
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 4, PP. 433–439
Manuscript received October 25, 2012; revised Decemer, 2012. DOI: 10.2478/v10177-012-0059-6

The Implementation of 3TZ Model of Software
Development

Zenon Chaczko, Shahrzad Aslanzadeh, Frank Jiang, and Ryszard Klempous

Abstract—This paper presents the concepts and explores issues
related to the 3 Time Zones (3TZ) model of software development
in global workspace environment. The 3TZ model itself seeks
to take advantages of differences in time zones between places
around the world. By engaging software development teams in
different regions separated by 8 hours each, it is possible for their
combined working hours to cover the whole 24 hours period.
Thus, while they each work their normal 8 hour days, together
they are able to achieve in 1 day what a single team would
achieve in 3 days. They are able to achieve this by passing
on their work from one team to the next as one finishes their
workday and the next team starts their workday. The 3TZ model
of software development revolves around the employment of
a software development team distributed in at least 3 different
locations around the world in 3 different time zones. If work was
passed on from one team to the next and adjacent teams were
separated by 8 hours, then 24 hours continuous collaborative
software development could be achieved. Though this poses
many challenges, when dealt with there is great potential for
software to be developed much faster than is possible for a single,
collocated development team. In the global economy, we have
seen a decrease in the barriers towards communication across the
globe along with an increase of service availability to support this
communication. Software development is one of the disciplines
that is capable of effectively utilizing and benefiting from global
collaboration prospect lent by ever increasing capability of
information and communication technology. 24 hours continuous
development is ideal for application towards tasks that have hard-
deadlines or require work completed as soon as possible. This
article will mainly focus on introducing 24/7 global models that
can be applied in cloud environment used in three different time
zones.

Keywords—Software development, cloud computing, dis-
tributed software services, 3TZ environment.

I. BACKGROUND

THE SOFTWARE development methodology based on

the 3 Time Zones (3TZ) model intends to explore and

evaluate a new collaborative software development processes

and tools situated in a global workspace environment.

The idea of the 3TZ model of software development over-

laps with existing iterative, incremental, agile frameworks

such as Scrum, which includes the concept of day sprints

and daily meetings. Instead of teams just having their own

location specific daily team meeting, a cross-team meeting

Z. Chaczko and S. Aslanzadeh are with Faculty of Engineering and
IT University of Technology (UTS) Sydney, NSW, Australia (e-mails:
zenon.chaczko@uts.edu.au; shahrzad.aslanzadeh@uts.edu.au).

F. Jiang is with School of Engineering and IT, University of New South
Wales, Sydney, Australia (F.Jiang@adfa.edu.au).

R. Klempous is with Faculty of Electronics, Wrocaw University of Tech-
nology, Wroclaw, Poland (ryszard.klempous@pwr.wroc.pl).

Fig. 1. The 3TZ model of software development.

during an overlap in work time would facilitate a handover-

synchronization so that work can smoothly be transitioned

from one team to another, with any questions, concerns and

problems resolved. This is an example of knowledge transfer

in what Gupta [1] describes as a 24 hour knowledge factory.

An illustration of how this works is shown in Fig. 1.

This paper highlights software development management

process that would facilitate the 3TZ model of software

development. Also this paper sought to fill the gap in the

available software for the specific purpose of facilitating the

implementation of a three time zone (3TZ) model of software

development. This gap exists in both the educational and

commercial space, though there are many products that could

potentially be utilized.

II. ADVANTAGES AND DISADVANTAGES OF 3TZ MODEL

3TZ is just one mode of software development that has

emerged as companies have grown their once single location

development team into globally distributed software teams.

Carmel [2] identified numerous reasons for the growth of

global software teams.

A. Specialised Talent

Software developers are not all equal, all having their own

levels of training, experience and expertise. Although it is

possible to relocate the needed developers, often it is necessary

(or simply more practical and cost effective) to employ them

in their home country. Also, for many countries the demand

for software developers is simply greater than the labor supply,

and companies are forced to look overseas for the developers

they require. Herbsleb and Moitra [3] describe this as the

434 Z. CHACZKO, S. ASLANZADEH, F. JIANG, R. KLEMPOUS

need to effectively utilize scarce global resources (software

developer labor supply) in a cost-competitive manner.

B. Reduction in Time-to-Market

Although having teams spread across different time zones

presents its challenges, it presents an opportunity for develop-

ment to occur in a 3TZ model as described above and thus

for work to be completed quicker than it could be otherwise.

This can provide companies with a competitive advantage or

reduce development times.

C. Location Transparency

Through the development of information and communica-

tion technologies, it is becoming easier for teams to communi-

cate and collaborate. Cloud computing is now dominating this

growth, providing global software teams with integrated and

uniform software and databases, helping teams to act as one

cohesive team. Although this does not completely compensate

for the lack of rich face to face communication between teams,

it certainly makes global software teams that much more

viable [4].

D. Challenges

Despite these reasons and advantages, moving from a single

collocated software development team to globally distribute

teams comes with many challenges, many of which are exac-

erbations of those of single collocated teams. The three main

differences between local and global teams that give rise to

these challenges are distance, time zone and national culture,

as identified by [2].

E. Distance

The main impact of distance between development sites

is the reduction and constraining of communication. Project

managers must rely on information communicated by team

managers and less on face to face meetings or informal face

to face or telephone conversations. Team members in different

site teams find it harder to bond and become cohesive without

physical interaction and spontaneous informal communication.

Communication instead becomes dominated by electronic

methods which are not only less rich (by lacking non-verbal

cues) and so less able to convey information accurately (which

is especially important in cultures that rely a lot on context for

understanding), but they are also predominantly asynchronous,

which in non-western cultures is less acceptable unless solid

personal relationships have already been formed.

However, these issues are not entirely absent from relatively

closely located teams. The study on communication between

colleagues showed that informal communications dropped

significantly once offices were separated by 25 meters and

to the same extent as if they were separate by several hundred

kilometers. Various studies have shown that software depart-

ments event placed on different floors in the same building

had very little interaction [1], [5]. This is not to say that

informal communication does not occur between cross-city

offices, since meetings and phone calls are still possible. But

these studies do show that offices do not have to be separated

by hundreds of kilometers before informal communication

becomes far less common.

F. Time Zone

Time zone differences exacerbate these communication is-

sues by preventing synchronous communication during normal

working hours. If non-asynchronous communication is neces-

sary, one member or team has to compromise by conducting

a meeting outside of their working hours, or if possible, only

in the short period when working hours overlap.

G. National Culture

Despite English being the predominant common language

of computing, developers from different cultures display dif-

ferent behaviors, norms, and assumptions. These differences

can often lead to mistrust, miscommunication and lack of

cohesion. This can complicate understanding the root cause

of disagreements between teams, which could stem from

differences between national culture, organizational culture or

simply professional opinion. Also, the increased diversity can

make consensus and decision making take longer. However, as

mentioned above, differences in national culture also present

an opportunity for greater productivity through different ways

of thinking about challenges including ways to solve a prob-

lem, how to design a product or how the development process

should work. Gupta et al. describes this as having a “global

mind-set, unconstrained by single country concerns or cultural

factors” [1]. In addition, some surveys have found that the

computer subculture is so dominant that there are little differ-

ences between developers from different cultures in regards to

work being a common personal motivation, placing the most

importance on technical values (over social or political values),

and the use of similar tools [2].

III. ENABLING AND INHIBITING FACTORS OF CLOUD

COMPUTING FOR BUSINESS

A. Availability and SLA

Cichon et al. in their paper ‘Worldwide Teams in Software

Development’ [4] propose an “adaptive development method-

ology” to address the issues faced by 3TZ development and the

fast changing business requirements. The authors [4] suggest

the use of ‘adaptive contracts’ between the development com-

pany and the client that focus on the non-functional require-

ments of scope, cost and time, while functional requirements

are developed during the implementation phase. This is to

ensure the company can keep up with the rapid changes in the

client’s needs but also addresses the limited time available in

projects that 3TZ development usually involves. This process

is well illustrated in Fig. 2. Cichon et al [4] note that this model

has been successful in projects undertaken by the software

company SAP as well as different commercial projects that

the authors have been involved in. Several features of the

proposed model are described in the following paragraphs. It

is essential for managers and leaders to keep team members

up to date with the project vision and their roles in the project

THE IMPLEMENTATION OF 3TZ MODEL OF SOFTWARE DEVELOPMENT 435

Fig. 2. Requirements in the context of an adaptive project life cycle (SDLC).

such that they do not lose sight of the bigger picture of what

might seem like a massive project. It also helps to make their

own decisions when they may not always have access to team

leaders or consultants. This includes being regularly informed

of the architectural system overview, project schedule, critical

dates, task priorities and the reasons behind them.

IV. CASE STUDY: DEVELOPMENT OF SOFTWARE

ENGINEERING TOOLS SUPPORTING 3TZ MODEL

The model of 3TZ adopted for this case study was based

upon experiences of team members who were originally in-

volved in defining the 3TZ model and who then made tactical

adjustments to overcome the challenges related to the new

methodology [5], [6]. The model generally involves a process,

which starts with a client approaching the 3TZ company

with a project that requires the expertise, resources, speed,

or scale that the 3TZ company can offer. The company then

assigns a project manager, consultants, site team leaders and

developers for each team, if not simply using existing teams.

The project manager (PM) and consultants work with the client

to develop an adaptive contract that covers all non-functional

requirements such as scope, cost, time and resources. It is

adaptive because the functional requirements are not 100% set,

and allows for changes where necessary. They also develop

a functional breakdown structure (FBS) instead of a work

breakdown structure (WBS) since that they are easier to break

down and manage for large projects. Next, all site teams gather

for an all-in worldwide team meeting, where they get to know

each other as well as become familiar with the project. The

PM, consultants and client identify the core functionality they

want to be developed first, and assign these to the first 2

iterations. These first 2 iterations are completed by the site

team leaders and most experienced developers who stay at

the client site. Once the client has evaluated this prototype,

they provide feedbacks and work with the PM and consultants

to choose the functionalities to be developed in the next

iterations. The site team leaders and experienced developers

return to their teams, and share with them the experiences

and knowledge of the project that they have. The site teams

then start the cycle of working on functionalities allocated

by the site team manager, writing daily closing reports of the

work they have done, holding handover meetings with the next

team via video conference during the overlapping period in

working hours and answering any questions, before the next

team carries on the work. This cycle continues until iteration is

getting completed (typically a week), when the client reviews

the work and again helps to decide the functionalities to

be completed for the next iteration. This continues until the

iterations are completed and the FBS is completed or the

adaptive contract is fulfilled [5].

A. Project Implementation

The actual implementation involved the addition of new

modules to or modification of existing ones in the existing

open source Endeavour program, with modules being individ-

ual sections of functionality. There were 2 main new modules

added: Daily Closing Reports (DCR) and Sites.
The DCR module was added as a high priority due to

its significant role in the 3TZ model by facilitating formal

knowledge transfer in the handover of development informa-

tion from one team to the next. Any additional information

can be provided in the comments tab, which can also be

added to by other team members. The Sites module is an

example of an introduced requirement, as it was not originally

part of the requirements list. The need for this module only

became apparent during a feedback session with the client.

It essentially allows the different sites of the component

worldwide teams to be included in the database. This means

that as individual team members are added or moved, their

site information, such as country, location and time zone would

automatically be updated. There were several existing modules

that were modified to help the program conform to the 3TZ

model of development. These included Users, Documents, the

Main Page, Security Groups and some cosmetic changes. The

Users module was changed to include information from the

Site module, depending on which existing site was selected

for each user as a drop down box. Fields such as country,

location and time zone were shown in the Users list page

and showed as uneditable fields in the user details edit form.

This form also had the contact number field added to facilitate

communication between team members of the same site team

or those of different site teams during the overlap in working

hour’s period. A category field was added to the Documents

module, to aid in the searching and sorting of documents.

This was an alternative to the original idea of having different

document sections or folders for different items such as client

information, high level design and project information. The

Main Page was slightly modified to show the current site of the

logged in user, and a slight rearrangement of module sections

to accommodate the added modules. The Security Groups

module was simply changed to add controls for the new

DCR and Sites modules. The other minor changes involved

removing the Endeavour logos and titles and replacing them

with the CCD: Continuous Collaborative Development title in

order to distinguish it from the original Endeavour program.

B. Design

Since this was a project involving the modification of an

existing open source program rather than developing a whole

436 Z. CHACZKO, S. ASLANZADEH, F. JIANG, R. KLEMPOUS

Fig. 3. Figure 3-3TZ designing concepts. Source: [6].

Fig. 4. DCR in endeavour with changed files. Source: [6].

new one, the design basically involved understanding that of

the Endeavour program and understanding where to implement

the modules that were to be added to satisfy the requirements.

The diagrams depicted in Fig. 3 and Fig. 4 illustrate how

this new module fit in with the other classes of the Endeavour

program. The first diagram (Fig. 3) shows, which classes

had to be edited in order to implement the new module,

and the second diagram shows all the classes that the new

module interacted with, or used. Currently, the adaptation and

software system development related to 3TZ is still continued,

and the open source software project management tool called

Endeavour Agile ALM has been chosen for this work.

Endeavour is an Open Source solution, designed to manage

the creation of large-scale enterprise systems in an iterative

Fig. 5. Daily closing report function of the 3TZ workspace project
management tool based on OSS endeavour framework. Source: [6].

and incremental agile software development process. This

original OSS framework encapsulates many features required

to support various tasks in software analysis and design. It is

written in Java, and thanks to its open Model-View-Controller

architecture it can be easily ported, adapted and extended to

include advanced features of the 3TZ model (See Fig. 5). The

extended version of Endeavour can also be easily deployed

in Cloud such as ODVL at UTS or any other open source,

community or commercially oriented environment.

C. Application to the Model

The above implementations, although they do not provide

a full-fledged 3TZ model program, they do make advances

toward one and help to incorporate some important elements

of the model into the program. As mentioned above, the

DCR module enables the developers to pass on knowledge

of their work to the next team whether that be in real time

or not, facilitating continuous collaborative development, and

provides formal documentation that can be easily referred to in

the future by any team member. The Sites and modified Users

modules and Main Page help to make it clear that all team

members are members of site teams that fit into a larger global

development team. The modified Documents section will aid

in the searching and sorting of the great variety of documents

that are involved in any large software development project,

and the cosmetic changes simply help to reinforce that this is

a program designed for following the 3TZ model.

V. CASE STUDY: DEVELOPMENT OF MOBILE PHONE

SOFTWARE APPLICATIONS USING 3TZ MODEL

Since mobile phone inception in 1973, development of

software applications for their effective use has grown rapidly.

Initially, first generation mobile phones were only used for

telephone calls; however, the second generation mobile phones

introduced in the 1990s allowed users to send text messages

(otherwise known as SMSs) to each other. At present, the

THE IMPLEMENTATION OF 3TZ MODEL OF SOFTWARE DEVELOPMENT 437

third generation mobile phones have evolved to a point in

which they can be called smart phones and can be compared to

having a small PC in our pockets. The modern version of smart

phones allows for browsing the web, reading emails, running

applications and even creating our own software applications.

For a long period, there was little application development

on smart home infrastructure front; however, in recent times

it has started to change. Home devices leading the way are

smart televisions able to stream media from the internet, read

emails and surf the web. These television sets are also now

capable of being controlled by a smart phone.

In the past, there were several application areas and projects

for which the 3TZ collaborative model was tested [4], [5], [7].

However, it was found, that the development of various mobile

phones applications seems to be particularly well suited for

validating the effectiveness of the methodology when working

on various student projects. This case study demonstrates how

students, over a course of a single semester, could develop

a proof of concept (POC) application [8] while working in

3TZ mode. The POC under our study aims to address the

gap between the continued ongoing developments of mobile

phones vs. the minimal advance of centralised control of

smart home infrastructure. Controlling an air conditioner via

SMS however, requires the air conditioner to have a receiving

mobile phone, which can be seen as an ongoing expense.

Turning on and off AC devices in the home via an iPhone

however no feedback is available to determine if the device is

actually on or not. The two main smart phone technologies cur-

rently available based on market share are: the Apple iPhone

and Android phones. Other smart phones include Windows

Mobile and Blackberry. We needed to determine which type of

phone to use to develop the POC. Apple’s iPhone development

environment is licensed costing $99 AUD per annum and is

required to be run on an Apple Mac. The Android development

environment is free and can run on any PC (Windows or

Mac based). Applications developed on the iPhone require

a payment to make them commercially available on iTunes,

whereas for Android Applications there is no cost. Based

on these points it was decided an Android phone would be

used. Android is a base operating system for mobile phones

founded in 2003. Google acquired Android in 2005 making it

a wholly owned subsidiary. Android is powered by a Linux

kernel and available under a practically free software license;

3.1 Subject to the terms of this License Agreement, Google

grants you a limited, worldwide, royalty- free, non- assignable

and non-exclusive license to use the SDK solely to develop

applications to run on the Android platform. Handsets are

developed by the Open Handset Alliance which includes

companies such as Intel, LG, Motorola and Samsung. The

goal of this alliance is to develop open standards for mobile

devices as per the Android operating system, which they run.

Android applications are available on the Android Market web

site. As of Dec 2010 there were 200,000 applications, games

and widgets available to be downloaded and in April 2011

Google Inc. stated that from Android Market three billion apps

had been downloaded and installed. Users can also develop

their own applications and install them on their own Android

phone. There are also no restrictions on developers setting

Fig. 6. WSN control menu options. Source: [8].

up their own online stores to sell their developed Android

applications. The physical Android phone chosen for this

project was a Motorola Droid due to its high performance and

it also comes pack-aged with the development environment

needed.

A. Development Environment

Various environments are available to develop Android

applications. Eclipse is a popular development environment

for Java, which Android applications are written in. The

Eclipse environment can be used by included the required

Android SDK. The Motorola development environment Mo-

toDev comes packaged with the Motorola Droid phone and

includes the specific SDKs to set up an Android Virtual Device

to mimic the Droid phone for debugging and testing. The

MotoDev environment was used for the required Android de-

velopment. Arduino microcontroller development is completed

using the Arduino Alpha development environment. A simple

and user friendly environment allows code to be written,

saved, compiled and uploaded to the different types of Arduino

boards. The development environment additionally includes

a Serial Monitor which is useful in communicating with the

Arduino BT Board to ensure the program was working as

expected prior to testing it with the Android phone.

B. WSN Control Application

The application created was WSN Control (Fig. 6). This ap-

plication provided the GUI and simulated control of home in-

frastructure. Initial development was the control of an air con-

ditioner. The application contained three basic views/controls:

• On/Off radio buttons to turn the air conditioner on/off.

• A slide bar to set the desired temperature between 18 to

30 degrees.

• A text view showing the current temperature in the home.

The current temperature was set to a default of 23 de-

grees. The slide bar could be moved to select the desired

temperature however the temperature would not change until

the air conditioner was turned on. Once the air conditioner

was turned on the program simulated the air conditioner by

438 Z. CHACZKO, S. ASLANZADEH, F. JIANG, R. KLEMPOUS

Fig. 7. Devices selection menu options. Source: [8].

adjusting the current temperature by 1 degree every minute

until it reached the desired selected temperature. For example,

if the temperature was 23 degrees and the air conditioner on

the application was set to 20 degrees, it would simulate the

temperature going down by 1 degree per minute and adjust

the current temperature display. After 3 minutes, the current

temperature and air conditioner set temperature would match.
For the current temperature there would be a temperature

sensor on the RCK sending data back to the Android mobile

when re-quested i.e. once per minute while the air conditioner

was on. In order to control other devices in the home more

screen real estate on the Android phone was needed, or

a separate t screen could be used for each device.
A different screen for each device was designed, although

an application menu was required to allow users to select

which device they wanted to control needed to be set up.

The application menu contained three options. Each of the

listed below options had a unique icon to make it easily

distinguishable and user friendly:

• Devices: Presented the user a spinner to select which

device they wanted to control. Once selected it would

move to the relevant screen to enable control of the

device.

• Settings: This menu item was not developed but intention

was to enable various options such as adding new devices

to be controlled, modifying or removing existing devices;

and scheduling control of devices at certain times.

• Quit: This option enables the user to close the application.

A title screen was added so it would not start up by default

controlling the air conditioner. For the Quit menu button to

ensure the application did not close if the user accidentally

selected it, a popup dialog was added to confirm the user

wanted to exit the application. For the devices menu button

a spinner was used, which only allows one item from the

menu to be selected. Once selected the screen would change

to the appropriate device screen. A mock up screen was

created for the television and garage along with the existing

air conditioner screen. These screens were created as they

enabled simulation of both transmission methods IR for the

air conditioner and television, and RF for the garage. For

the television screen two text views were initially added

and subsequently removed, showing the current channel and

volume.
The issue was there was no way to get data from the

television. The alternative would be to set the volume and

channel to a default value each time the television was turned

on, however it would not be a very good user experience.

An- other option would be to include a keypad with digits

to allow the user to select the channel they want instead of

having to scroll through channels to their desired channel. To

determine the state of the television being on or off, a suitably

placed light sensor could be used, or alternatively a heat sensor

placed behind the television, as most of television sets produce

a significant amount of heat when on. For the Garage Door it

was important for it to have a feedback loop to determine its

state. The reason for this was that if the user was away from

their home and wanted to make sure the garage was closed,

they could easily check this via their Android phone. A light

sensor could have been used; however, it is likely it would not

work at night. A pressure pad resistor changes its resistance

once pressure is applied. This could be placed under the garage

door to determine if it was closed, hence applying pressure to

the resistor. An alternative could be to use a micro switch or

THE IMPLEMENTATION OF 3TZ MODEL OF SOFTWARE DEVELOPMENT 439

reed switch to determine if the garage door is opened, these are

commonly used in alarms. Once the application was developed

and tested on the PC using a Virtual Android Environment, it

was packaged up and tested on the physical Android phone.

VI. CONCLUSION

It is apparent that there are different views of global soft-

ware development and 3TZ method in particular. It was gen-

erally noted, that global software development poses greater

challenges and more opportunities than locally based develop-

ment teams. Even more so is this the case with 3TZ. While

it is possible to accomplish more in the same amount of time

with globally distributed teams that together work 24 hours

a day, the complexity of large team sizes, the lack of informal

and nonverbal communication, and cultural differences all add

up to prevent all the potential that 3TZ has to offer. However,

strategies and tactics have been developed to address these

issues. Although Endeavour does not include all of the func-

tions that some propriety software does that could facilitate

the 3TZ model, it certainly has the potential for doing so. This

comes both in the form of third party applications that can be

included as open source code or services that are incorporated

through application programming interfaces (APIs), as well

as more experienced and knowledgeable software developers.

Although it may not meet the standards required of larger

corporate organizations, it could certainly provide potential

usage to the academic community and smaller businesses.

ACKNOWLEDGMENTS

I would like to express my gratitude to Ali Rey and

Kevin Lim, whose hard work on their projects, expertise, and

understanding, added considerably to this work.

REFERENCES

[1] A. Gupta, S. Sesbasai, I. Crk, and D. B. Smith, “Toward the 24-
hour knowledge factory in software development,” in Stealing Time:

Explorations in 24/7 Software Engineering Development, Z. Chaczko,
R. Klempous, and J. Nikodem, Eds. Denmark: River Publishers, 2010,
pp. 31–62.

[2] E. Carmel, Global Software Teams: Collaborating Across Borders and

Time Zones. Upper Saddle River, New Jersey: Prentice Hall, 1999.
[3] J. D. Herbsleb and D. Moitra, “Global software development,” IEEE

Software, vol. 18, pp. 16–20, 2001.
[4] P. Cichon, Z. Huzar, Z. Mazur, and A. Mroz, “Worldwide teams in

software development,” in Stealing Time: Explorations in 24/7 Software

Engineering Development, Z. Chaczko, R. Klempous, and J. Nikodem,
Eds. Denmark: River Publishers, 2010, pp. 85–109.

[5] Z. Chaczko, R. Klempous, and J. Nikodem, Stealing Time: Explorations

in 24/7 Software Engineering Development. River Publishers, 2010.
[6] S. A. Lim and Z. Chaczko, Cloud Computing and Its Enablement of the

Time Zone Workflow Model in an Open Source Application Lifecycle

Management Program. UTS, 2012, Supervison by Z. Chaczko.
[7] R. Klempous, J. Nikodem, and A. Wytyczak-Partyka, “Application of

simulation techniques in a virtual laparoscopic laboratory,” in Computer

Aided Systems Theory – EUROCAST 2011 – 13th International Confer-

ence, Las Palmas de Gran Canaria, Spain, February 6-11 2011, Revised
Selected Papers, Part II; 01/2011.

[8] A. Rey, Android Phone Control of Smart Home Infrastructure, Capstone

Project. UTS, 2012, Supervison by Z. Chaczko.
[9] R. D. Battin, R. Crocker, J. Kreidler, and K. Subramanian, “Leveraging

resources in global software development,” IEEE Software, vol. 18, pp.
70–77, 2001.

