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Hierarchical Configurable Petri Net Modeling
in VHDL

Michał Doligalski and Marian Adamski

Abstract—The paper presents method for hierarchical config-
urable Petri nets description in VHDL language. Dual model is an
alternative way for behavioral description of the discrete control
process. Dual model consists of two correlated models: UML
state machine diagram and hierarchical configurable Petri net
(HCfgPN). HCfgPN are Petri nets variant with direct support
of exceptions handling mechanism. Logical synthesis of dual
model is realized by the description of HCfgPN model by means
of hardware description language. The paper presents places-
oriented method for HCfgPN description in VHDL language.

Index Terms—HCfgPN, UML state machine diagram, VHDL,
logic controller.

I. INTRODUCTION

PETRI nets, beside UML state machine [1], are one of the
most popular model for logic controllers (LCs) behavioral

description. Dynamic growth of discrete control systems, new
functionality like partial reconfiguration justifies new approach
to formal specification. Dual specification in form of UML
state machine diagram and hierarchical configurable Petri net
are one of the possible solutions. The application of two
correlated models as one model simplify specification of logic
controllers. Thanks to state machine diagram, such specifica-
tion is transparent and understandable for all participants of the
logic controller developing. The correlation of two models at
specification stage brings out advantages of both component
models eliminating, at the same time, their drawbacks [2].
Hierarchical configurable Petri nets are alternative solution
for exceptions handling in Petri nets based specification [3]
and enables direct mapping of state machine diagram. Thanks
to Petri net formalism it is easy for formal verification and
implementation using logic reasoning techniques [4] both for
logical resources optimization and logic controller formal veri-
fication. Alternative approach is architectural decomposition of
the Petri net into Finite State Machines [5] or synthesis of Petri
nets by means of flexible memories [6]. The paper presents
method for hierarchical configurable Petri nets behavioral
description by means of VHDL language.

A. Logic Controller Developing Process

Classical approach for logic controller developing considers
four stages: specification, synthesis, implementation, verifica-
tion. This process is similar to well known waterfall approach
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Fig. 1. Outline of production process [13].

to software developing. Unfortunately the application of water-
fall process, both in software and LC developing, increase of
risk of the project and move it to the end. Reduction risk and
quality of final product, thought as LC, may be performed
by several ways: formal verification, feedback to previously
steps, post synthesis simulation or in circuit verification. In
the proposed method, quality of logic controller is increased
by developing a more precise model and (or) its formal
verification. Device implementation of reconfigurable logic
controllers (RLCs) with the use of Field Programmable Gate
Array devices (FPGA) is a quite commonly used solution.
Research covering both specification based on behavioral
models [7], formal verification [8], [9] as well as the controller
synthesis [10]–[12] are carried out within a broad range.

II. EXAMPLE OF CONTROL PROCESS SPECIFICATION

The aim of the production process (Fig. 1) is mixing
liquid substances and transporting final product using cis-
tern. Production process is controlled by logic controller
(LC), with eleven inputs (x1..x9, defect) and ten outputs
(y1..y9, alarm). LC inputs are connected with sensors and
switches (x0, defect), outputs with actuators and defect indi-
cator (lamp – alarm). Starting material is kept in vats: SV 1
and SV 3. Measuring of material volume is performed in vats:
MV 1 and MV 2. Final product is mixed in reactor tank R
and poured into tank M .

System behavior was formally described by means of UML
state machine diagrams (Fig. 2). Three levels of hierarchy and
two parallel states were identified. Orthogonal state Process
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implements shallow history. It means that if preemption occurs
(exception) last marking will be preserved, and next, after
resumption, control process will continue from place where
was stopped. In this particular case, exception is triggered by
signal defect. Resumption of the control by signal x0.

Specification includes internal signal C start, responsible
for the communication between two concurrent regions. Ad-
ditional signal is not necessary, but allows and simplifies
cistern movement during measuring and mixing new portion
of materials. Current UML language standard does not define
synchronization, but this functionality may be implemented by
means of signal broadcasting.

State machine diagram acts as front-end, user do not have to
worry about Petri net formalism. The transformation of state
machine diagram to Petri net diagram is done automatically,
with the use meta-models transformation methods. Presented
state machine diagram consists of three sub-machines. Dur-
ing transformation, for each submachine one subnet will be
created.

Diagrams (Figs. 3, 4, 5) presents main net (top level
net) and two subnets, each for one macro-place. Diagrams
have been prepared in accordance with the assumptions of
HCfgPN formalism. In comparison to interpreted Petri nets,
functionality of transition triggering, token movement and
output signal generation was redefined.

Each subnet consists of two parts (blocks, subnet): oper-
ational and configurational. The operational subnet (OS) is
responsible for control algorithm implementation. Operational
subnet is controlled by configurational subnet (CS), which
is responsible for exceptions handling (preemption) and re-
sumption. The CS consists of three configurational places
(P init, P a, P i) and five transitions (T init, T a, T i, Tw, T fin).
When place P a is marked, token movement and output signal
generation in OS is possible, unlike when the place P i is
marked. Transitions Tw firing removes (kills) all tokens from
OS and move subnet to initial marking.
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t r a n s i t i o n s : p r o c e s s ( P3 , MP4, P5 , . . . , P12 ,
x0 , . . . , x9 , t1 , t2 , t f i n 3 , t i n i t 1 ,
C s t a r t , t f i n 3 , L o c a l C o n f i g )

Begin
i f P3 = ’1 ’ and x0 = ’1 ’ and L o c a l C o n f i g = ’1 ’ t h e n

T3<= ’1 ’; e l s e T3<= ’0 ’; end i f ;
f MP4= ’1 ’ and x7 = ’1 ’ and t f i n 3 = ’1 ’ and

L o c a l C o n f i g = ’1 ’ t h e n T4<= ’1 ’; e l s e T4
<= ’0 ’; end i f ;

i f P5 = ’1 ’ and x6 = ’0 ’ and L o c a l C o n f i g = ’1 ’ t h e n
T5<= ’1 ’; e l s e T5<= ’0 ’; end i f ;

. . .
end p r o c e s s ;

Fig. 6. Template of operational transition description in VHDL.

Several transitions in Figs. 3 – 5 has a trigger specified as
false. Those transitions do not participate in the process and
are not necessary, but intentionally were left in the diagram
to show the structure of CS and OS subnets. This transitions
and superfluous places connected with them will be removed
during optimization process at synthesis and implementation
phase.

Automatic (non guarded and not triggered) transition in state
machine diagram, correspond to final transition firing in Petri
net model. Transition T f in from subnet 3 (Fig. 5) finalize
macroplace realization. Transition T4 from subnet 2 (Fig. 4)
is waiting for T f in enabling transition and trigger at same
time.

III. DESCRIPTION IN VHDL LANGUAGE

Petri net behavioral functional modeling by means of
Hardware Description Languages (HDLs) is a well grounded
subject and a number of solutions have been presented [14]–
[19]. For VHDL and Verilog languages two main methods
of description were developed: place-oriented and transition-
oriented. There is also third method of description that mix
previous technics transitions and places oriented. Also the
structural techniques have their place in the description of Petri
nets [20].

In the transitions-oriented technics, Petri nest is described
as set of transition with guards and input arcs. In each step,
synchronized by clock, fulfilment of firing guards results
transitions firing and new net marking. Petri net described is as
one process that is responsible for transition firing possibility
checking and next marking generation.

In the place-oriented technics, two processes implements
control algorithm functionality. One process is responsible for
checking of transitions firing possibility, second is responsible
for generation of the next marking for the net. This method of
description, due to separation into two process, seems to be
more transparent. Also chip and very large FPGA devices,
in the connection with very good tools for synthesis and
implementation, makes failing to investigate the efficiency
of resource use for particular method justified. The paper
will present VHDL approach for HCfgPN description, place-
oriented technics in particular.

General structure of the HCfgPN (Net2) description in
VHDL language was presented in Fig. 8. In the proposed

o p e a t i o n a l p l a c e s : p r o c e s s (CLK, RESET)
Begin
i f RESET= ’1 ’ t h e n

P3 <= ’0 ’;
MP4 <= ’0 ’;
P5 <= ’0 ’;

. . .
e l s i f CLK’ event and CLK= ’1 ’ t h e n

i f Tw = ’1 ’ t h e n
P3 <= ’0 ’;
MP4 <= ’0 ’;
P5 <= ’0 ’;

. . .
e l s e
i f Ti = ’0 ’ and Pi = ’0 ’ t h e n
i f T i n i t = ’1 ’ or T6= ’1 ’ or ( P3 = ’1 ’ and T3

= ’0 ’ ) t h e n P3<= ’1 ’; e l s e P3<= ’0 ’; end
i f ;

i f T3= ’1 ’ or (MP4= ’1 ’ and T4 = ’0 ’ ) t h e n MP4
<= ’1 ’; e l s e MP4<= ’0 ’; end i f ;

i f T4= ’1 ’ or ( P5 = ’1 ’ and T5 = ’0 ’ ) t h e n P5
<= ’1 ’; e l s e P5<= ’0 ’; end i f ;

. . .
end i f ;
end i f ;

end i f ;
end p r o c e s s ;

Fig. 7. Template of operational places description in VHDL.

solution, based on classical method of description [17], [19],
each subnet is described by four processes. Two processes are
responsible for configurational transitions and places, next two
processes for operational subset mapping. Signal Local config
informs operational processes if it is possible to move token
between places.

Process config Transitions describes all operational transi-
tions and is responsible for initial marking initialization in
case of: preemption (Tw firing), final transition firing (tfin).
The resumption is realized by Ta transition firing. In case of
Net2 subnet, shallow history option is desired – tw transition
is switched off by adding of false (“0”) value to transition
guard.

Critical and noncritical exceptions in case of UML state ma-
chine diagram are modeled by means of history pseudostate.
Proposed structure of HCfgPN description give the possibility
of preemption description also with history (resumption). Place
P i, in case of preemption with history (noncritical exception),
catch token from place P a and hold it till resumption condition
will occur (transition T a fires).

In case of critical exception, guard should be assigned to
transition Tw, all tokens from places located in OS and move
subnet into initial marking.

Operational transition are described as typical process sec-
tion (Fig. 6). Sensitivity list of this process consists of set
predicates and places that are involved in operational transition
enabling. Each transitions is formed as functional description
with the use If clause, when condition is formed as logical
conjunction of input places, guard condition and LocalConfig
signal. This signal blocks transition firing when subnet is
inactive (place P a is not marked) or when transitions with
higher priority will fire (transitions :T i, Tw).
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l i b r a r y IEEE ;
use IEEE . STD LOGIC 1164 . a l l ;
E n t i t y Net 2 i s
p o r t (CLK, RESET , x0 , x5 , x6 , x7 , x8 , x9 , t1 ,

t2 , t f i n 3 , t i n i t 1 : i n s t d l o g i c ;
T i ou t , Ta out , T3 out , MP4 out , y5 ,

y6 , y7 , y8 , y9 : o u t s t d l o g i c ) ;
End Net 2 VHD ;
A r c h i t e c t u r e Net 2 o f Net 2 i s
S i g n a l P3 , MP4, P5 , . . . , P12 : s t d l o g i c

: = ’ 0 ’ ;
S i g n a l T3 , . . . , T12 : s t d l o g i c : = ’ 0 ’ ;
S i g n a l P i n i t : s t d l o g i c : = ’ 1 ’ ;
S i g n a l Pa , Pi , T i n i t , Tf in , Ti , Ta , Tw,

L o c a l C o n f i g : s t d l o g i c : = ’ 0 ’ ;
S i g n a l C s t a r t : s t d l o g i c : = ’ 0 ’ ;
begin
T i o u t <=Ti ; −− l o c a l s i g n a l s
. . .
y5 <= Pa and P5 ;−−o u t p u t s
C s t a r t <= Pa and P6 ;
. . .
L o c a l C o n f i g <= Pa and not ( Ti or Tw) ;
c o n f i g T r a n s i t i o n s : p r o c e s s ( Pi , Pa , Ti , Tw,

P i n i t , t1 , t2 , P7 , P9 , t5 , t6 , t i n i t 1 )
begin
T i n i t <= P i n i t and t i n i t 1 ;
T f i n <= Pa and P7 and P9 and not ( Ti and

Tw) ;
Ti <= Pa and t 1 and not Tw;
Tw <= Pa and ’ 0 ’ ;
Ta <= Pi and t 2 ;

end p r o c e s s ;

c o n f i g p l a c e s : p r o c e s s (CLK, R e s e t )
Begin
i f RESET= ’1 ’ t h e n

P i n i t <= ’1 ’;
P i <= ’0 ’;
Pa <= ’0 ’;

e l s i f CLK’ event and CLK= ’1 ’ t h e n
i f Tw= ’1 ’ or T f i n = ’1 ’ or ( P i n i t = ’1 ’ and

T i n i t = ’0 ’ ) t h e n P i n i t <= ’1 ’; e l s e P i n i t
<= ’0 ’; end i f ;

i f T i n i t = ’1 ’ or Ta = ’1 ’ or ( Pa = ’1 ’ and ( Ti
= ’0 ’ and Tw= ’0 ’ and T f i n = ’0 ’ ) ) t h e n Pa
<= ’1 ’; e l s e Pa <= ’0 ’; end i f ;

i f Ti = ’1 ’ or ( P i = ’1 ’ and ( P i = ’0 ’ or Ta
= ’0 ’ ) ) t h e n Pi <= ’1 ’; e l s e Pi <= ’0 ’; end
i f ;

end i f ;
end p r o c e s s ;
o p e r a t i o n a l t r a n s i t i o n s : p r o c e s s ( P3 , MP4, P5 ,

. . . , P12 , x0 , . . . , x9 , t1 , t2 , t f i n 3 ,
t i n i t 1 , C s t a r t , t f i n 3 , L o c a l C o n f i g )

Begin
. . .
end p r o c e s s ;
o p e r a t i o n a l p l a c e s : p r o c e s s (CLK, RESET)
Begin

. . .
end p r o c e s s ;
end a r c h i t e c t u r e ;

Fig. 8. Template HCfgPN description in VHDL.

The higher priority of configurational transitions is neces-
sary for proper exceptions handling: when undesirable occurs,
control process should be held or stopped immediately.

Operational places process (Fig. 7) describes token move-
ment between places in synchronous way. In the example,
asynchronous reset for operational and configurational places
was presented but it’s also possible to describe it as syn-
chronous event. An important aspect is the deterministic
behavior of the network, so for the entire project should be se-
lected one mode reset and applied consistently for each subnet.
Transition TW removes (kills) all tokens from operational sub-
net. Each operational place was described as logic conjunction
of activation condition and maintain condition. In comparison
to traditional technics, except of synchronous preemption reset
(TW ), there is no difference in places description.

Outputs functions are logic conjunction of place P a and
alternation of places, where signal should be generated. This
expression guarantees outputs signal generation only in case
when subnet is active. Preemption removes token, both from
operational places and P a place and stops signal generation.

A. Macroplaces and Subnets

The UML state machine diagram is based on modularity.
It can contain composite states, that are composed of one
(composite state) or many (orthogonal state) submachines.
This structure has to be reflected in the Petri net (HCfgPN).
Composite state has its equivalent in the form of macroplace.
Submachines that are contained in composite state are trans-
formed as (paralel) path in operational part of the subnet.
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Communication between subnets is implemented by signal
exchange. Fig. 9 presents example of two subnets and connec-
tion between them. Subnet A contain macroplace MP5 with
two inputs and two outputs arcs. Macroplace is connected with
subnet B. Considered example describes noncritical exception,
as it was presented in Fig. 2.

Initial transition (T init) from subnet B contains condition
formed as logical alternation of input transitions (t1 and
t2). The same condition was assigned to transition T a –
resumption after noncritical exception should result in token
movement from place P i to P a. Transition T i firing will result
with operational subnet (cloud in Fig. 9) deactivation (freeze).
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Fig. 10. Simulation of the logic controller in Active-HDL tool.

As the noncritical exception is considered, Transition T i

condition will be formed as alternation of outgoing transition
with trigger from MP5. In case of critical exception, condition
should be assigned to transition TW .

Untriggered transition from macroplace MP5 will fire when
all synchronization states from subnet B will be marked. For
proper untriggered transition handling, T fin transition from
subnet should be placed as condition of outgoing transition
on the supernet. From one place or macroplace, there can be
only one outgoing untriggered transition.

IV. IMPLEMENTATION AND SIMULATIONS RESULTS

Proposed method requires separate RTL block for each
subnet. Communication via signal broadcasting between block
is allowed. RTL level schematic for considered logic controller
was presented in Fig. 11. For each subnet one RTL block,
understood as VHDL entity, was prepared. Synthesis and
implementation was carried out using the Xilinx ISE software,
results were presented in Tab. I.

TABLE I
SYNTHESIS RESULT FOR XILINX XC2VP30

Logic utilization Available Used (VHDL)

Number of Slices 13696 33
Number of Flip Flops 27392 25
Number of 4 input LUTs 27392 63
Number of bonded IOBs 556 23
Number of GCLKs 16 1

The previous attempts to mapping resume mechanism for
hierarchical concurrent finite state machine (HCFSM) causing
great waste of hardware resources. In state mirroring method
every state has a copy of which stores information when the
state machine to which it is expropriated [21], [22]. Presented
approach [23], limits additional places in each size subnet
to three (P init, P a, P i). Of course, reducing the number of
used flip-flops is paid with the increasing use of LUT tables.
One hot encoding was used. As it was expected, = places P i

Fig. 11. RTL schematic of discrete logic controller.

from Net1 and Net2 were trimmed by synthesis tool during
optimization process.

Simulation results were presented in Fig. 10. An 275
nanosecond noncritical exception occurs. Subnet 3 was pre-
empted and moves to initial marking. Signal generation form
subnet 2 was freezed, but last positions of tokens were
remained. After resumption triggered by signal X0 subnet
2 was reactivated and output signal were enabled. As it can
be seen in Fig. 10. Detailed simulation confirm the assumed
implementation of the controller functionality.

V. CONCLUSION

Dual specification is a alternative method for discrete con-
trol system description. Dual specification assumes the use
of two correlated models on the stage of the specification:
UML state machine and hierarchical configurable Petri net.
The application of methods for transformation beetwen models
at metamodel level allows for the transformation of models
automatically, without user intervention.
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The possibility of practical application is conditioned by
by the availability of methods for the behavioral synthesis of
the model a the level of the hardware description languages.
Proposed method supports aspects as concurrent processes,
exceptions handling and hierarchy modeling. In this paper
places – oriented approach to the HCfgPN modeling in VHDL
language was presented.

Variety of formal methods for Petri net verification empow-
ers the application in rigorous methodology for safety critical
systems developing [24].

Logic controller designed according to the presented
methodology can be used either as a standalone module used
for controlling the production process as well as part of
embedded systems: System on Programable Chip (SOPC).

Future work should include a determination of synthesis
methods using other forms of description, and in particular the
structural synthesis in FPGA. Also comparison of effectiveness
of modeling methods, synthesis and implementation tools will
be an important aspect.

At present, optimization of hardware resources is not so
critical aspect. It should, however, consider the question of
energy savings, eg by temporarily disconnecting the individual
subnets. Proposed structure of HCfgPN gives the potential for
energy efficiency by disabling and enabling particular subnet.
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