusoids the smallest feasible number

of samples seems to be N = 3. Hence we will start analyzes

with N = 3 and, as it turns out not to be enough in some

cases, proceed with N = 4.

II. CRAMER-RAO LOWER BOUNDS

In this section we present and analyze the Cramer-Rao lower

bounds on variance of estimators of unknown parameters

stacked in Θ. These bounds hold for all possible unbiased

estimators; in other words no unbiased estimator exists that

has smaller variance than corresponding Cramer-Rao bound.

This means that Cramer-Rao bounds can serve as a benchmark

to compare various estimation procedures, but can also be used

to assess how much information about unknown parameters is

carried in an analyzed signal. For example if the Cramer-Rao

bound for a certain parameter is very high then no reliable

unbiased estimator exist for this parameter, which means that

the analyzed signal is not sufficient and additional information

should be provided in order to reliably estimate this unknown

parameter.

The Cramer-Rao bounds for parameters in the vector Θ,

for the model given by equation (1), can be found in the book

by S.M. Kay [2]. For simplicity we present only equations

pertaining to the first sinusoidal component, for the second si-

nusoidal component the equations are analogous. The Cramer-

Rao bounds has the following form:

CRBf1 = βf (N, f1 − f2, φ1 − φ2) ·
1

2 · (2π)2 · SNR
(5)

CRBa1
= βa(N, f1 − f2, φ1 − φ2) ·

σ2

2
(6)

CRBφ1
= βφ(N, f1 − f2, φ1 − φ2) ·

1

2 · SNR
, (7)

where βf (·), βa(·) and βφ(·) are complicated functions that

will be evaluated numerically. We see that each bound depends

only on four variables:

f1 − f2 – difference of frequencies; it is important how

close in frequency the two harmonics are, but the

bounds do not depend on f1 or f2 independently,

φ1 − φ2 – only difference of phases matters, there is no

dependence on φ1 or φ2 alone,

N – it can be expected that a longer signal gives

better estimates,

SNR – the higher the SNR the more accurate estimates

of frequency and phase,

σ2 – only the bound for amplitude depends on noise

variance (and not on SNR).

In the following subsection we present and analyze Cramer-

Rao bounds for signal comprising of N = 3 samples.

A. Cramer-Rao Lower Bounds for Signal Length N = 3

The Cramer-Rao bound for frequency f1, given that the

signal x(n) has only three samples and SNR ≈ 30 dB is

shown in Fig. 1(a). We see that in certain regions of parameters

(φ1 − φ2) and (f1 − f2), the value of the bound is very high

which means that, for these regions and for the signal model

(1), there is no unbiased estimator for frequency that would

give reliable estimates.

This happens if:

• f1 ≈ f2, that is the two harmonics are very close in

frequency. Is it a big region? It is much smaller than

the resolution of the periodogram which is approximately

1/N = 0.33. This suggest that there are ”high-resolution”

methods that give a few times better resolution than

the standard periodogram. Nevertheless, if the sinusoids

are very close in frequency then even “high-resolution”

methods should not be expected to give good estimates.

• φ1 − φ2 ≈ i · 180◦ for i = −1, 0, 1. This dependence

of frequency estimation accuracy on phase difference is

not intuitive. The reason turns out to be ambiguity of

signal parameters for N = 3. In other words three signal

samples are not enough to unambiguously estimate all

the unknown parameters. We see that unknown parameter

vector Θ comprises of six unknown parameters, whereas

N = 3 means that we have six real signal samples.

This gives us six nonlinear equations with six unknown

parameters. For φ1 − φ2 ≈ i · 180◦ this set of equations

cannot be unambiguously solved even if there is no

additive noise.

For example if φ1 − φ2 = 180◦ and a1 = a2 then

only f1 + f2 can be reliably estimated (but not f1 or

f2 independently) – see example at the end of the paper.

In Figs. 1(b),1(c) and Cramer-Rao bounds for amplitude and

phase are presented.

The plot of CRBa1
is similar to that of CRBf1 , hence we

have similar problems with reliable estimates for f1 ≈ f2 or

φ1 − φ2 being close to zero or ±180◦.

It is interesting that, unlike CRBf1 and CRBa1
, the Cramer-

Rao bound for phase CRBφ1
do not depend on the phase

difference φ1 − φ2. It is very important because it allows for

testing if frequency and amplitude estimates are reliable. The

algorithm could be as follows: we estimate phases [φ1, φ2]
and compute the difference φ1 − φ2, then we test if the result

is close to i · 180◦ for i = −1, 0, 1; if it is not then we can

estimate frequency and amplitude, otherwise we know that the

estimates would not be reliable.

Summing up, we can reliably estimate frequencies of two

sinusoids analyzing just three samples of signal, but only if

the phase difference φ1−φ2 is not too close to zero or ±180◦.
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(c) bound for phase φ1

Fig. 1. Cramer-Rao bounds for frequency f1, amplitude a1 and phase φ1;
signal length is N = 3.

Now we calculate Cramer-Rao bounds for a signal of length

N = 4 and see advantages of increasing signal length by 1

sample.

B. Cramer-Rao Lower Bounds for Signal Length N = 4

The Cramer-Rao bound for frequency in the case of a four-

sample signal is depicted in Fig. 2(a). We again expect

unreliable estimates for f1 ≈ f2, but this time this region

of bad estimates is narrower (harmonics can be closer in

frequency) than it was for N = 3. It is natural as a longer

signal gives a greater normed frequency resolution.

Dependence on the phase difference φ1 − φ2 is still visible

but it is much smaller than it was for N = 3. This means

that one additional signal sample allows us to unambiguously

estimate unknown parameters for all values of φ1 − φ2. It

is worth noting, that dependence of frequency estimation

accuracy on phase difference exists for even longer signals

– in the paper by Trunk et al. [3] it was observed for N = 21.

In Figs. 2(b) and 2(c) the bounds for amplitude and phase

are presented. On both plots it is again visible that for very

close frequencies, obtaining reliable estimate of any signal

parameter is impossible. On the amplitude plot the dependence

on phase difference φ1 − φ2 is much smaller than it was for

N = 3. Phase estimates can paradoxically be expected to be

even more accurate for φ1−φ2 ≈ i ·180◦ than for other values

of the phase difference.

III. MAXIMUM LIKELIHOOD ESTIMATOR

Maximum likelihood (ML) estimator of parameters (3) can

be found for example in [4] or [2]. The ML estimator of

frequencies of the two sinusoids is:

[f̂1, f̂2] = argmax
f1,f2

L(f1, f2) (8)

that is we choose such parameters f1, f2 that L(f1, f2) is the

largest. The maximized two-dimensional function is defined

as

L(f1, f2) =

N [|X(f1)|
2 + |X(f2)|

2]− 2Re[X∗(f1)X(f2)γ(f1, f2)]

N2 − |γ(f1, f2)|2
,

(9)

where

γ(f1, f2) =

(N−1)/2∑

n=−(N−1)/2

e−j2πf1nej2πf2n (10)

is the dot product of the functions ej2πf2n and ej2πf1n, while

X(f) =

(N−1)/2∑

n=−(N−1)/2

x(n)e−j2πfn (11)

is the discrete Fourier transform of the analyzed signal x(n)
at frequency f .

The complex amplitude is estimated as

â = (EH
E)−1

E
H
x (12)

where E = [e1, e2], ei = [e−jπfi(N−1)/2, · · · , ejπfi(N−1)/2]T

and x = [x(−N−1
2 ), ..., x(N−1

2 )]T .
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(c) bound for phase φ1

Fig. 2. Cramer-Rao bounds for frequency f1, amplitude a1 and phase φ1;
signal length is N = 4.

A. Example 1

As an example, let the parameters of the signal model (1)

be: a1 = 1, f1 = 0.1, φ1 = 90◦; a2 = a1, f2 = 0.4, φ2 =
−90◦, σ = 0.03. This is “a difficult set of parameters”, because

φ1−φ2 = 180◦. In simulations the signal x(n) was generated

and parameters estimated by the use of ML estimator for 300

times. The results are presented in Fig. 3 for N = 3 and Fig. 4
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Fig. 3. Estimates of frequencies [f1, f2] and phases [φ1, φ2] for signal
length N = 3 and signal parameters from example 1.

for N = 4.

As we see on Fig. 3(a), for N = 3 the estimates of f1 and

f2 are incorrect, but f̂1+ f̂2 is always approximately equal to

0.5 (or 0.5+1 due to periodicity) which is a good result. This is

in accord with theoretical analysis from the previous section –

error in this case is not caused by additive noise, but mainly by

ambiguity between parameters caused by insufficient number

of signal samples.

In Fig. 3(b) corresponding estimates of phase [φ1, φ2] are

presented. It is interesting that although frequency estimates

were incorrect, phase is estimated quite accurately. This is

in accord with theoretical Cramer-Rao bounds presented in

the previous section. The importance of having available good

phase estimate is that we know that the phase difference

φ1 − φ2 is close to 180◦ and hence we know that frequency

estimates would be poor. Thanks to that we can set the flag

“unreliable frequency estimate” so that our system does not

treat incorrect frequency estimates as correct. Without this

knowledge, we would not be able to do much use of the three-

sample signal.

The case N = 4 is presented in Fig. 4. This time we obtain

satisfactory result – all the estimates of phases and frequencies

are correct. The lack of circular symmetry in Fig. 4(a) means
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Fig. 4. Estimates of frequencies [f1, f2] and phases [φ1, φ2] for signal
length N = 4 and signal parameters from example 1.

that there is nonzero correlation between f̂1 and f̂2. We see

that for N = 4, estimation errors are caused by an additive

noise only and not by ambiguities as it was for N = 3.

B. Example 2

In the first example we saw that for N = 3 and “difficult”

phase difference of 180◦ the estimation results were not

reliable. In this second example we again analyze short signal

of N = 3 samples, but with a different phase difference

value. Let the parameters of the signal model (1) be: a1 = 1,

f1 = 0.1, φ1 = 0◦; a2 = a1, f2 = 0.4, φ2 = 90◦, σ = 0.03.

We see that this time, it is “an easy set of parameters”, because

the phase difference is equal to exactly φ1 − φ2 = 90◦. Just

like in the first example, we used 300 repetitions of signal

computer generation and parameters ML estimation. We note

that the only difference in parameters between examples 1 and

2 is that in the first example phase difference was 180◦ (which

was a difficult case according to the results of our earlier

analysis of Cramer-Rao bounds) and in the second example

it is 90◦ (which is an easy case). The results are presented in

Fig. 5. We see in the figure that estimation results are correct,

which is in contrast with example 1 where for N = 3 estimates

were generally unreliable. This shows how important the phase
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Fig. 5. Estimates of frequencies [f1, f2] and phases [φ1, φ2] for signal
length N = 3 and signal parameters from example 2.

difference is in case of an extremely short signal of N = 3
samples.

C. Example 3

It was noticed in previous examples that for a short signal of

N = 3 samples the results are reliable if the phase difference

φ1 − φ2 is equal to 90◦ but unreliable if it is equal to 180◦.

Hence, in this example we analyze this dependence more thor-

oughly. In the Fig. 6 the dependence of estimation accuracy on

phase difference is depicted. All signal parameters, apart from

phase, had the same values as in the previous two examples.

We see that the simulation results are in accord with Cramer-

Rao bounds. If the phase difference is close to 0◦ or ±180◦

then estimation results are not reliable. On the other hand,

the best accuracy is obtained for phase difference close to

±90◦. For phase differences equal to exactly 0◦ or ±180◦

the Cramer-Rao bounds are not shown because the Fisher

information matrix is singular, which we interpret that there

is no sufficient information on estimated parameter and it is

not possible to obtain reliable estimates.

The same dependence for N = 4 is presented in Fig. 7.

Again, the simulation results are in accord with theoretical
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signal length N = 3.
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Fig. 7. Dependence of frequency estimation rms error on phase difference;
signal length N = 4.

Cramer-Rao bounds. We still have worse estimates for phase

difference close to 0◦ or ±180◦, but the results are much more

accurate then for N = 3.

IV. CONCLUSIONS

The problem of estimating two complex-valued sinusoids

involves estimation of six unknown parameters – namely fre-

quency, amplitude and phase for each of the two. We analyzed

possibility of estimating all those unknown parameters based

only on N = 3 signal samples and showed that it is possible

only if difference of phases is not near zero or ±180◦ –

otherwise there is an ambiguity between estimates of certain

parameters. This ambiguity vanishes for N = 4 thanks to

information given by one additional signal sample.

Summing up, if an analyzed signal comprises of two sinu-

soids resolvable in frequency, then it is possible to estimate

those sinusoids: (a) for N = 3 if φ1−φ2 is not close to i·180◦,

i = −1, 0, 1, and (b) for N = 4 always, but still if φ1 − φ2 is

close to the multiplicity of 180◦ the frequency estimates will

be less accurate.
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