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ABSTRACT

We check the empirical importance of some generalisations of the conditional distribution in  
M-GARCH case. A copula M-GARCH model with coordinate free conditional distribution is con-
sidered, as a continuation of research concerning specification of the conditional distribution in 
multivariate volatility models, see Pipień (2007, 2010). The main advantage of the proposed family 
of probability distributions is that the coordinate axes, along which heavy tails and symmetry can 
be modelled, are subject to statistical inference. Along a set of specified coordinates both, linear 
and nonlinear dependence can be expressed in a decomposed form.
 In the empirical part of the paper we considered a problem of modelling the dynamics of the 
returns on the spot and future quotations of the WIG20 index from the Warsaw Stock Exchange. 
On the basis of the posterior odds ratio we checked the data support of considered generalisation, 
comparing it with BEKK model with the conditional distribution simply constructed as a product 
of the univariate skewed components. Our example clearly showed the empirical importance of 
the proposed class of the coordinate free conditional distributions.

STRESZCZENIE

M. Pipień. Wielowymiarowe modele Copula M-GARCH o rozkładach niezmienniczych na transformacje 
ortogonalne — bayesowska analiza dla notowań spot i futures indeksu WIG20. Folia Oeconomica Craco-
viensia 2012, 53: 21–40.

W artykule przedstawiono uogólnienie rozkładu warunkowego w wielowymiarowym modelu 
typu GARCH, oraz poddano empirycznej weryfikacji skonstruowany model. Praca stanowi kon-
tynuację badań prowadzonych przez Pipienia (2007, 2010) nad właściwą specyfikacją rozkładów 
warunkowych wektora stóp zmian instrumentów finansowych. Zasadniczym elementem okre-
ślającym giętkość rozważanej klasy wielowymiarowych rozkładów jest możliwość zmiany układu 
współrzędnych, i – tym samym — kierunków w przestrzeni obserwacji, według których grube 
ogony i asymetria rozkładu mogą występować empirycznie. Zgodnie z przyjętą orientacją w prze-
strzeni obserwacji, możliwe jest modelowanie zależności pomiędzy elementami wektora losowego, 
zarówno o charakterze liniowym (stosowana transformacja liniowa) jak i nieliniowym (funkcja po-
wiązań, copula).



22

W części empirycznej przedstawiamy wyniki modelowania dynamicznych zależności pomiędzy 
zwrotami z notowania spot i futures indeksu WIG20. Uzyskane rezultaty wskazują na zasadność 
proponowanego uogólnienia stosowanego w modelu BEKK. Model z proponowanym typem roz-
kładu warunkowego uzyskuje silne potwierdzenie empiryczne, mierzone ilorazem szans a poste-
riori i wartością brzegowej gęstości wektora obserwacji.
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1. INTRODUCTION

Most of contributions involved with multivariate GARCH (M-GARCH) models 
— for a survey see Bauwens, Laurent and Rombouts (2006) — rely on the as-
sumption of the conditional Gaussian distribution. In spite of the fact that the 
M-GARCH models are applied in modelling and predicting temporal depend-
ence in the second-order moments, some other properties of the conditional dis-
tribution, like for example fat tails and skewness, are also very important. This 
result was confirmed by Bayesian comparison of GARCH-type models with nor-
mal and Student-t conditional distributions presented by Osiewalski and Pipień 
(2004). In terms of the model data support, measured by posterior odds ratio and 
posterior probabilities, they clearly showed that conditional normality is com-
pletely unrealistic in modelling financial time series. Hence, long journey beyond 
normality is necessary — see Genton (2004) — for better understanding the de-
pendence structure between related time series in general, and between financial 
returns particularly.

In the presence of empirical analyses decisively rejecting conditional normal 
distribution, a few studies concentrated on the application of the conditional 
distributions that allow both for heavy tails and asymmetry within M-GARCH 
models. Some developments on this subject present Bauwens and Laurent (2005). 
Modern propositions of modelling volatility and conditional dependence between 
financial returns try to resolve the problem by complicating stochastic structure 
of the model rather, than generalising explicitly conditional distribution. Recently 
Osiewalski and Pajor (2009, 2010) propose MSF-BEKK model, as an example of 
the process attributed with both, the flexibility of the Stochastic Volatility family 
of models, and parsimony of parameterisation of simple M-GARCH covariance 
structures. Some other, more complicated multifactor processes has been recently 
proposed by Osiewalski and Osiewalski (2011, 2012). Those hybrid processes 
can outperform pure M-GARCH specification, even in the case of conditional 
normality. As an alternative to approach investigated by Osiewalski and Pajor 
(2009, 2010) one may consider an explicit generalisation of the conditional 
distribution, also leading to more empirically important specifications.



23

In modelling volatility and dynamic dependence of returns of different finan-
cial assets, a linear dependence is economically interpretable and popular. Stand-
ard empirical exercises in financial econometrics, like controlling and pricing 
risks, optimal portfolio allocation, analysing volatility transmission mechanism or 
contagion and building hedging strategies, rely on solutions that are strictly con-
nected with measures of stochastic dependence of the linear nature. However 
last decade have seen particularly strong attention in modelling dependence in a 
nonlinear setting. One of the important topic of financial econometrics that made 
substantial progress during last decade, relates to making inference about meas-
ures of stochastic dependence that are alternatives to the conditional correlation. 

It seems that both, definition of a nonstandard distribution of observables, 
and a more detailed analysis of dependence are crucial in proper modelling of 
financial returns. One of the approaches that may resolve to some extent both is-
sues involves copula functions. The approach was intensively developed by Pat-
ton (2001, 2009), Jondeau and Rockinger (2006) and, in the case of Polish financial 
market, by Doman (2008), Doman and Doman (2009), Jaworski and Pitera (2012) 
and others. Vast empirical literature clearly indicate that volatility models built 
within framework of copula functions contribute substantially to standard em-
pirical issues in financial econometrics stated above; see Embrechts, McNeil and 
Straumann (2002), Bradley and Taqqu (2004), Rodriguez (2007), Chavez-Demoulin 
and Embrechts (2010), Balkema, Nolde, Embrechts (2012).

The main goal of this paper is to check the empirical importance of some 
generalisations of the conditional distribution in M-GARCH case. We generalise 
the M-GARCH model proposed and empirically analysed by Pipień (2006, 2007) 
who applied a novel class of probability distributions, which is coordinate free 
in the sense formulated by Fang, Kotz and Ng (1990). Pipień (2010) considered 
a multivariate distribution with independent components, with skewness 
imposed according to the inverse probability integral transformations, 
discussed in details by Ferreira and Steel (2006) and Pipień (2006). In the next 
step, orthogonal transformation was incorporated in order to assure that fat 
tails and also possible skewness can be imposed along a set of coordinate axes. 
Consequently, the construct postulated the existence of a set of coordinate axes, 
along which the univariate components are independent and the densities of the 
marginal distributions are known analytically. Now we additionally consider a 
generalisation, by imposing copula function that captures possible dependence 
of nonlinear nature between elements of the random vector. The main advantage 
of the proposed family of probability distributions is that the coordinate axes are 
subject to statistical inference and can be very different from the ones defined by 
canonical basis. Along a set of coordinates, supported by the data, both, linear 
and nonlinear dependence can be modelled.

In the empirical part of the paper we consider the bivariate series of the 
returns on the spot and futures quotations of the WIG20 index (WIG20 and 
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FWIG20 instruments) covering the period from 21.12.1999 till 27.02.2008; t = 2053 
observations. In modelling the conditional dependence of the components of 
the bivariate time series we consider Copula-BEKK(1,1) model with coordinate 
free conditional distribution according to the postulates of the construct. For 
a comparison we also consider some restricted cases, leading to the much simpler 
conditional distribution. We apply formal approach to test explanatory power of 
a set of competing specifications, based on the posterior odds ratio, and discuss 
superiority and possible practical usefulness of the considered coordinate free 
conditional distribution. Additionally the posterior inference about coordinate 
axes is also presented.

2. A CLASS OF COORDINATE FREE CONDITIONAL DISTRIBUTIONS

The main goal of this chapter is to present a family of multivariate skewed 
distributions and apply it in the multivariate GARCH setting. The basic notion 
considered here is the unified representation of the univariate skewness that 
applies inverse probability integral transformation, proposed initially by Ferreira 
and Steel (2006). We follow the setting presented in the univariate case by Pipień 
(2006, 2007) and by Pipień (2010) in multivariate case. The skewed version of 
originally symmetric and unimodal density f(.|i) (with cumulative distribution 
function F(.|i)) can be defined as follows:
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where p(.|h) denotes the density of the distribution defined on the unit interval. 
The asymmetric distribution s(.|i,h) is obtained by application of the density 
p(.|h) as a weighting function of the density f(.|i). The case, when p(.|h) = 1, 
restores symmetry. Any family of densities p(.|h), for h∈H, defined over unit 
interval, is called skewness mechanism. For a review of skewing mechanisms 
that incorporate hidden truncation mechanism, some approaches based on 
the inverse scale factors, order statistics concept, Beta or Bernstein distribution 
transformation or a constructive method see Pipień (2006). The empirical 
importance of the conditional skewness in modelling the relationship between 
risk and return was also studied in the univariate case by Pipień (2007). Some 
recent developments confirm results presented by Pipień (2007) that it is possible 
to restore the relationship, mentioned above, once a highly nonstandard 
stochastic process is considered in volatility modelling; see for example Markov 
switching-in-mean Stochastic Volatility model, proposed by Kwiatkowski (2010).

Now let consider m-dimensional random vector f = (f1,...,fm)` and let denote 
by f1(.|i1),..., fm(.|im) a set of unimodal (with mode at zero) univariate densities, 
parameterised by vectors i1,...,im respectively. In the first step, for i = 1,...,m, we 
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impose skewness mechanisms pi(.|hi) on densities fi(.|ii). Note that in general 
the construct does not require imposing the same type of skewness mechanism 
for each i=1,…,m. For simplicity, in the empirical part of the paper, we consider 
the case, where the same skewness mechanism is considered for each of the 
coordinates. Possible different asymmetry effects will result from different values 
of parameters hi. The resulting density si(.|ii,hi) takes the form presented in 
equation (1):
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where &=(&1`,...,&m`)`, '=('1`,...,'m`)`.  
Pipie( (2010) shows examples of distributions in bivariate cases indicating that possible 
outliers and asymmetry can be captured by distribution (2) only if those features of the data 
will occur along original coordinate axes, defined by canonical basis in Rm. Also, any family 
of distributions (2) is not closed with respect to the orthogonal transformations of the 
components. Hence, in order to improve flexibility of our class of distributions, a special 
mechanism that would make the coordinate axes varying is incorporated according to the idea 
proposed by Ferreira and Steel (2006). We provide it on the basis of the following linear 
(affine) transformation of the random vector (: 

(3)       y=A`(+µ,     (3) 

for a nonsingular matrix A[mxm] and location vector µ[mx1]#Rm. The density of the distribution 
of the random vector y is defined by the following formula: 

(4)     p(y|&,',A,µ)=|det(A)-1|!
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where Ai
-1 denotes the i-th column of A-1. If the densities fi(.|&i) are unimodal, with mode at 

zero, then the distribution the vector of y in (4) is unimodal, with mode defined by µ and 
skewing mechanisms pi(.|'i). Transformation matrix A introduces the dependence between 
components of y, while ' determines the skewness of the independent components of (. 
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nate free, in the sense defined in Fang, Kotz and Ng (1990). In our approach we 
do not restrict the distribution to the case that A is a square root of the symmet-
ric and positive definite covariance matrix. Consequently, practical application of 
specific families of multivariate distributions (4) requires interpreting the effect 
of the transformation matrix A. With no loss of generality let assume in (3) that 
n = 0[mx1]:

y = A`f.

According to the theorem presented in Golub and Van Loan (1993) any 
nonsingular matrix A[mxm] can be written as the product of mxm orthogonal matrix 
Om and upper triangular matrix U[mxm] with positive diagonal elements:

A = OmU,

and such a decomposition (called the QR decomposition) is unique. Now the re-
sults of the transformation matrix A can be considered in two steps:

( y = A`f = (OmU)`f = U`Om`f. (5)

Initially, the random vector f in (5) is subject to the rotation (if detOm = 1) or 
rotoinversion (if detOm=-1). Then the vector p = Om`f is transformed according 
to the covariance-type linear transformation. The distribution of the vector p 
postulates that there exist a set of coordinate axes, along which the components 
of p are independent and the densities of the marginal distributions are known 
analytically. The main difference between distribution of f and p is that those 
coordinate axes can vary from the axes defined by canonical basis in Rm. The 
distribution of y is then obtained by imposing scale transformation on the 
distribution of p, because matrix U can be interpreted as the Cholesky square root 
of the symmetric and positive definite matrix defining covariance structure. 

A parametric sampling model that incorporates distributions described by 
equation (5) requires unique (one-to-one) parameterisation of the family of or-
thogonal matrices Om in Rm. Also some restrictions have to be imposed, in order 
to assure identification. The one-to-one parameterisation was provided by Stew-
ard (1980) and Ferreira and Steel (2007), by an application of the Householder 
matrices decomposition. Let denote y = (y1,...,ym)`∈Rm, the m-dimensional col-
umn vector. The Householder matrix H(y) (Householder reflection or House-
holder transformation) is defined as follows:
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transformation. The distribution of the vector ) postulates that there exist a set of coordinate 
axes, along which the components of ) are independent and the densities of the marginal 
distributions are known analytically. The main difference between distribution of ( and ) is 
that those coordinate axes can vary from the axes defined by canonical basis in Rm. The 
distribution of y is then obtained by imposing scale transformation on the distribution of ), 
because matrix U can be interpreted as the Cholesky square root of the symmetric and 
positive definite matrix defining covariance structure.  

A parametric sampling model that incorporates distributions described by equation (5) 
requires unique (one-to-one) parameterisation of the family of orthogonal matrices Om in Rm. 
Also some restrictions have to be imposed, in order to assure identification. The one-to-one 
parameterisation was provided by Steward (1980) and Ferreira and Steel (2007), by an 
application of the Householder matrices decomposition. Let denote /=(/1,...,/m)`#Rm, the m-
dimensional column vector. The Householder matrix H(/) (Householder reflection or 
Householder transformation) is defined as follows: 
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Golub and Van Loan (1983) show some useful properties of H(/). Firstly, for each /#Rm H(/) 
is orthogonal, and secondly H(/)= H(-/)=H(a*/), for any scalar a$0. From the second 
property if we restrict the vector + to the unit half sphere in Rm (denoted by HSm-1) we will 
keep the coverage of the whole family of Householder matrices. Parameterisation of the unit 
half sphere is easily obtained if we write down the vector /,=(/1,...,/m)`#HSm-1 in polar 
coordinates: 

(6)   /1=sin(,1), /j= sin(,j)!
1=

)cos(
j

s
s! ,  for j<m,    /m=!

1-

1=
)cos(

m
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Golub and Van Loan (1983) show some useful properties of H(y). Firstly, for each 
y∈Rm H(y) is orthogonal, and secondly H(y) = H(-y) = H(a·y), for any scalar a ≠ 0. 
From the second property if we restrict the vector y to the unit half sphere in Rm 
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(denoted by HSm-1) we will keep the coverage of the whole family of Householder 
matrices. Parameterisation of the unit half sphere is easily obtained if we write 
down the vector y~ = (y1,...,ym)`∈HSm-1 in polar coordinates:
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Assuring the variability of the parameters, equation (4) generates a flexible class of 
multivariate distributions that is closed under orthogonal transformations. Hence, the 
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matrix A. With no loss of generality let assume in (3) that µ=0[mx1]: 

y=A`(. 
According to the theorem presented in Golub and Van Loan (1993) any nonsingular 

matrix A[mxm] can be written as the product of mxm orthogonal matrix Om and upper triangular 
matrix U[mxm] with positive diagonal elements: 

A=OmU, 

and such a decomposition (called the QR decomposition) is unique. Now the results of the 
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axes, along which the components of ) are independent and the densities of the marginal 
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that those coordinate axes can vary from the axes defined by canonical basis in Rm. The 
distribution of y is then obtained by imposing scale transformation on the distribution of ), 
because matrix U can be interpreted as the Cholesky square root of the symmetric and 
positive definite matrix defining covariance structure.  

A parametric sampling model that incorporates distributions described by equation (5) 
requires unique (one-to-one) parameterisation of the family of orthogonal matrices Om in Rm. 
Also some restrictions have to be imposed, in order to assure identification. The one-to-one 
parameterisation was provided by Steward (1980) and Ferreira and Steel (2007), by an 
application of the Householder matrices decomposition. Let denote /=(/1,...,/m)`#Rm, the m-
dimensional column vector. The Householder matrix H(/) (Householder reflection or 
Householder transformation) is defined as follows: 
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is orthogonal, and secondly H(/)= H(-/)=H(a*/), for any scalar a$0. From the second 
property if we restrict the vector + to the unit half sphere in Rm (denoted by HSm-1) we will 
keep the coverage of the whole family of Householder matrices. Parameterisation of the unit 
half sphere is easily obtained if we write down the vector /,=(/1,...,/m)`#HSm-1 in polar 
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Now, for any [mxm] orthogonal matrix Om with detOm=-1m+1, there exist unique 
decomposition: 

(7)      Om=H(,m)"... H(,2),     (7) 

to m–1 Householder reflections H(,j) defined by vectors ,j
[mx1] of the form: 

,j=(om-j, /,j)`, j=2,...,m, 

for m-j dimensional vector of zeros, om-j=(0,...,0)` if j<m and for an empty vector for j=m. The 
vectors /,j#HS j-1 are parameterised in terms of the polar coordinates applied in (6). The 
interesting case is m=2, where the class of Householder reflections provide parametric family 
of orthogonal matrices of dimension [2x2] with identification restrictions imposed; see 
Steward (1980), Golub and Van Loan (1983). 

3. ANOTHER STEP – INTRODUCING COPULA FUNCTIONS 

Distribution of y, defined by the density (4), where A=OmU, with orthogonal matrix Om, 
parameterised according to decomposition (7), is obtained on the basis of the linear 
transformation of a random vector 0 with the density (2). Consequently, only linear 
dependence between random variables, representing coordinates, can be modelled. Possible 
changes in coordinates that may be subject to statistical inference, enriched flexibility of the 
family, however the nature of dependence of elements of the vector y may still be linear. In 
order to model a more complicated dependence structure in vector y we follow the approach 
that involves copula functions. 

Let consider a bivariate random variable z=(z1,z2)`, with cumulative density function (cdf) 
F and density function f, and with fi and Fi the density and cdf of the marginal distribution of 
zi respectively (i=1,2). According to Sklar (1959), there exists a function C:[0,1]2 1 [0,1], 
with the following properties: 

1. C(u1,u2) is increasing in u1 and u2 

2. C(0,u2)= C(u1,0)=0, C(1,u2)=u2, C(u1,1)=u1 

3. For each (u1,u1`,u2,u2`) � [0,1]4, such u1<u1` and u2<u2`: 

C(u1`,u2`)-C(u1`,u2)-C(u1,u2`)+C(u1,u2)20, 

such: 
F(z1,z2)=C(F1(z1), F2(z2)). 

The density of the joint distribution of z (if exist) is defined as follows: 

f(z1,z2)=f1(z1) f2(z2) cd (F1(z1), F2(z2)), 

where: 

Now, for any [mxm] orthogonal matrix Om with detOm = -1m+1, there exist unique 
decomposition:

 Om = H(~m)⋅... H(~2), (7)

to m–1 Householder reflections H(~j) defined by vectors ~j
[mx1] of the form:

~j=  (om-j, y~j)`, j = 2,...,m,

for m-j dimensional vector of zeros, om-j = (0,...,0)` if j<m and for an empty vector 
for j = m. The vectors y~j∈HS j-1 are parameterised in terms of the polar coordina-
tes applied in (6). The interesting case is m = 2, where the class of Householder 
reflections provide parametric family of orthogonal matrices of dimension [2x2] 
with identification restrictions imposed; see Steward (1980), Golub and Van Loan 
(1983).

3. ANOTHER STEP — INTRODUCING COPULA FUNCTIONS

Distribution of y, defined by the density (4), where A = OmU, with orthogonal ma-
trix Om, parameterised according to decomposition (7), is obtained on the basis of 
the linear transformation of a random vector f with the density (2). Consequen-
tly, only linear dependence between random variables, representing coordinates, 
can be modelled. Possible changes in coordinates that may be subject to statistical 
inference, enriched flexibility of the family, however the nature of dependence of 
elements of the vector y may still be linear. In order to model a more complicated 
dependence structure in vector y we follow the approach that involves copula 
functions.

Let consider a bivariate random variable z = (z1,z2)`, with cumulative density 
function (cdf) F and density function f, and with fi and Fi the density and cdf of 
the marginal distribution of zi respectively (i = 1,2). According to Sklar (1959), 
there exists a function C:[0,1]2 → [0,1], with the following properties:
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1. C(u1,u2) is increasing in u1 and u2
2. C(0,u2) = C(u1,0) = 0, C(1,u2) = u2, C(u1,1) = u1
3. For each (u1,u1`,u2,u2`) ∈ [0,1]4, such u1<u1` and u2<u2`:

C(u1`,u2`)-C(u1`,u2)-C(u1,u2`) + C(u1,u2)≥0,

such:

F(z1,z2) = C(F1(z1), F2(z2)).

The density of the joint distribution of z (if exist) is defined as follows:

f(z1,z2) = f1(z1) f2(z2) cd (F1(z1), F2(z2)),

where:
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Function C is called copula, and restores dependence reflected in the joint distribution F, 
when marginal distributions F1 and F2 are considered. Function cd(·,·) is called the density of 
the copula C. In the case with C(u1,u2)=u1u2, we have F(z1,z2)=F1(z1)F2(z2), cd(u1,u2)=1 and 
f(z1,z2)=f1(z1) f2(z2), hence C(u1,u2)=u1u2 defines stochastic independence between z1 and z2. 
For detailed theory of copula functions and of the concept of measuring stochastic 
dependence within copula framework see Joe (1997) and Nelsen (2006). 

Now, in the bivariate case (m=2), we generalise our distribution of y, defined by the 
density (4), by incorporating copula function in the distribution of the random vector 0. We 
consider a random vector y of the form: 

(8)       y=U`Om`z,     (8) 

with upper triangular matrix U and the orthogonal matrix Om defined by (7) and the bivariate 
random variable z with the following density: 

(9)    p(z|&,',&cop)=s1(z1|&1,'1) s2(z2|&2,'2)cd(S1(z1),S2(z2)|&cop),  (9) 

for the density cd of a particular copula function parameterised by the vector &cop, and skewed 
univariate densities si, considered initially in (2). In (9) by S1 and S2 we denote cdf functions 
of those skewed univariate distributions. Introducing copula function in the distribution of y, 
according to (9), provides another source of possible stochastic dependence in the random 
vector y, not involved with linear transformation with matrix A, considered initially. The case 
with C(u1,u2)=u1u2 (or equivalently cd(u1,u2)=1) restores independence in the vector z, and 
hence the distribution is defined just like for 0 in (2). In this case only a linear dependence 
between coordinates of y can be modelled. 

4. THE SET OF COMPETING SPECIFICATIONS 

By yj we denote the two-dimensional vector of logarithmic returns at time j, i.e. 
yj=(yj1,yj2)`, where yji=100ln(xji/xj-1,i) and xji denotes the value of i-th financial instrument at 
time j. In order to model conditional dependence between components of yj we assume the 
following structure: 

(10)     yj=Hj
0.5($,-j-1)`H(/,)`zj, j=1,...,t,             (10) 

where -j-1=(....,yj-2,yj-1) denotes the information set at time j. Random variables zj=(zj1,zj2)` 
follow the distribution defined in (9), where components si(.|&i,'i) are the skewed versions of 
the standardised Student-t densities with .i>0 degrees of freedom parameter (hence &i=.i), 
and skewness parameters 'i. Matrix H(/,) in (10) is a Householder reflection defined by: 
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where /,=(sin,1,cos,1), and ,1#(-//2; //2). Symmetric and positive definite matrix Hj($,-j-1) 
follows BEKK(1,1) specification: 

Hj($,-j-1)=A+B"yj-1yj-1`"B`+C"Hj-1($,-j-2) "C`, 

Function C is called copula, and restores dependence reflected in the joint distri-
bution F, when marginal distributions F1 and F2 are considered. Function cd (∙,∙) 
is called the density of the copula C. In the case with C(u1,u2)=u1u2, we have 
F(z1,z2) = F1(z1)F2(z2), cd(u1,u2) = 1 and f(z1,z2) = f1(z1) f2(z2), hence C(u1,u2) = u1u2 
 defines stochastic independence between z1 and z2. For detailed theory of copula 
functions and of the concept of measuring stochastic dependence within copula 
framework see Joe (1997) and Nelsen (2006).

Now, in the bivariate case (m = 2), we generalise our distribution of y, defined 
by the density (4), by incorporating copula function in the distribution of the 
random vector f. We consider a random vector y of the form:

 y = U`Om`z, (8)

with upper triangular matrix U and the orthogonal matrix Om defined by (7) and 
the bivariate random variable z with the following density:

(9)  p(z|i,h,icop) = s1(z1|i1,h1) s2(z2|i2,h2) cd(S1(z1), S2(z2)|icop), (9)

for the density cd of a particular copula function parameterised by the vector icop, 
and skewed univariate densities si, considered initially in (2). In (9) by S1 and S2 
we denote cdf functions of those skewed univariate distributions. Introducing co-
pula function in the distribution of y, according to (9), provides another source of 
possible stochastic dependence in the random vector y, not involved with linear 
transformation with matrix A, considered initially. The case with C(u1,u2) = u1u2 
(or equivalently cd (u1,u2) = 1) restores independence in the vector z, and hence 
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the distribution is defined just like for f in (2). In this case only a linear depen-
dence between coordinates of y can be modelled.

4. THE SET OF COMPETING SPECIFICATIONS

By yj we denote the two-dimensional vector of logarithmic returns at time j, i.e. 
yj = (yj1,yj2)`, where yji = 100ln(xji/xj-1,i) and xji denotes the value of i-th financial 
instrument at time j. In order to model conditional dependence between compo-
nents of yj we assume the following structure:

(10 yj = Hj
0.5(b,}j-1)`H(y~)`zj, j = 1,...,t, (10)

where }j-1=  (....,yj-2,yj-1) denotes the information set at time j. Random variables 
zj = (zj1,zj2)` follow the distribution defined in (9), where components si(.|ii,hi) are 
the skewed versions of the standardised Student-t densities with oi>0 degrees of 
freedom parameter (hence ii = oi), and skewness parameters hi. Matrix H(y~) in 
(10) is a Householder reflection defined by:
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Function C is called copula, and restores dependence reflected in the joint distribution F, 
when marginal distributions F1 and F2 are considered. Function cd(·,·) is called the density of 
the copula C. In the case with C(u1,u2)=u1u2, we have F(z1,z2)=F1(z1)F2(z2), cd(u1,u2)=1 and 
f(z1,z2)=f1(z1) f2(z2), hence C(u1,u2)=u1u2 defines stochastic independence between z1 and z2. 
For detailed theory of copula functions and of the concept of measuring stochastic 
dependence within copula framework see Joe (1997) and Nelsen (2006). 

Now, in the bivariate case (m=2), we generalise our distribution of y, defined by the 
density (4), by incorporating copula function in the distribution of the random vector 0. We 
consider a random vector y of the form: 

(8)       y=U`Om`z,     (8) 

with upper triangular matrix U and the orthogonal matrix Om defined by (7) and the bivariate 
random variable z with the following density: 

(9)    p(z|&,',&cop)=s1(z1|&1,'1) s2(z2|&2,'2)cd(S1(z1),S2(z2)|&cop),  (9) 

for the density cd of a particular copula function parameterised by the vector &cop, and skewed 
univariate densities si, considered initially in (2). In (9) by S1 and S2 we denote cdf functions 
of those skewed univariate distributions. Introducing copula function in the distribution of y, 
according to (9), provides another source of possible stochastic dependence in the random 
vector y, not involved with linear transformation with matrix A, considered initially. The case 
with C(u1,u2)=u1u2 (or equivalently cd(u1,u2)=1) restores independence in the vector z, and 
hence the distribution is defined just like for 0 in (2). In this case only a linear dependence 
between coordinates of y can be modelled. 

4. THE SET OF COMPETING SPECIFICATIONS 

By yj we denote the two-dimensional vector of logarithmic returns at time j, i.e. 
yj=(yj1,yj2)`, where yji=100ln(xji/xj-1,i) and xji denotes the value of i-th financial instrument at 
time j. In order to model conditional dependence between components of yj we assume the 
following structure: 

(10)     yj=Hj
0.5($,-j-1)`H(/,)`zj, j=1,...,t,             (10) 

where -j-1=(....,yj-2,yj-1) denotes the information set at time j. Random variables zj=(zj1,zj2)` 
follow the distribution defined in (9), where components si(.|&i,'i) are the skewed versions of 
the standardised Student-t densities with .i>0 degrees of freedom parameter (hence &i=.i), 
and skewness parameters 'i. Matrix H(/,) in (10) is a Householder reflection defined by: 
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where /,=(sin,1,cos,1), and ,1#(-//2; //2). Symmetric and positive definite matrix Hj($,-j-1) 
follows BEKK(1,1) specification: 

Hj($,-j-1)=A+B"yj-1yj-1`"B`+C"Hj-1($,-j-2) "C`, 

where y~ = (sin~1,cos~1), and ~1∈(-r/2; r/2). Symmetric and positive definite 
matrix Hj (b,}j-1) follows BEKK(1,1) specification:

Hj(b,}j-1) = A+B ⋅ yj-1yj-1`⋅ B`+C⋅  Hj-1(b,}j-2) ⋅ C`,

and b groups all required parameters, namely 

b = (a11,a12,a22,b11,b12,b21,b22,c11,c12,c21,c22,). 

Rewriting (10) in the following form:

yj = Wj` zj, j = 1,...,t,

where Wj = H(y~) Hj
0.5(b,}j-1), just like in (8), we can formulate the conditional 

distribution of yj (with respect to }j-1) as a result of linear transformation of dis-
tribution of zj, with transformation matrix Wj:

p (yj|}j-1,o1,o2,h1,h2,~1,b, M1)=

=|detWj|-1s1(yj`W-1
j(1)|o1,h1) s2(yj`W-1

j(2)|o2,h2) cd(S1(yj`W-1
j(1)),S2(yj`W-1

j(2))|icop),

where W-1
j(i) denotes i-th column of Wj

-1, and si(.|oi,hi) are skewed Student-t den-
sities:



30

si(z|oi,hi) = fst(z|0,1,oi)⋅p(Fst(z|0,1,oi)|hi), z∈R,

with the density and cdf of the standardised Student-t distribution with zero 
mode, unit precision and degrees of freedom parameter oi>0 denoted by 
fst(.|0,1,oi) and Fst(.|0,1,oi) respectively. 

We considered five different single parameter copula functions, namely 
Gaussian, Clayton, Frank, Plackett and Gumbel, together with the case of no 
copula function. This gives us six competing sampling models collected in the 
set denoted by H1. The analytic form of copulas and its densities can be found in 
Joe (1997) and Nelsen (2006). The set of copula function applied in the empirical 
part of the paper is restricted to only to the cases where only a single parameter 
in icop describes dependence in the random vector. Some other copula functions 
attributed with richer parameterisation can be found in Joe (1997).

The sampling model is represented by the following product of the 
conditional densities:
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and $ groups all required parameters, namely $=(a11,a12,a22,b11,b12,b21,b22,c11,c12,c21,c22,). 
Rewriting (10) in the following form: 

yj=Wj` zj, j=1,...,t, 

where Wj= H(/,) Hj
0.5($,-j-1), just like in (8), we can formulate the conditional distribution of 

yj (with respect to -j-1) as a result of linear transformation of distribution of zj, with 
transformation matrix Wj: 

p(yj|-j-1,.1,.2,'1,'2,,1,$, M1)= 

=|detWj|-1s1(yj`W-1
j(1)|.1,'1) s2(yj`W-1

j(2)|.2,'2) cd(S1(yj`W-1
j(1)),S2(yj`W-1

j(2))|&cop), 

where W-1
j(i) denotes i-th column of Wj

-1, and si(.|.i,'i) are skewed Student-t densities: 

si(z|.i,'i)=fst(z|0,1,.i)"p(Fst(z|0,1,.i)|'i), z#R, 

with the density and cdf of the standardised Student-t distribution with zero mode, unit 
precision and degrees of freedom parameter .i>0 denoted by fst(.|0,1,.i) and Fst(.|0,1,.i) 
respectively.  
We considered five different single parameter copula functions, namely Gaussian, Clayton, 
Frank, Plackett and Gumbel, together with the case of no copula function. This gives us six 
competing sampling models collected in the set denoted by H1. The analytic form of copulas 
and its densities can be found in Joe (1997) and Nelsen (2006). The set of copula function 
applied in the empirical part of the paper is restricted to only to the cases where only a single 
parameter in 1cop describes dependence in the random vector. Some other copula functions 
attributed with richer parameterisation can be found in Joe (1997). 
The sampling model is represented by the following product of the conditional densities: 

(11) p(y,yf|.1,.2,'1,'2,,1,$, M1) = !
1

kt
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p(yj|-j-1,.1,.2,'1,'2,,1,$, M1),           (11) 

where y=(y1,...,yt) denotes the matrix of observed daily returns, while yf=(yt+1,...,yt+k) groups 
forecasted observables. In order to complete Bayesian models, the prior distributions of all 
parameters must be stated. For the vector $ we adopted prior used in Osiewalski and Pipie( 
(2004), for skewness parameters 'i and degrees of freedom parameters .i we applied prior 
distribution studied by Pipie( (2007). Since the orthogonal component H(/,) in (10) is 
parameterised by a single parameter ,1#(-//2; //2), we assumed for simplicity uniform prior 
over the whole interval. Less trivial probability distributions, with some interesting 
topological properties, adopted for a subset of the orthogonal matrices, were proposed by 
Steward (1980). 

All prior densities, except the one imposed on the parameter ,1#(-//2; //2), were 
investigated previously in our papers. As it was clearly shown by Osiewalski and Pipie( 
(2004) and Pipie( (2007) the prior information included in the Bayesian models is very weak, 
as the prior distributions of parameters are very diffuse. For parameters in copula functions 
we imposed normal distributions truncated to the appropriate domain, with the prior mode at 
the point assuring independence. Consequently, we do not specify any type of dependence 
between coordinates and imposed appropriately diffused distributions. Consequently, the 
conclusions drawn from the empirical analysis does not seem to be biased by the prior 
knowledge, which is vague and not precisely stated in our case. 

The main goal of the empirical part of the paper is to discuss the importance of orthogonal 
component H(/,) and its form with respect to the type of the copula function included in the 
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where y = (y1,...,yt) denotes the matrix of observed daily returns, while 
yf = (yt+1,...,yt+k) groups forecasted observables. In order to complete Bayesian 
models, the prior distributions of all parameters must be stated. For the vector b 
we adopted prior used in Osiewalski and Pipień (2004), for skewness parameters 
hi and degrees of freedom parameters oi we applied prior distribution studied by 
Pipień (2007). Since the orthogonal component H(y~) in (10) is parameterised by 
a single parameter ~1∈(-r/2; r/2), we assumed for simplicity uniform prior over 
the whole interval. Less trivial probability distributions, with some interesting to-
pological properties, adopted for a subset of the orthogonal matrices, were pro-
posed by Steward (1980).

All prior densities, except the one imposed on the parameter ~1∈(-r/2; 
r/2), were investigated previously in our papers. As it was clearly shown by 
Osiewalski and Pipień (2004) and Pipień (2007) the prior information included 
in the Bayesian models is very weak, as the prior distributions of parameters are 
very diffuse. For parameters in copula functions we imposed normal distributions 
truncated to the appropriate domain, with the prior mode at the point assuring 
independence. Consequently, we do not specify any type of dependence between 
coordinates and imposed appropriately diffused distributions. Consequently, the 
conclusions drawn from the empirical analysis does not seem to be biased by the 
prior knowledge, which is vague and not precisely stated in our case.

The main goal of the empirical part of the paper is to discuss the importance 
of orthogonal component H(y~) and its form with respect to the type of the 
copula function included in the sampling model. As an alternative to models 
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in class H1 we also considered Copula-BEKK(1,1) specifications written in the 
following way:

 yj = Hj
0.5(b,}j-1)`zj, j=1,...,t, (12)

with no orthogonal mechanism, changing coordinates, included. The assump-
tions concerning zj and Hj(b,}j-1) are remained unchanged. In particular the 
 distribution of zj may involve five different form of copula function and also may 
not involve copula. This gives us additional set of six competing specifications, 
denoted by H0. The model 0 can be interpreted as a special case of (10), obtained 
by imposing zero restriction on Householder vector y~ = (0,0)`, leading to the 
case, where H(y~) = I2.

5. EMPIRICAL ANALYSIS

In the empirical part of the paper we analyse bivariate time series of the logarith-
mic returns of the spot and futures quotations of the WIG20 index, covering the 
period from 21.12.1999 till 27.02.2008; t=2053 observations. The dataset, depicted 
on Figure 1, together with some descriptive statistics, exemplifies rather compli-
cated nature of the dependence between both univariate time series. The possible 
dependence is clearly determined by the coincidence of outliers, making the em-
pirical distribution considerably more dispersed along first and second quarter of 
the Cartesian product, as compared with relative stronger concentration of daily 
returns of spot and futures quotations with different sing at the same day. The 
modelled time series covers rather long history of spot and futures trading on the 
Warsaw Stock Exchange. But, we cut the dataset at the end of the February 2008 
in order to compare our results of model comparison with those presented in 
a much simpler model setting by Pipień (2010). 

Another reason to focus on the considered time series is that possible 
empirical importance of copula function in sampling model received so far 
attention only during the financial crisis. There is vast literature suggesting 
that during last global financial crisis, the dependence between financial time 
series become very complicated and nonstandard. Hence, many authors clearly 
indicated that copula functions are a promising tool in modelling time series 
during crises and market crashes; see Bradley and Taqqu (2004), Rodriguez (2007), 
Patton (2009). However, there is a little evidence in favour of the existence of 
nonlinear dependence prior to the latest financial crisis.Consequently, we did not 
updated our dataset and focus on the pre-crisis period. The empirical importance 
of copula construct in the sampling model presented in this paper will be much 
greater, if the data support will be obtained on the basis of the time series that 
ends before global financial crisis.
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Table 1 presents the results of model comparison. We considered 12 compet-
ing specifications, imposing 5 different copula functions (Normal, Clayton, Frank, 
Plackett and Gumbel) and no copula function. In all cases respectively, we con-
sidered existence of orthogonal transformation against conditional distribution 
with marginal densities for both series defined as simply skewed Student-t dis-
tribution. We denote by H1 the subset of models with orthogonal transformation 
included, while by H0 a class of Copula-BEKK models with no free coordinates 
in the conditional distribution. In Table 1 we put decimal logarithms of the mar-

 27 
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first and second quarter of the Cartesian product, as compared with relative stronger 
concentration of daily returns of spot and futures quotations with different sing at the same 
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Warsaw Stock Exchange. But, we cut the dataset at the end of the February 2008 in order to 
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Figure 1. The plot of the daily returns on WIG20 (vertical coordinate) and on FWIG20 (horizontal 
coordinate) from 21.12.1999 till 27.02.2008; t=2053 observations. 

 

Descriptive statistics 

 WIG20 FWIG20 

Mean 0.0215 0.0284 

Std. 
Dev. 1.557 1.579 

Skew 0.1612 0.1149 

Kurt 4.5503 4.8788 

Max 7.3724 9.8815 

Min -6.3286 -7.7057 

Correlation 0.3738 
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Figure 1. The plot of the daily returns on WIG20 (vertical coordinate) and on FWIG20 (horizontal 
coordinate) from 21.12.1999 till 27.02.2008; t=2053 observations.

Table 1

Decimal logarithms of the marginal data density values in all competing specifications,  
and of the Bayes factor in favour of the existence of orthogonal component in model

Copula function 
applied in sampling 

model

Orthogonal 
component included

(H1)

No orthogonal 
component

(H0)

Bayes factor in favour 
of model from H1 

against model from H0

No Copula -2974.9263 -2977.5126 2.5863

Normal -2971.2150 -2976.2267 5.0117

Clayton -2972.2007 -2977.7896 5.5889

Frank -2970.3253 -2973.0979 1.7726

Plackett -2966.0346 -2968.1112 2.0766

Gumbel -2973.3153 -2975.0409 4.1973
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ginal data density values in case of all models, and also decimal logarithms of 
Bayes factors in favour of the existence of orthogonal component. The results 
clearly indicate the empirical importance of copula functions in sampling model.  
The model without the construct receives a little data support in both subsets H1 
and H0 invariantly within H1 and H0 subset. The greatest data support both, in 
case of H1 and H0, receives model with Plackett copula incorporated in sampling 
function. 

Another interesting issue concerning model comparison is that orthogonal 
component always improves the explanatory power of models. In case of no 
copula sampling models, and also for all copula functions, decimal logarithm 
of the Bayes factor against pure Copula-BEKK specification is greater than one, 
indicating in most cases the decisive support of this component in the sampling 
model. This result seems to be invariant with respect to all remained parts of the 
sampling model, and was suggested previously by Pipień (2010). Table 2 presents 
the results of posterior inference about tail parameters in all models. We focus on 
posterior mean and standard deviations of the degrees of freedom parameters of 
the conditional distributions of univariate series. Within subsets of models H1 and 
H0, the inference about the tails of the conditional distribution is relatively the 
same. In case of models, where orthogonal component excluded in the sampling 
model, posterior means of parameters o1 and o2 indicate that the conditional 
distribution is not of Gaussian type, however the posterior uncertainty, as 
measured by the posterior standard deviation, does not preclude strongly 

Table 2 

Posterior inference about tails of the conditional distribution in all competing specifications

Copula function 
applied in sampling 

model

Orthogonal component included
(subclass of models H1)

No orthogonal component
(subclass of models H0)

No Copula o1 5.64 (1.03)
o2 18.93 (3.45)

o1 7.49 (1.98)
o2 10.85 (1.98)

Normal o1 6.94 (1.26)
o2 18.37 (3.40)

o1 7.49 (1.35)
o2 10.84 (1.97)

Clayton o1 5.77 (1.05)
o2 19.13 (3.49)

o1 7.25 (1.32)
o2 11.00 (2.01)

Frank o1 6.93 (1.27)
o2 19.65 (3.59)

o1 8.57 (1.59)
o2 11.42 (2.08)

Plackett o1 6.61 (1.21)
o2 18.95 (3.43)

o1 8.82 (1.61)
o2 12.00 (2.20)

Gumbel o1 5.51 (1.01)
o2 19.34 (3.55)

o1 7.46 (1.33)
o2 10.36 (1.83)
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the same type of tail behaviour for both coordinates. If we include orthogonal 
transformation in sampling model, the posterior inference changes substantially, 
but in the same way in case of all copula functions and also in no-copula case. 
If we consider the mechanism that enables search for a set of coordinates, along 
which possible heavy tails and asymmetry can be modelled, the results of 
estimation of the properties of the conditional distribution in tails are changing. 
In all cases in subset H1, invariantly with respect to the type of copula function, 
tails of the conditional distribution of univariate coordinates are different. The 
data clearly support heavy tails for the first coordinate, while the second one 
exhibit the Gaussian type tails.

In order to illustrate changes in conditional distribution, when orthogonal 
mechanism is included in the sampling model, we plotted the isodensities of zj 
in case of models from subset H0 (Table 3) and isodensities of a random variable 
H(y~)`zj in case of models from subset H1 (Table 4). All parameters required to 
draw the plots we chosen as posterior means. On the plots in Table 3 and 4, we 
draw vectors representing coordinates appropriate in sampling models. In case 
of models from subset H0 we draw vectors proportional to the vectors from 
canonical basis in R2, namely e1=(10,0) and e2=(0,10). In case of model from H1 
(Table 4) a set of coordinates are subject to posterior inference and hence we 
present posterior means, together with the bands of the 95% HPD (Highest 
Posterior Density) intervals for H(y~)`e1 and H(y~)`e2 respectively.

Analysing isodensities plotted in Table 3 and 4 it is clear that the data support 
different directions, than canonical, along which heavy tails and possible 
asymmetry can be modelled. Copula functions change the shape of isodensities 
strongly. However the most important feature of the sampling model seems to be 
the existence of the orthogonal mechanism changing coordinates. Only in case 
of models from subset H1, a more complicated dependence between observed 
time series can be discovered, as the shapes of isodensities in Table 4 exhibit 
considerable excess from regular “elliptical” shape. For models from subset H0, 
without orthogonal mechanism, differences between shapes of isodensities of the 
distribution of zj are rather minor among models. New, estimated, directions in 
the sampling models from subset H1 (Table 4) are different from initial, canonical, 
ones. Taking into account dispersion of the posterior distribution, the bands of 
the HPD intervals for H(y~)`e1 and H(y~)`e2 are located far away from the case, 
where H(y~)=I2. This clearly makes models without orthogonal component 
improbable in the view of the data. Additionally, changing directions in models 
from subset H1 is nontrivial and does not only involve rotation. Comparing 
vectors e1 and e2 with its corresponding images, we see that canonical basis is 
subject to inversion and then to appropriate clock-wise rotation. This is due to 
the properties of the Householder reflections applied in the construct. It enables 
to search for optimal orientation in a more composed way. 
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A very important question concerning discussed empirical analysis 
involves possible conclusions about changes of the linear dependence between 
modelled univariate series, when orthogonal component and copula function is 
incorporated. In Table 5 we present plots of posterior expectations of conditional 
correlations between returns of spot and futures quotations of WIG20. Since 
the results are practically the same in case of all pairs of models, we focus our 
attention on the best models in H1 and H0 respectively, both based on Plackett 
copula function. In case of the best model from the set H1 the variability of the 
conditional correlation coefficient seems to be only slightly less variable during 
the whole time interval covering modelled time series.

Existence of orthogonal mechanism in sampling model does not seem to 
influence the dynamics of conditional linear dependence strongly. Both series of 
posterior expectations exhibit the same dynamic pattern, with strong variability 
around value 0.4, starting from August the 1st 2001, when Warsaw Stock Exchange 
quoted WIG20 index officially for the first time. 

6. CONCLUDING REMARKS

The main goal of this paper was to check the empirical importance of some 
generalisations of the conditional distribution in M-GARCH case. We considered 
copula M-GARCH model with coordinate free conditional distribution. We 
continue research concerning specification of the conditional distribution in 
multivariate volatility models started by Pipień (2007, 2010). The main advantage 
of the proposed family of probability distributions is that the coordinate axes, 
along which heavy tails and symmetry can be modelled, are subject to statistical 
inference. Along a set of specified coordinates both, linear and nonlinear 
dependence can be expressed in formal and composed form.

In the empirical part of the paper we considered a problem of modelling the 
dynamics of the returns on the spot and future quotations of the WIG20 index 
from the Warsaw Stock Exchange. On the basis of the posterior odds ratio we 
checked the data support of considered generalisation, comparing it with BEKK 
model with the conditional distribution simply constructed as a product of the 
univariate skewed components. 

Our example clearly showed the empirical importance of the proposed class 
of the coordinate free conditional distributions. Both, orthogonal component, and 
copula function, are necessary in proper modelling of the conditional distribution 
of the vector financial returns. The existence of the orthogonal transformation 
of coordinates in observation space receives decisive data support invariantly 
with respect to the existence copula function in the sampling model and to the 
type of specified copula. The dataset support much different orientation in the 
sample space along which heavy tails, asymmetry and dependence between 
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coordinates, can be discovered. Among the class of copula function Plackett one 
received the greatest data support. Generally, presented in the empirical part of 
the paper noticeable flexibility of the class in directional modelling of the tails 
and asymmetry suggests that possible applications, concerning futures hedging 
or Value-at-Risk calculation, are very promising.
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