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Abstract 
 
The paper presents a new numerical model of solidification processes in hypoeutectic alloys. The model combines stochastic elements, 
such as e.g. random nucleation sites and orientation of dendritic grains, as well as deterministic methods e.g. to compute velocity of 
dendritic tips and eutectic grains. The model can be used to determine the temperature and the size of structure constituents (of both, the 
primary solid phase and eutectics) and the arrangement of individual dendritic and eutectic grains in the consecutive stages of 
solidification. Two eutectic transformation modes, typical to modified and unmodified hypoeutectic alloys, have been included in the 
model. To achieve this, cellular automata and Voronoi diagrams have been utilized. 
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1. Introduction 
 
Modeling of hypoeutectic alloys solidification is a complex 

problem, because increase of solid phase fraction is triggered by 
constitution of two structures: In the first stage, between eutectic 
and liquidus temperature, dendritic grains nucleate and grow. In 
the second stage, below eutectic temperature, eutectic structure 
forms. In the latter stage eutectic grains nucleate and grow from 
the liquid phase that did not solidify in the first stage. As has been 
reported recently [1-4], various modes of eutectic transformation 
can be observed, depending on the alloy modifications. In 
unmodified alloys, eutectic grains nucleate in adjacency of 
dendritic grains. Whereas, in modified alloys (e.g. by adding 
strontium modifier) eutectic grains nucleate with no relation to 
dendritic structure, and the number of eutectic grains is smaller 
compared to the unmodified alloys. 

The eutectic formation is the final stage of the hypoeutectic 
alloys solidification process, and hence the mode of eutectic 
transformation can modulate occurrence of defects as has been 

shown in [4]. Consequently, model that would accurately capture 
various modes of eutectic transformation can contribute to better 
prediction of defects (e.g. porosity or hot-tearing) in castings. The 
above observation is the main motivation for current work.  

Although to predict dendritic and eutectic structures numerous 
approaches, including those based on cellular automata technique, 
have been developed [5-13], there are no models that would allow 
to capture simultaneously microstructure, temperature and, size of 
the structure constituents in the two-stage solidification, and that 
would include different modes of the eutectic transformation. 

In this paper a novel model of two-stage solidification, typical 
to hypoeutectic alloys, is presented. The model has been proposed 
for two dimensional cases, where multi grain structure is 
modeled. Two phenomena, nucleation and growth, contribute to 
the process of evolution of dendritic and eutectic structures. In the 
paper, details of the nucleation and growth models are given. To 
describe microstructure evolution cellular automata have been 
utilized, because of their flexibility and extensibility. In this 
approach every grain is taken into account individually, thus 
interactions between grains and structures become inherent to the 
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model, and there is no need to apply any correction factors, as it is 
done in the case of models that concern representative elementary 
volume [6-7, 9-12]. Moreover, the approach captures both 
temporal and spatial evolution of polistructure. Finally, using 
proposed model numerical maps of transition between different 
stages in structure development can be obtained. 
 
 

2. Nucleation and growth of dendritic 
grains 
 

The first stage of the process involves nucleation and growth 
of the primary phase dendrites. The growth process has been 
divided into two subprocesses, i.e. growth of dendritic envelopes 
and growth of the primary solid phase crystals. Here, we 
introduce a notion of the dendrite envelope to separate 
phenomena that occur on different length scales, such as e.g. 
solute diffusion process. The envelope is defined as a smooth 
surface that encloses the primary and the secondary dendrite arms, 
and connects the outer-most points of the crystal. In this way, the 
envelope allows to approximate complex shapes of dendritic 
grains by the virtual surface, and it simplifies analysis of the 
problem.  

The growth process of the dendritic grains is based on the 
following assumption. Constitutional undercooling is the driving 
force for the dendritic envelope growth. Increase of solid phase is 
computed on the basis of heat and solute balances. Within liquid 
phase, outside the grain envelope, the solute diffusion equation is 
solved, and the full solute mixing within liquid phase inside the 
grain envelope is assumed. In turn, within the solid phase, there is 
no solute diffusion. Note that although our assumptions are 
similar to those proposed in [12], our problem is significantly 
harder because we are considering all grains individually. 
Moreover, the process we analyze involves two types of structure 
that need to be traced separately. Keeping this in mind, to 
simulate the process of grain growth we employ cellular automata 
(CA), due to their flexibility and extensibility. To introduce a new 
type of structure it is sufficient to add its corresponding state to 
the set of CA feasible states, and to define resulting transition 
rules. 

The main scheme of computations, and the assumptions 
regarding solute and heat processes, are analogous to that 
proposed in [12], and hence we limit further considerations only 
to those parts of the model that need to be reformulated. 
Nevertheless, for the sake of clarity, we give the general idea of 
the model below. 

CA operate on the mesh of cells for which Moore 
neighborhood is assumed. At the beginning of the simulation all 
cells are in liquid state with the initial solute concentration 
assigned. When the temperature drops below liquidus 
temperature, nucleation sites are chosen randomly among all 
liquid cells. These cells are changed into growing cells and 
become the origin of dendritic grains. The number of cells that are 
changed into growing cells is determined by means of a 
nucleation model, here instantaneous nucleation model. 

In every time step, the algorithm of envelope growth is 
applied. Then, in the same time step, for every cell that does not 
belong to the growing dendritic grains, and that is in liquid state, 

solute diffusion equation is solved, and solute concentration 
associated with it is updated. Moreover, the solute content within 
this cell is computed, and is next used to achieve solute balance. 
In our approach the solute balance is obtained on the basis of 
solute content in CA-cells, depending on their state. The envelope 
growth algorithm allows to compute a grain fraction, whereas 
solute content in extragranular area is a result of solute content 
computations for every CA-cell in every time step. By combining 
the above quantities with the solute and heat balances, in every 
time step we can compute and update the current temperature and 
the current solid phase (see [12] for detailed explanation). 
 
2.1 Growth of dendritic grain envelopes  
 

As we already pointed out, to consider multigrain growth 
several problems have to be solved. In Figure 1 several growing 
grains with their envelopes have been presented. A growing grain 
rejects solute into surrounding liquid, and as a result a solute 
diffusion layer builds around it (as shown in Figure). When the 
layers associated with neighboring grains overlap, rejected solute 
is accumulated in the place of contact. This has additional effect, 
it leads to the decrease in the growth velocities of some parts of 
the envelopes in this area. This effect is due to decrease in solutal 
undrecooling, which is the driving force of growth. Because 
dendritic grains have random locations, their diffusion layers will 
start interacting in different time steps. Note, that all above 
characteristics should be reflected in the model.  
 

a)  

b)  
Fig. 1. Schematic presentation of dendritic grains growth (a) 

together with corresponding Voronoi Diagram (b): Contact of the 
diffusion layers takes place in the hyperplane of VD. In the model 

periodical boundary conditions are applied 
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Consequently, the main challenge is to find, unambiguously, 
the point from which the solute concentration far from the 
dendrite envelope will be taken. Additionally, when the solute 
diffusion layers of neighboring grains overlap with each other, the 
growth of their envelopes in this area should be slowed down. At 
the same time in the area where the diffusion layers do not 
overlap, the growth of grain envelopes should be unrestrained. To 
address the above issues we use Voronoi Diagrams (VD). This 
however requires the following conditions to be satisfied: 
• the dendrite envelope must be approximated by a sphere, 
• conditions for the grain growth, including temperature, must 

be homogeneous within the considered area, 
• instantaneous nucleation model must be used. 

The first and the last condition are common assumptions and 
can be found in other grain growth models [9-11]. In turn, the size 
of the considered area can be tuned to satisfy the second 
condition. 

If the above requirements are satisfied, contact of the solute 
layer of neighboring grains will take place in the hyperplane of 
VD. Thus, the solute concentration far from the envelope can be 
determined uniquely, which property is exploited in the envelope 
growth algorithm. 
 
Growth algorithm of dendritic grains envelopes 
Once the nucleus sites have been randomly chosen, their 
corresponding Voronoi Diagram is determined. Parameters of VD 
do not change in the consecutive time steps, thus VD generation is 
one time effort. Each grain is assigned one cell of the VD. A cell 
of the VD is characterized by its vertices and hyperplanes. The 
first cell of grain, which is its nucleus, is attached as so called 
growing cell. It is defined to be the center of the entire grain.  

Each growing cell is characterized by the local envelope 
radius (we define radius to be distance from the center of a grain). 
In every time step, for every growing cell, the local envelope 
radius is updated and its neighborhood is built. Then, we check if 
any cell from the neighborhood has been engulfed by the 
envelope. If the distance from the grain center to the center of 
neighboring cell is smaller than the local envelope radius, then 
this cell is engulfed by the envelope and becomes a growing cell. 
In the next time step the growth algorithm is called for such 
engulfed cell. The cell inherits the local envelope radius from its 
parent (i.e. engulfing) cell. When neighborhood of a cell consists 
of growing cells only, the cell itself is no longer considered 
growing. 

To update the local envelope radius Rg for the growing cell, 
the growth law [14] is utilized: 
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−
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dt

dR *'g  (1) 

 
where D is the solute diffusion coefficient, m is the slope of the 
liquidus line, Γ is the Gibbs-Thomson coefficient and k is the 
solute partitioning coefficient. The solutal undercooling is 
assumed to be the driving force for the envelope growth. Solutal 
undercooling is computed on the basis of a difference between 
solute concentration on the envelope c∗′, and far form it c∞. The 
solute concentration far from the envelope is taken from the cell 

that is adjacent to its corresponding hyperplane (as shown in 
Figure 2). 
 

 
Fig. 2. Schematic presentation of the growth algorithm of the 

dendritic grains' envelopes. The fg-function have been introduced 
into the model in order to make smooth changes between states 

while keeping relatively large size of CA-cells without sacrificing 
accuracy 

 
To ensure that the growing envelope is convex, we restrain the 

local envelope radius by a limiting radius associated with the 
limiting lines constructed for each hyperplane of VD cell. Every 
limiting line is defined by two parameters: a slope that is identical 
to the slope of the corresponding hyperplanes, and by a radius 
defined as a distance from the grain center, measured along the 
line segment bounded by the two centers of two neighboring 
grains. The slope is constant during the growth process, however 
the radius is updated in every time step, in the same manner as the 
envelope radius, and according to the growth law (Eq. 1). 

The relation between values of the two envelope radii: the 
local envelope radius and the limiting envelope radius, allows to 
differentiate between two types of growth (as shown in Figure 2). 
When the local envelope radius is smaller than the limiting radius 
then the Type-I growth is applied, otherwise the Type-II growth is 
used. The type-II growth restrains the local envelope radius by the 
value of limiting radius, which guarantees convexity of the 
dendritic grain envelope as describe previously. In turn, the Type-I 
growth is typical for unrestrained growth. At the beginning of the 
growth process, the the Type-I growth is dominant. However, 
when the solute layers of the neighboring grains overlap, the 
Type-II growth becomes more important. 

We observed that the model is sensitive to the size of the cell. 
To solve this problem we introduced additional parameter which 
is grain fraction of the cell. It is defined as a cell area fraction 
occupied by the grain (see Figure 2). Such parameter allows for 
smooth changes between states, while keeping relatively large 
size of CA-cell without sacrificing the accuracy. 
 
2.2 Approximation of the primary dendrite 
shape 
  

We come now to the second subprocess of the dendritic grain 
growth that corresponds to the growth of the primary solid phase 
crystals within envelopes. As it was mentioned before, the 
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increase of solid phase in every time step is known, and it is 
computed on the basis of solute and heat balances. However, the 
challenge is to propose the algorithm to approximate the spread of 
the solid phase within the determined envelope. The task is hard 
because the shape of dendritic crystal is usually very complex. 
First of all, the dendritic crystal can be characterized by different 
order arms. Secondly, in the presented model a random sites of 
nucleation are assumed, and consequently resulting grains have 
irregular shapes, i.e. the main arms can have different length. 
Lastly, the grain can have random orientation. 

To address the above requirements we utilized the analytical 
model of dendrite shape given by Equation 2 (see [15] for more 
details). In the proposed model only main arms are taken into 
account, and each l-th main arm has length Ll. Thanks to this, 
irregular shapes, with various main arms lengths, can be 
described. The second parameter that describes dendrite is shape 
parameter Al. It can vary from 0 to 1, which translates into shapes 
from spherical to shapes with highly distinctive main arms, 
respectively. The model is described by the following formula: 
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Where R and θ are radial and angular coordinates, respectively 
and function H is the Heaviside function. In Figure 3, example 
shape is given. One important feature of this model is that random 
orientation of the grain can be introduced by rotating the dendritic 
shape by the angle corresponding to the random orientation. 
Usually, random orientation is defined as a angle between main 
arm and the x-axis. 
 

 
Fig. 3. Analytical shape model employed to approximate the 

shape of primary dendrites. In Figure the additional parameter 
Rn45 is shown. This auxiliary parameter binds shape parameters 

Al such that for each l, Ll ∙ (1 − Al) = Rn45 
 

In our problem the length of the main arms depends on local 
conditions, and it is known in every time step. The shape 
parameters depend on the internal solid fractions (fi = fs/fg), and 
are known in every time step as well. Furthermore, we assume 
that there is no diffusion in the solid phase. It means that the 
distribution of the solid phase does not influence intermediate 
results and the procedure to determine the solid phase distribution 
can be called only once when the eutectic temperature is reached.  

The procedure to determine the solid phase distribution 
consists of a few steps and is applied to each dendritic grain. 
Firstly, we choose grain orientation among 49 preferential 
directions [8] and find four cells that correspond to four main tips 
of the dendrite. The envelope radii that are assigned to those cells 
become the length of the main arms Ll. Then, we compute the 
area of the grain Sg by summing up grain fractions in the cells 
attached to this grain (as a result of engulfing by the growing 
envelope). Given grain fraction and internal fraction of the 
considered grain we can compute the area of solid phase, Ss. We 
call this value an exact value of the solid phase area. At this point 
the only missing parameter of the shape model is the shape 
parameter Al. Because we utilize the analytical shape model, for 
every given shape parameter the area of such solid phase can be 
computed. Thus, applying the reverse procedure, given the area of 
the solid phase, the corresponding shape parameter corresponding 
to it can be found easily. Given all parameters of the shape model 
we can proceed to the last step. For every cell added to the grain 
we check if it belongs to the primary solid phase area. From 
equation (2) the corresponding radius and tangential to the 
dendrite are computed. Thus we can check if given cell is 
occupied by the solid phase entirely. This can be done by 
computing the solid fraction of the cell fs. If the fraction is greater 
than zero the cell remains in the dendrite grain, otherwise its state 
is changed into liquid. Solid fractions of all cells are accumulated 
and the sum is compared with corresponding area of the solid 
phase Ss. When the difference is greater than 1% of the exact 
solid phase area assigned to the grain, an iteration procedure to 
determine the solid phase distribution is applied in order to 
decrease resulting error (in practice few iterations are sufficient). 

 
 

3. Nucleation and growth of eutectic 
grains  
  

Let us now proceed to the second stage of the hypoeutectic 
alloys solidification. One important element of the presented two-
stage solidification model is its ability to capture two different 
eutectic transformation modes. The main difference between 
those modes is in nucleation process, while the grain growth is 
identical. Similarly to the first stage, we consider two phenomena 
that affect the structure formation, i.e. the nucleation and the 
growth. 

We begin with the nucleation model. In our approach we use 
instantaneous nucleation. Similarly to the dendritic nucleation, all 
eutectic grains nucleate in the same time step. However, 
depending on which eutectic transformation mode is applied, we 
utilize different nucleation densities, and we define differently the 
set of cells that can become the nucleus of the eutectic grains. In 
case of modified alloys, nuclei of eutectic grains are randomly 
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chosen among all cells that are in liquid state. In case of 
unmodified alloys, nuclei of eutectic grains are chosen among 
liquid cells from the set of cells that are in the neighborhood of 
the cells that belong to the dendritic grain. 

On the other hand, to model the growth of eutectic grains we 
use the approach based on the cellular automata presented in [7]. 
In the model the eutectic grain is approximated by a sphere. The 
radius of eutectic envelope Re is computed according to the 
formula: 
 

( )2T
dt

dRg ∆⋅= µ                (3) 

 
where μ is coefficient of growth, and ΔT is undercooling, 
computed with the respect to the eutectic temperature. In every 
time step, temperature is computed on the basis of heat balance. 
More details can be found in [7], here we limit further 
consideration only to the parts that we extended. 

Although the model allows to simulate the eutectic structure 
formation in hypoeutectic alloys, we must introduce one 
extension into the base model, that deals with the contact of 
eutectic grains with dendritic grains. In the second stage of the 
solidification process, dendritic grains and other eutectic grains 
form a natural barrier for eutectic growth. If a cell from the 
neighborhood of growing cell is not in the liquid state (because it 
belongs to the dendritic grain or other eutectic grains), it is not 
considered during the growth process. As a result impingement 
between different types of grains is naturally included into the 
model. However, when considering the two stage solidification 
we must take one additional case into consideration. Growing 
eutectic grain that encounters the dendritic grain, is blocked 
initially by it in the contact area. Later, when the eutectic grain 
continues to grow in all other directions it may happen that the 
eutectic grain will be larger than the dendritic grain. Consequently 
the dendritic grain will be no longer a barrier that limits eutectic 
growth, and eutectic grains regain the ability to overgrow the 
dendritic grain (see Figure 4). If this happen the curvature radius 
of the eutectic envelope changes, and two problems must be 
solved. The first one is how to detect this type of contact, and the 
second one is how to determine new curvature radius.  

The change in curvature radius may occur when the cell is 
engulfed by the growing eutectic envelope and when the 
neighborhood of such cell consists of at least one cell in some 
state corresponding to the dendritic structure. To detect such 
situation the direction of two vectors, n�⃗ ngbrn   and n�⃗ ngbrloc , are 
compared. The first vector, n�⃗ ngbrn , is a normal vector to the 
envelope segment assigned to parent cell, and it has the same 
slope as the line that connects center of the k-th cell and the center 
of the circle assigned to its parent cell, Cj (see Figure 4). The 
second vector, n�⃗ ngbrloc , is a normal vector to the envelope but it is 
computed on the basis of local fraction of the eutectic grain within 
neighborhood of the cellk as proposed in [16]. If the angle 
between two vectors is greater than some limiting value (we 
assume 5°), then a new radius of curvature must be determined 
and assigned to the growing cell, that has been engulfed by the 
eutectic grain. New circle center is determined, as shown in  

Fig. 4. Contact of growing eutectic grain with center in Cj with 
dendritic grain 𝐷 

 
Figure 4, which is intersection of the two lines pg and pk. Line pg 
is defined by the center of the parent cell (j-th cell) and the slope 
of a normal to the envelope of the parent cell. Line pk is defined 
by the slope of vector n�⃗ ngbrloc  and the center of the k-th cell. The 
length of new radius of curvature is the difference between 
previous radius and the distance of segment �CjCk�. This 
procedure guarantees that the two circles are internally tangent 
and the envelope is continuous in point Pk.  
 
 

4. Conclusion 
 

In a paper model of two-stage solidification have been 
proposed. The model exploits flexibility and extensibility of the 
cellular automata technique. New algorithms to simulate 
multigrain growth structure in hypoeutectic alloys have been 
developed, and implemented.  Novel solutions include the growth 
algorithm of dendritic envelopes, approximation of the primary 
dendrite shape and the growth algorithm of eutectic structure that 
takes into account contact with dendritic grains. In addition, 
Voronoi Diagram has been exploited in dendritic envelope grain 
growth algorithm to tackle the contact of diffusion layers of 
neighboring grains. 

The model has been verified, which we report in Part II of this 
paper.  Computer simulations have been executed, and obtained 
results are further discussed in Part II of the paper. What is 
important our model allows to determine the temperature, the size 
of the structure constituents (of both the primary solid phase and 
eutectics) and the arrangement of individual dendritic and eutectic 
grains in the consecutive stages of the solidification process. This 
result is especially interesting because gradual topological 
transition of microstructure, mostly in the last stage of 
solidification, is directly related to the defects formation in 
castings. 
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