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Abstract—This article deals with the noise detection of discrete 

biosignals using an orthogonal wavelet packet. In specific, it 

compares the usefulness of Daubechies wavelets with different 

vanishing moments for the denoising and compression of the 

digitalised biosignals in case of surface electromyography 

(sEMG) signals. The work is based upon the discrete wavelet 

transform (DWT) version of wavelet package transform (WPT). 

A noise reducing algorithm is proposed to detect unavoidable 

noise in the acquired data in a model independent way. The noise 

of a signal sequence will be defined by a seminorm. This method 

was developed for a possible observation during a fracture 

healing period. The proposed method is general for signal 

processing and its design was based upon the wavelet packet. 

 
Keywords—noise detection, wavelet packet transform, wavelet 

analysis, Daubechies wavelet, linux-based embedded system, 

ARM processor platform 

I. INTRODUCTION 

AVELETS are used in a wide range of applications for 

biomedical signal and image processing and in the 

fields of electrocardiography, electroencephalography, and 

electromyography, as well as for the algorithms for magnetic 

resonance imaging or positron emission tomography applied 

in biomedical image processing [1]. The control of active 

prostheses for human limbs with algorithms for classification 

and reliable signal pattern recognition is another important 

field of application [2]. This article presents a wearable 

embedded system to observe the activity of an injured forearm 

during rehabilitation, including the feedback which is not 

detectable by an accelerometer. The aim is to record the 

movements of the extremity, which is stabilized in a reusable 

orthosis. Therefore, a wearable measurement system was 

constructed to detect the biosignals [3] and [4]. In general, the 

sEMG signal provides information about the performance of 

muscles and nerves [5], [6], also in the context of neurological 

diagnosis of myopathies and neuropathies. 

Signal and data conditioning followed using wavelets for 

active denoising and data compression. This focuses upon on a 

portable Linux-based embedded system together with the use 

of Haars and Daubechies wavelets within the context of the 

digitalization of sEMG signals [7]. More specifically, it 

compares the usefulness of Daubechies wavelets with 

different vanishing moments for the denoising and 
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compression of the digitalised biosignals. In [8], the 

calculation of the signal projection coefficients based on the 

signal interpolation is proposed by means of cubic B-splines. 

A noise reducing algorithm is proposed to detect 

unavoidable noise in the acquired data. With the help of a 

seminorm the noise of a sequence is defined. Using this norm 

it is possible to rearrange the wavelet basis, which can 

illuminate the differences between the coherent and incoherent 

parts of the sequence, where incoherent refers to the part of 

the signal that has either no information or contradictory 

information. 

The structure of the contribution is the following. Section II 

devoided some background aspects of the orthogonal wavelets 

in context of the vanishing moment and the computation. 

Section III presents a wavelet based denoising algorithm and 

describes it in a graphical and in an analytical way. Before the 

conclusion, the measurement procedure is shown in Section 

IV. The implementation in a Linux-based embedded system 

and its validation in a case study through simulations is 

presented in V. 

 
MAIN NOMENCLATURE 

 

𝑏: frequency-dependent parameter 

𝑐𝑛: wavelet coefficients 

𝐷𝑏: Daubechies wavelet index 

𝐷: wavelet tree depth 

𝑑: index scale 

𝑒(𝑡): noise 

𝐼: interval of time 

𝑘: time-dependent parameter 

ℒ(𝜔): trigonometric polynomial 

𝑚0(𝜔): generating function 

𝑁: vanishing moment 

𝑛: samples 

𝑦(𝑡): biosignal 

𝑃𝑁(𝜔): polynomial 

𝑠(𝑑,𝑏,𝑘): wavelet coefficient 

𝑉: vector space 

𝑤𝑝(𝑑,𝑏,𝑘): wavelet coefficient tree 

𝜆: scalar 

𝜓𝑛(𝑡): wavelet family 

𝑧: discrete complex variable 

𝜔: angular frequency 
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Fig. 1. Input-signal and the wavelet coefficients in a tree-like structure with the scale index d, the time translation parameter parameter k and different values of 
the phase parameter b 

 

II. ORTHOGONAL WAVELET PACKET TREE 

A. Haars wavelet 

One of the first orthogonal wavelets was the Haars wavelet. In 

this case very short discrete signals can been used, following 

the example of [9]. To give a concise overview on the Haar 

wavelet a function 

 

𝜓
(𝑑,𝑏,𝑘)

(𝑡) = 𝜓
𝑏

(2𝑑𝑡 − 𝑛) (1) 

 

is considered with a support of size 2−𝑑 of the Nyquist 

frequency. For the two properties of the Haar basis follows: 

 

 the 𝜓(𝑑,𝑏,𝑘)
ℎ (𝑡) are orthonormal; 

 

 any ℒ2(ℝ) function 𝑓(𝑡) can be approximated, up to 

arbitrarily low precision, by a finite linear 

combination of the 𝜓(𝑑,𝑏,𝑘)
ℎ (𝑡). 

 

The weighted coefficients 𝑤𝑝(𝑑,𝑏,𝑘) are calculated as follows 

 

𝑤𝑝(𝑑,𝑏,𝑘) = ∫𝑓(𝑡)
𝐼

𝜓(𝑑,𝑏,𝑘)
ℎ (𝑡)𝑑(𝑡). (2) 

 

For 𝑏 = 0 it is possible to define the following coefficients 

 

𝑠(𝑑,0,𝑘) = ∫ 𝑓(𝑡)𝜓(𝑑,0,𝑘)
h (𝑡)𝑑(𝑡)

 

𝐼

, (3) 

 

where 𝐼 is the considered interval of time, 𝑓(𝑡) is the required 

signal, and 𝜓(𝑑,0,𝑘)
ℎ (𝑡) is the mother function of Haars wavelet 

[10]. To conclude 

 

𝑓(𝑡) = ∑ 𝑠(𝑑,𝑛)𝜓(𝑑,0,𝑘)
ℎ (𝑡)

 

𝑘

+ ∑ ∑ 𝑤𝑝(𝑑,𝑏,𝑘)𝜓(𝑑,𝑏,𝑘)
ℎ

𝑘𝑏

, (4) 

 

where 𝑠(𝑑,𝑘) = 𝑤𝑝(𝑑,0,𝑘). The Haar functions are identified 

using the parameter tuple, (𝑑, 𝑏, 𝑘), here 𝑑 = 1 represents the 

highest degree of refinement with respect to time. The wavelet 

packets "MakeWaveletPacket", which comes from the 

Wavelab Version 850 of  Stanford University [11], is 

represented by the indixes (𝑑, 𝑏, 𝑘). Figure 1 shows the 

corresponding tree with the wavelet coefficients, described by 

𝑤𝑝(𝑑,𝑏,𝑘). It represents the contribution of each of the wavelets 

to the signal based on 𝑛 samples. The notation 𝑤𝑝(1,0,0,…,
𝑛

2
−1) 

denotes the coefficients on the first level on the left with time 

shifts 0 through 
𝑛

2
− 1. 

B. Daubechies wavelet 

An established methods for sEMG signal analysis is the 

Daubechies (Db) wavelet, which is used in [12], [13], [14]. 

The computation of the Daubechies wavelet require a 

polynomial with binomial coefficients as follows 
 

𝑃𝑁(𝑡) = ∑ (
𝑁 − 1 + 𝑘

𝑘
) 𝑥𝑘

𝑁−1

𝑘=0

, (5) 

 

where 𝜓𝐷𝑏  has 𝑁 vanishing moments. For the response of 

time and frequency for the Daubechies wavelet, it also needs a 

trigonometric polynomial, as shown below 
 

ℒ(𝜔) = ∑ 𝑏𝑘 ⋅ 𝑒−𝑗𝑘𝜔

𝑛

𝑘=0

. (6) 

 

The generating function, also known as transfer function is 

defined as follows 

 

𝑚0(𝜔) = (
1 + 𝑒−𝑗𝜔

2
)

𝑁

 ℒ(𝜔), (7) 

 

being 𝑚(𝜔) defined as 

 

𝑚(𝜔) =
1

√2
∑ 𝑐𝑛 ⋅ 𝑒−𝑗𝑛𝜔

∞

−∞

. (8) 

 

Ingrid Daubechies was the first to construct compactly 

orthogonal wavelets with a modifiable degree of smoothness. 

This smoothness is based on the quantity of coefficients and is 

connected to the level of the vanishing moment 𝑁. According 

to the references of Daubechies in Chapters 6 and 7 in [15], a 

vanishing moment can be described by the following relation 
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∫ 𝑥𝑛𝜓(𝑡)𝑑𝑡 = 0, 𝑛 = 0, 1, … , 𝑁 − 1. (9) 

 

Using the relationship between (7) and (8), it is possible to 

calculate the wavelet coefficients 𝑐𝑛. According to (5) and (6), 

for a vanishing moment of 𝑁 = 1, the polynomial can be 

expressed as follows 

 

𝑃1(𝑡) = ∑ (
𝑘
𝑘

) 𝑥𝑘 = 1

0

𝑘=0

, (10) 

 

and the trigonometric polynomial is defined as 

 

ℒ(𝜔) = ∑ 𝑏𝑘

0

𝑘=0

⋅ 𝑒−𝑗𝑘𝜔 = 1. (11) 

For the generating function with (7) it follows that 

 

𝑚0(𝜔) =
1

2
(1 + 𝑒−𝑗𝜔). (12) 

 

Based on (12), the Daubechies wavelet behaves like a Haars 

wavelet in the frequency domain with a vanishing moment of 

𝑁 = 1. According to (5) and (6), for a vanishing moment of 

𝑁 = 2 the following polynomial is obtained 

 

𝑃2(𝑡) = ∑ (
1 + 𝑘

𝑘
)

1

𝑘=0

𝑥𝑘 = 1 + 2𝑥, (13) 

 

 

 

combined with 

ℒ(𝜔)ℒ(−𝜔) = ∑ 𝑏𝑘 ⋅ 𝑒−𝑗𝑘𝜔

𝑛

𝑘=0

= 2 −
1

2
(𝑒𝑗𝜔 + 𝑒−𝑗𝜔). (14) 

 

Substitute (8) in (6) and if (14) 𝑧 = 𝑒−𝑗𝜔 it follows that 

 

𝑃2(𝑧) =
1

2
∑ 𝑎|𝑘|𝑧

1+𝑘
1

2
(−1 + 4𝑧 − 𝑧2)

1

2
 (𝑧 − (2 + √3)) (𝑧 − (2 − √3))

1

𝑘=−1

. (15) 

 

The square root of (15) is 

 

√
1

2
(|−1|)

1

2 + √3 
=

1

√2
 √2 − √3 (𝑧 − (2 + √3))

1

2
 (√3 − 1) (𝑧 − (1 + √3)). (16) 

 

The expression (16) must have the value of 1 at 𝑧 = 1 or equivalently at 𝜔 = 0. It follows for the generation function in (8) that 

 

𝑚0(𝜔) = (
1 + 𝑒−𝑗𝜔

2
)

2
1

2
((1 − √3)𝑒−𝑗𝜔 + (1 + √3))

1

√2
 (

1 + √3

4√2
+

3 + √3

4√2
 𝑒−𝑗𝜔

3 − √3

4√2
 𝑒−2𝑗𝜔 +

1 − √3

4√2
 𝑒−3𝑗𝜔). (17) 

  

 

Considering (17) for the implementation, the Daubechies 

wavelet coefficients with 𝑁 = 2 becomes as follows 
 

𝑐0 =
1

4√2
(1 + √3), 𝑐1 =

1

4√2
(3 + √3),

𝑐2 =
1

4√2
(3 − √3), 𝑐3 =

1

4√2
(1 − √3).

 (18) 

III. AXIOMATIC SEMINORM WAVELET FOR A DENOISING 

METHOD 

A. Seminorm 

Definition 1:  A observed sequence is defined as 
 

𝑦(𝑡) = 𝑥(𝑡) + 𝑒(𝑡). (19) 

 

The incoherent part of the sequence 𝑦(𝑡) at every level 𝑑 of 

the packet tree is defined as 
 

𝑒(𝑡) = ∑ ∑ 𝑤𝑝(𝐝∗, 𝐛∗,𝑘)𝜓(𝐝∗, 𝐛∗,𝑘)(𝑡)

2𝐷−𝑑

𝑘=0

 

(𝐝∗, 𝐛∗)

, (20) 

 
where if a specified length 𝑛 (dynadic length) is considered to 
determine the height of the wavelet tree 𝐷 = log2(𝑛) and the 
selected wavelets are characterised by the indixes (𝐝∗,  𝐛∗) 
such that 
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{(𝐝∗,  𝐛∗)} = arg (𝑚𝑖𝑛
(𝑑,𝑏)

| ∑ {𝑤𝑝(𝑑,𝑏,𝑘)}

2𝐷−𝑑

𝑘=0

| : {0 ≤ 𝑘 ≤ 2𝐷−𝑑, 0 < 𝑏 ≤ 2𝑑 − 1, ∀𝑑 ∈ ℕ}). (21) 

 
Being based on the expected signal noise considered in Def. 1, a seminorm is licit to be contemplated in order to discern the 
subspace which characterises noise 𝑒(𝑡). Here the definition of a seminorm is reported as it is well known from the literature. 
 
Definition 2: Let 𝐕 ∈ ℝ𝑛 be a vector space and if function 𝑝 = ‖𝜈‖: ℝ𝑛 → ℝ+ satisfies all the following conditions for all 𝜈 ∈ 𝐕 

and any scalar 𝜆, then function ‖𝜈‖ represents a seminorm for the vector 𝐕: 
 

‖𝜈‖ > 0,  for all   𝜈 ∈ 𝐕  (positivity), (22) 
 

‖𝜆 ∙ 𝜈‖ = |𝜆| ∙ ‖𝜈‖,  with  𝜆 ∈ 𝔽  and  𝜈 ∈ 𝐕  (absolute homogeneity) (23) 
 
and 
 

‖𝜈1 + 𝜈2‖ ≤  ‖𝜈1‖ + ‖𝜈2‖,  with  𝜆 𝜈 ∈ 𝐕  (subadditivity). (24) 
 
 
According to Def. 2 function 
 

𝑝(𝑤𝑝(𝑑,𝑏,𝑘)) = | ∑ {𝑤𝑝(𝑑,𝑏,𝑘)}

2𝐷−𝑑

𝑘=0

|, (25) 

 
is a seminorm where 𝑤𝑝(𝑑,𝑏,𝑘) are the wavelet coefficients for 

each of the packets (𝑑, 𝑝, 𝑘) defined above. Function 

𝑝(𝑤𝑝(𝑑,𝑏,𝑘)) satisfies the positivity, absolute homogeneity and 

subadditivity properties, not satisfiying however the separation 

property required as a norm. 𝑝(𝑤𝑝(𝑑,𝑏,𝑘)) = 0 does not have 

to imply necessarily that the sequence (vector) 𝑤𝑝(𝑑,𝑏,𝑘) = 0. 

According to Def. 1 the noise is definded as that part of the 
signal which consists eather small or opposite terms. So using 
this norm, that incoherent part of the signal which comes from 
the oscillating components can be recognised by just looking 
at the minimum of this seminorm. In other words, the 
separation subspace in the field characterised by the tree of 
coefficients 𝑤𝑝(𝑑,𝑏,𝑘) ∀𝑑, 𝑝, 𝑘 is exactly the subspace of the 

noise. 
 

B. Description of the algorithm and Signal cleaning 

procedure 

Figure shows 2 the flow chart of the algorithm, which works 

in the following way. The main idea is to compare the defined 

axiomatic seminorm of the signal decomposition between 

fathers and sons throw the tree. Starting in the second level of 

the tree 𝑑 = 2 the algorithm looks for the minima. Ones its 

founded, the algorithm consiters the sum of the seminorm of 

the sons in level 𝑑 = 3. If sum is less than the seminorm 

calculated at the father level 𝑑 = 2, then the noise is located in 

the sons. If not, the noise is localised in the subspace of the 

father. Given the sampled biosignal 

 Step 1: Specify dyadic length, 𝑛, in order to determine the 

height of the wavelet tree: 𝐷 = log2(𝑛). 

 Step 2: Construct the wavelet coefficient tree 𝑤𝑝(𝑑,𝑏,𝑘) for 

every 𝑑, 𝑏 > 0 and for every 𝑘. 

 Step 3a: For all time-frequency intervals such that 

𝑏 = 1, 2, . . 2𝑑 − 1 with 𝑑 > 1, calculate the absolute 

value of the ∑  𝑘 for all time-frequency intervals of the 

tree, that is, 𝑊 𝑠𝑢𝑚(𝑑, 𝑏) = |∑ 𝑊(𝑑, 𝑏)𝑘 |. 

 Step 3b: For every "wavelet father" 𝑊(𝑑, 𝑏) at the node 

(𝑑, 𝑏) with 𝑏 > 0, calculate its left child at the node 

(𝑑 + 1, 𝑏𝐿𝑒𝑓𝑡) and its right child (𝑑 + 1, 𝑏𝑅𝑖𝑔ℎ𝑡). Then, 

calculate the absolute value of the sum with respect to 𝑘 

and denote them as 

 

𝑊 𝑠𝑢𝑚𝐶𝑖𝑙𝑑𝐿𝑒𝑓𝑡 = |∑ 𝑊 𝑠𝑢𝑚(𝑑, 𝑏𝐿𝑒𝑓𝑡)

𝑘

| (26) 

 
and 

 

   𝑊 𝑠𝑢𝑚𝐶𝑖𝑙𝑑𝑅𝑖𝑔ℎ𝑡 = |∑ 𝑊 𝑠𝑢𝑚(𝑑, 𝑏𝑅𝑖𝑔ℎ𝑡)

𝑘

|. (27) 

 
While (𝑑 > 𝐷) 
   For 𝑏 = 1: 2𝑑 − 1 
      If 
 

𝑊 𝑠𝑢𝑚(𝑑, 𝑏) ≤ 𝑊 𝑠𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝐿𝑒𝑓𝑡 + 𝑊 𝑠𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝑅𝑖𝑔ℎ𝑡 
 

W𝑏(𝑑∗, 𝑏∗) = 𝑎𝑟𝑔 (𝑚𝑖𝑛
(𝑑,𝑏)

𝑊 𝑠𝑢𝑚(𝑑, 𝑏)) 

 
      else 

 

W𝑏(𝑑∗, 𝑏∗) = 𝑎𝑟𝑔 (𝑚𝑖𝑛
(𝑑,𝑏)

𝑊 𝑠𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝐿𝑒𝑓𝑡) 

 

W𝑏(𝑑∗, 𝑏∗) = 𝑎𝑟𝑔 (𝑚𝑖𝑛
(𝑑,𝑏)

𝑊 𝑠𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝑅𝑖𝑔ℎ𝑡) 

 
      End If 
   𝑬𝒏𝒅 𝒃 𝒍𝒐𝒐𝒑 
𝑬𝒏𝒅 𝑾𝒉𝒊𝒍𝒆 − 𝒅 𝒍𝒐𝒐𝒑 

 

 Step 4: Reconstruct the noise: 
 

𝑒(𝑡) = ∑ ∑ 𝑤𝑝(𝐝∗,𝐛∗,𝑘)𝜓𝑝(𝐝∗,𝐛∗,𝑘)(𝑡)

2𝐷−𝑑

𝑘=0(𝐝∗,𝐛∗) ∈ 𝐖𝑏

. (28) 
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and reconstruct the denoised signal 

𝑦𝑑(𝑡) = 𝑦(𝑡) − ∑ ∑ 𝑤𝑝(𝐝∗,𝐛∗,𝑘)𝜓𝑝(𝐝∗,𝐛∗,𝑘)(𝑡)

2𝐷−𝑑

𝑘=0(𝐝∗,𝐛∗) ∈ 𝐖𝑏

. (29) 

 

IV. METHODOLGY AND EMBEDDED SYSTEM 

A. Biosignal processing 

Figure 3 shows the general block diagram of the portable 
Linux based embedded system with the standard interfaces 
and corresponding components, which works like a signal 
processing module. The system based on the Broadcom 
BCM2836 system on a chip (SoC) and has a quad-core ARM 
Cortex-A7 central processing unit (CPU) with a VideoCore IV 
dual-core graphics processing unit (GPU). The used Linux 
kernel for the operating system based on the ARM hard-float 
(armhf) Debian architecture. Using Ag/AgCl pH electrodes 
the amplifier stage of the four channel sEMG measurement 
system is comprised of low noise differential preamplifiers for 
the sEMG signals with integrated analog signal processing 
module (ASP). 

Fig. 4. General block diagram of the analog- and digital sEMG 

signalprocessing of the linux based embedded system 

B. Data acquisition 

Figure 5 shows the removable and flexible forearm orthoses 
with the Linux embedded measurement system. This medical 
device consists of an inner terry cloth sleeve for comfort and 
hygiene and a vacuum cushion containing soft beads 
supported by a orthosis that can be adjusted to hold the hand at 
different positions or to allow motion. The muscle activity 
during defined motions of the extremity while holding a 2 kg 
dumbbell was recorded. These motions flexed musculus 
biceps brachii, flexor digitorum profundus, extensor 
digitorium communis and flexor digitorium superficialis. 

 
 

Fig. 5: Depiction of measurement system and portable Linux based embedded 
system 

V. VALIDATION AND CASE STUDY 

To compare the results obtained by Haar and Daubechies 

wavelets with different vanishing moments, the same 

seminorm used for the localisation of the noise is adapted to 

define the error 
 

𝐸𝑟𝑟𝑜𝑟 = |∑ 𝑥(𝑘) − 𝑦𝑑(𝑘)

𝑛

𝑘=1

|. (30) 

 
Figure 6 shows the graphical representation of the test square 

wave signal with known Gaussian noise. The reconstruction 

based on different vanishing moments of the square wave 

signal, which are presented in Fig. 7. The recordered motion 

and activity of musculus biceps brachii is shown in Fig. 8 and 

also its reconstruction based on Haars wavelet is presented. 

Figure 9 shows the same biosignal with the Daubechies 

wavelet and vanishing moment 𝑁 = 2. More in detail present 

Fig. 10 the results of the reconstruction based on m. biceps 

brachii using different vanishing moments. Figure 11 and Fig. 

12 show the graphical representation in form of stairs plots 

and compare the sEMG reconstruction of M. extensor 

digitorum communis. After the analysis of the differen 

vanishing moments it results, that the different errors are quite 

close and offer the similar quality of approximation. 
 

Fig. 6. Depiction of test square wave signal with Gaussian noise 

VI. CONCLUSION 

This contribution deals with the noise detection of discrete 

EMG signals using an orthogonal wavelet packet. More 

specifically, it compares the usefulness of Daubechies 

wavelets with different vanishing moments based on the 

discrete signals. new denoising procedure is proposed and 

validated by computer simulations by using GNU Octave and 

MATLAB/ /SIMULINK. The wavelet architecture based on 

the Wavelab Version 850 library of the Stanford University 

(USA). Due to the general structure of the proposed 

procedure, further work shute applications in difference 

scientific fields in the context of noise detection or vibrations 

recognition are going to be studied. 
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Fig. 7. Graphical representation of reconstruction of the square wave signal 
with different vanishing moments of Daubechies wavelet 

 
 

Fig. 8. Reconstruction of the m. biceps brachii signal using Haars wavelet 

 

Fig. 9. Reconstruction of the m. biceps brachii signal using Daubechies 

wavelet with vanishing moment 𝑁 = 2 

Fig. 10. Reconstruction of the m. biceps brachii signal using Daubechies 
wavelet with different vanishing moments 

 
 

Fig. 11. Stairs plot of discrete sEMG signal using Haars wavelet 

 

Fig. 12. Stairs plot of discrete sEMG signal using Daubechies wavelet 
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