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ABSTRACT

The aim of this work is the use of bootstrap methods for assessing of returns and risk of stock 
described by a small-to-moderate time series data. The paper presents the possibility of using 
bootstrap for testing the selected ICAPM application. We estimate systematic risk and risk 
premium components, depending on the fundamental risk factors. We compare bootstrap and 
classical asymptotic GLS results. 
 The authors analyze quarterly returns of stocks listed on Warsaw Stock Exchange in 
1995–2010. The full-sample observations are divided into two separate sub-periods: 1995–2004, the 
years preceding Poland’s accession to the EU, and 2005–2010, the years of Poland’s membership 
in the UE.
 The components of risk premium change in the second sub-period. Also, we test the 
multifactor-effi ciency (ME) of the generated portfolios. GRS and asymptotic Wald tests reject 
ME. However, the bootstrapped Wald test does not reject ME for the tested cases. Using the 
tested ICAPM application to forming ME portfolios makes it possible to offer a number of useful 
guidelines for portfolio managers.

STRESZCZENIE

S. Urbański, J. Leśkow. Nowa aplikacja ICAPM do wieloczynnikowej wyceny akcji z zastosowaniem metod 
bootstrap. Folia Oeconomica Cracoviensia 2014, 55:  15–33.

Celem niniejszej pracy jest zastosowanie metod bootstrap do oszacowania stóp zwrotu i ryzyka 
akcji opisanych krótkimi szeregami czasowymi. Artykuł prezentuje możliwość zastosowania 
metod bootstrap do testowania wybranej aplikacji ICAPM. My szacujemy składowe ryzyka syste-
matycznego i premii za ryzyko, w zależności od fundamentalnych czynników ryzyka. Porównu-
jemy wyniki otrzymane metodami bootstrap i klasyczną uogólnioną metodą najmniejszych kwa-
dratów. 
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Analizie poddajemy kwartalne stopy zwrotu akcji notowanych na Giełdzie Papierów Warto-
ściowych w Warszawie w latach 1995–2010. Wszystkie obserwacji dzielimy na dwa podokresy: 
1995–2004 (okres poprzedzający wejście Polski do Unii Europejskiej) oraz 2005–2010 (okres człon-
kostwa Polski w Unii Europejskiej). Składowe premii za ryzyko ulegają zmianie w drugim pod-
okresie. My testujemy również wieloczynnikową efektywność (ME) generowanych portfeli. Test 
GRS oraz asymptotyczny test Walda odrzuca ME. Natomiast bootstrapowy test Walda, w żadnym 
badanym przypadku nie odrzuca ME. 
 Zastosowanie testowanej aplikacji ICAPM do budowy portfeli wieloczynnikowo efektywnych 
pozwala na wyciągnięcie wielu użytecznych wskazówek dla zarządzających portfelami inwesty-
cyjnymi. 
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INTRODUCTION

Testing the stock pricing that could be observed in the conditions of ICAPM vali-
dity can be referred to an analysis of multifactor-effi ciency (ME) of a given port-
folio. For this purpose, you can use the Wald statistics of the asymptotic distribu-
tion 2. 

Wald test tends to over-reject the ME portfolio hypothesis (see Chou and 
Zhou (2006), p. 221) for fi nite samples. However, a small-sample case can be ana-
lyzed with the use of the GRS test —  see Gibbons et al (1989) — on condition 
of the normality of the sample. Therefore, for non-normal small samples one 
should consider alternative scenarios like the bootstrap method. One of the 
purposes of this article is to show the validity of such an approach.

The Wald test can be applied for large samples and under the assumption 
of independence. However, the ICAPM applications in emerging markets can be 
tested with the help of samples of a small-to-moderate size for which only iid 
conditions can be assumed, but normality is usually rejected. One never knows 
what is the true distribution of the returns, therefore there is a need to consider 
good approximations. 

Contemporary statistical inference provides resampling and bootstrap meth-
ods to create confi dence intervals for cases of small non-normal samples. Recent 
research provides also resampling tools for time-series data. For more informa-
tion, the reader is referred to Leśkow et al (2008, 2014). Chou and Zhou (2006) 
present the possibility of using the bootstrap method to test the ME of Fama–
French (FF) portfolios and the portfolio representing the CRSP index for the 
U.S. market. Research works on testing the classic Capital Asset Pricing Model 
and other studies on the Polish market are presented, among others, by Osińska 
and Romański (1994), Jajuga (2000), Bołt and Miłobędzki (2002), Osiewalski and 
Pipień (2004), Gurgul and Majdosz (2007) and Zarzecki et al. (2004–2005).
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In this work we test the application of the ICAPM for the Warsaw Stock 
 Exchange (WSE) data in 1995–2010. The above approach was proposed by 
Urbański (2011). We use bootstrap procedures in stock pricing simulated by the 
aggregated three-factor model. 

The aim of our research is to consider an approach for pricing of stocks, de-
termined by the assessment of the systematic risk and risk premium components. 
As a result, the multifactor effi ciency of the tested portfolio can be evaluated.

Section 1 discusses theoretical methods for testing the multifactor-effi ciency 
of a given portfolio. Section 2 proposes the possible use of the bootstrap method 
in fi nance. Section 3 presents several procedures for data preparation in order to 
use the studied algorithms. Section 4 shows the results of calculations. Section 5 
includes a summary and conclusions. 

1. MULTIFACTOR-EFFICIENCY RESTRICTIONS

Multifactor application of stock pricing in light of the ICAPM can be described by 
the following equation:

 )()( tt fERE ,  (1)

where )',...,,...,( 1 Ntittt rrrR   is N-vector of the excess returns over the risk-free 
rate on stock i in period t, )',...,,...,( 1 Ni  and ft is the k-vector of factors.

Portfolios satisfying the equation (1) are ME. A statistical model testing 
a general form of the ICAPM can be described by the regressions (2) and (3) of 
the following two-step procedure:

 ittiiit efr , Ni ...,,1 ; t = 1,…, T,  (2)

 itiitr ˆ
10 , Ni ...,,1 ; t = 1,…, T,  (3)

where g1 is the k-vector of the second pass regression parameters and eit and eit 
are error components. Here, N is the number of assets, and T is the number of 
observations. 

Pricing in light of the ICAPM aims to estimate the parameters of regressions 
(2) and (3), as well as to prove that generated portfolios are ME. 

The pricing restriction of ME portfolios can be formulated as the hypothesis 
testing problem:

 H0 0 )',...,( 1 N . 
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Such a null hypothesis can be tested using the asymptotic 2 distribution 
corresponding to the following Wald statistic:

 ˆ]ˆ'ˆ 1 , ~ 2
N .  (4)

If the errors eit defi ned in (2) are iid, then (4) is of the form (Cochrane (2001), 
pp. 217–219):

 ˆˆ'ˆ
)(])'(1

1
1 e

ttt fEffE
T  ,  (5)

where )1/(ˆˆˆ ' kTeee , and ê is the T×N matrix of residuals. 
In practice, applying the Wald test or GRS method requires estimating ma-

trix Se. This, in turn, induces imposing the normality assumption on the random 
error terms in (2) and (3) to ensure that the statistic t̂ = î /se( î )  has a t-Student 
distribution.1 In reality, however, the exact distribution of t̂  is not known. The 
bootstrap method can overcome this problem. 

2. RESAMPLING METHOD APPROACH

Contemporary statistical inference provides tools to deal with small and non-nor-
mal samples. We are now able to approximate the fi nite sample distribution of 
the estimators without invoking the normality assumption or large sample di-
stributions. Extensive surveys of bootstrap methods can be found for example, 
in monograph texts by Politis (1999) and Lahiri (2003). Time series applications 
of bootstrap and other resampling methods can be found e.g. in Leśkow (2008, 
2014).

For small samples, most of the resampling methods provide more reliable 
results than the normal approximation. For regression-type models, we study 
small-sample distributions of the estimates via bootstrapping the residuals. In 
such a case, the model errors are iid and the factors are treated as fi xed constants. 
In this case, the fi tted residuals are resampled.2 In such a scenario, the bootstrap 
procedure can be designed in the following way:
1) Estimate the parameters of regressions (2) and (3) by a chosen asymptotic 

method. These regressions in bootstrap procedure are referred to in this 
paper as “null” regressions. Under such “null” regression it is necessary to: 

 a) Determine the model residuals êit.
 b) Calculate the Wald statistic:

1 se (q̂i) is a standard error of q̂i.
2 The errors are not observable, thus fi tted residuals are used.
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 ˆ]ˆ'ˆ 1W .   (6)

2) Repeat the following procedure a large number of times.
 a) Draw the residuals *

ite , t=1, …, T from  êit with replacement. 
 b) Generate the bootstrap returns as follows:

 **
ittiiit efr .  (7)

 c)  Estimate the bootstrap parameters, of the fi rst path of the model, *
i  and 

*
i  of the following regression:

 ittiiit efr *** .  (8)

 d)  Estimate the bootstrap parameters, of the second path of the model, *
0  

and *
1   of the following regression:

 itiitr **
1

*
0

* ˆ .  (9)

 e)  Calculate the bootstrapped Wald statistic: 

 *1*
1

* ˆˆ)'ˆ(
)(])'(1 e

ttt fEffE
TW .  (10)

 f)  Calculate the percentage of *
i ’s and *

i ’s and *
0 ’s and *

1 ’s, and W* ’s 
that are greater than ai and bi and g0 and g1, and W. The percentages are 
the p-values of the bootstrap test. 

One of the main concerns while using the bootstrap method is consistency, 
i.e. concordance between the quantiles derived from the bootstrap distribution 
and the asymptotic one. The bootstrap quantiles can be derived using a com-
puter algorithm described above. In this case, the consistency of bootstrap is pre-
sented in the monograph of Davison and Hinkley (1999).

3. DATA

In this section we analyze the quarterly returns of stocks listed on WSE in 
1995–2010. The full-sample observations are divided into two separate sub-
-periods: 1995–2004, the years preceding Poland’s accession to the EU, and 
2005–2010, the years of Poland’s membership in the UE. Data referring to the 
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fundamental results of the inspected companies are taken from the database 
drawn up by Notoria Serwis Sp. z o.o. Data for defi ning returns on securities are 
provided by the Warsaw Stock Exchange. 

The data presented by Urbański (2012b) indicate that the WSE is among the 
average-sized European stock exchanges. It justifi es the choice of the WSE as an 
area for researching the returns in Central Europe’s emerging markets.

 The entire sample comprises 56 quarterly investment periods from May 10, 
1996 to May 12, 2010. The fi rst sub-period covers 36 quarters from May10, 1996 
to May 19, 2005. The second sub-period covers 20 quarters from May 19, 2005 to 
May 15, 2010.

A rapid increase in the number of WSE companies is recorded after 2004, fol-
lowing Poland’s accession to the EU. However, it has been accompanied by an 
increase in the number of speculative stocks whose returns are not linked to their 
fi nancial results; see Urbański (2012a). Consequently, the tests are performed 
for two modes. Mode 1 considers all WSE stocks except of companies character-
ized by a negative book value. In mode 2, we eliminate speculative stocks meet-
ing one of the following boundary conditions: a) MV/BV > 100, b) ROE < 0 and 
BV > 0 and MV/BV > 30 and rit > 0, where MV is the stock market value, ROE is 
the return on book value (BV). The speculative stocks appear from Q1 of 2005. 
The number of analyzed companies decreased from 10% in 2005 to 30% in 2010, 
after exclusion of speculative stocks. All stock returns are calculated in excess of 
91-day Polish Treasury bill return (RF).

The bootstrap quantile is based on 10,000 resamples of the data. The in-
spected securities are divided into quintile portfolios built on the basis of funda-
mental functional FUN, presented in equation (11), and NUM and DEN functions 
constituting the numerator and denominator of FUN, respectively.3

 
nor(MV/BV)nor(MV/E)*

AZN)(AZO)*nor(or(AP)*nornor(ROE)*nFUN ,  (11)

where
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3 The tested securities are divided into quintile portfolios in one direction; 5 portfolios are formed 
on FUN, 5 on NUM and 5 on DEN. 
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Variables Fj (j = 1, …, 6) are transformed to standardized areas ranging <aj ; bj>, in 
keeping with Equation (12):

 
jjjjj

jjj
jjjj e*Fc*Fd

*FcF
)*a(ba)nor(F .  (12)

In Equations (11) and (12), the corresponding indications are as follows. 

ROE is return on book equity; 
i

t

i

t

i

t
ttt )ZN(Q),ZO(Q),S(Q

1 1 1

  are values 

that are accumulated from the beginning of the year as net sales revenue 

(S), operating profi t (ZO) and net profi t (ZN) at the end of “i” quarter (Qi); 
i

t

i

t

i

t
ttt )ZN(nQ)ZO(nQ)S(nQ

1 1 1
,,   are average values, accumulated from the 

beginning of the year as S, ZO and ZN at the end of Qi over the last n years;4 
MV/E is the market-to-earning value ratio; MV/BV is the market-to-book value 
ratio; aj, bj, cj, dj, ej are variation parameters. Calculations prove, that in modeling 
equilibrium on the stock market, it is possible to assume identical values for all 
parameters; see Urbański (2011). The functions Fj (j =1, …, 6) are transform into 
equal normalized area <1;2>.5

In comparison with the work conducted by FF (1995) and Cochrane (2001), 
it is assumed that FUN may constitute positive characteristics as a basis for the 
general description of returns. The function NUM represents an investor form-
ing a portfolio which consists of the best fundamental companies. Whereas DEN 
represents an investor portfolio which consists of the undervalued stocks. Simi-
larly, FUN represents an investor forming a portfolio which consists of the best 
fundamental and simultaneously undervalued stocks. FUN, NUM and DEN are 
calculated for all analyzed securities at the beginning of each investment period 
in which the return is to be calculated. FUN, NUM and DEN for portfolios consti-

4 The present research assumes that n = 3 years. 

5 If 
i

t
t )ZN(Q

1
, 

i

t
t )ZO(Q

1
, 

i

t
t )ZN(nQ

1

  or 
i

t
t )ZO(nQ

1
 in equation (11) is negative, the func-

tions Fj (j = 1, 3, 4) are transformed into area (0,1); see Urbański (2011). 
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tute average arithmetical values of these functions of various portfolio securities. 
Returns on given portfolios are average stock returns weighted by market capi-
talizations. The factors ft are assigned to company portfolios. 

4. RESULTS

We test the aggregated three-factor model presented by Urbański (2011). This 
model analyses the infl uence of excess market returns (RM)6 and factors f HMLN 
and f LMHD on returns in the analyzed portfolios. f HMLN (high minus low) is the 
difference between the returns from the portfolio with the highest and lowest 
NUMt values in the period t; f LMHD (low minus high) is the difference between 
the returns from the portfolio with the lowest and highest DENt values in the 
period t.

Absolute values of correlation coeffi cient between the response variable and 
explanatory variables range from 0.05 to 0.92. Absolute values of the correlation 
coeffi cient between factors are reaching the levels of 0.23 for full-sample observa-
tions, 0.37 for sub-period 1995–2005, and 0.23 for sub-period 2005–2010, respec-
tively. For the fi rst and second sub-period the correlation between RMt–RFt and

HMLN
tf  is equal to 0.24 and 0.18, respectively, and between RMt –RFt and LMHD

tf  
is -0.37 and -0.16. It is possible, therefore, to duplicate information. The orthogo-
nalized market factors are defi ned using the following regression:

 ,...,T;teffRFRM t
LMHD

tLMHD
HMLN

tHMLNtt 1 ,  (13)

where:

Mode 1; full sample
a = -0.01; bHMLN =0.29; bLMHD = -0.27; R2 = 6.32%
(76.20%) (15.87%) (13.86%)

Mode 2; full sample
a = -0.02; bHMLN =0.33; bLMHD = -0.010; R2 = 4.97%
(50.66%) (11.38%) (58.35%)

Mode 1; fi rst sub-period
a = -0.01; bHMLN =0.40; bLMHD = -0.59; R2 = 25.18%
(82.42%) (5.43%) (0.90%)

6 The market return (RM) is evaluated by the return on the WIG/ WSE index. 
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Mode 1; second sub-period
a = 0.03; bHMLN =-1.05; bLMHD = 0.48; R2 = 20.82%
(63.57%) (8.01%) (7.24%)

Mode 2; second sub-period
a = -0.01; - bHMLN =0.32; bLMHD = 0.57; R2 = 29.07%
(82.36%) (51.28%) (1.72%)

Under the regression model (13) the values of variable loadings are included 
for all tested periods. The corresponding p-values appear in brackets. Regression 
(13), especially for sub-periods, contains higher explanatory power. The value of 
the orthogonalized market factor is defi ned as follows:7

 t
MO

t ef .  (14)

The response variable and the explanatory variables are subject to stationar-
ity tests whose hypothesis is based on the Dickey–Fuller test. Dickey–Fuller tests 
and augmented Dickey–Fuller tests confi rm lack of unit root for each test case at 
1% signifi cance level.8 This leads to conclusions regarding the stationarity of the 
analyzed variables. 

We test the aggregated three-factor model in two passes:

,...,T;tefffRFr it
MO

ti,MO
LMHD

ti,LMHD
HMLN

ti,HMLNitit 1 ; i=1,… ,  (15)

     ;iRFr iti,MOMOi,LMHDLMHDi,HMLNHMLNtit
ˆˆˆ

0  1,...,15; t = 1,...,T. (16)

Beta values are estimators of the systematic risk. The second pass estimates 
the beta loadings which defi ne risk premiums. Regression parameters in (15) 
and (16) are estimated via GLS —  following Prais–Winsten procedure, and by 
three bootstrap methods: quantile bootstrap, BCa bootstrap, and t-bootstrap; see 
Efron and Tibshirani (1993). Homoskedasticity of the residuals is confi rmed using 

7 A similar procedure concerning the orthogonalization of the market factor is applied by Fama 
and French (1993), p. 27–31, for the fi ve-factor model. The loadings of all of the tested HML, SMB, TERM 
and DEF variables differ signifi cantly from zero. The determination coeffi cient of the analyzed regression 
(by FF) is R2 = 38%.

8 Dickey–Fuller tests are carried out for the three tested periods. 18 tested cases include the re-
sponse variable for 5 portfolios formed on FUN, NUM and DEN and 3 explanatory variables: MO

tf , 
HMLN

tf  and LMHD
tf . The augmented Dickey–Fuller tests are carried out for lag, defi ned on the basis of 

minimizing the modifi ed Akaike criterion, assuming that maximum lag equals 4. Test fi ndings are avail-
able from the authors on request.
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White and Breusch–Pagan methods. Therefore, the heteroscedascity correction is 
not required.9

The parameters of the second pass can be estimated by three variants:
1) the pooled time-series and cross-section estimate,
2) the “pure cross-sectional” estimate, on the basis of time series averages, 
3) the Fama–MacBeth procedure that means running a cross-sectional regres-

sion at each point in time; estimated parameters 0ˆ   and 1̂ are average cross-
-sectional estimates of t0ˆ  and t1̂ .The time-series standard deviations of t0ˆ  
and t1̂  are used to estimate the standard error of 0ˆ   and 1̂ .10

If the explanatory variables of regression (16) do not vary over time, and if 
the errors are cross-sectionally correlated but not correlated over time, then the 
pooled time-series and cross-sectional OLS estimate, the “pure cross-sectional” 
OLS estimate, and the the Fama–MacBeth procedure are identical; see Cochrane 
(2001), pp. 247–250. WE estimate the risk premium vector using the pooled time-
series and cross-section data. Independent variables (betas) remain permanent 
for all periods, while dependent variables constitute the returns which should 
by nature be random; see Cochrane (2001), p. 247. Therefore, we assume the lack 
of autocorrelation of the residual component. The impact of heteroskedasticity is 
taken into account by means of the change of variables method.11

Table 1

The Parameter Values of Time-Series Regression of Excess Stock Returns on the Orthogonalized 
Stock-Market Factor, fMO and the Mimicking Returns for the NUM Value (f HMLN) and DEN Value 

(f LMHD) Factors

 ,...,T;tefffRFr it
MO

ti,MO
LMHD

ti,LMHD
HMLN

ti,HMLNitit 1 ; i = 1, …

Mode 1. The sample period is from 1995 to 2010, T=56 Quarters

Portfolio 
„i”

Quantile 
bootstrap, *

BCa 
bootstrap, * t-bootstrap „null”

regression

*
.0̂

*
.0̂  *

.0̂
*
.0̂  p-valuea * p-valuea R2

%

HMLNi,
* ˆˆ

HMLNi,
ˆˆ  

1 -0.531 -0.180 -0.531 -0.174 0.002 -0.357 0.000 88.60

5 0.331 0.715 0.331 0.715 0.000 0.520 0.000 85.01

6 -0.716 -0.266 -0.702 -0.248 0.002 -0.472 0.000 83.48

 9 The co-variance matrix of regression coeffi cients is also estimated by means of the Newey–West 
estimator where standard errors are corrected for autocorrelation and heteroskedasticity. The results are 
qualitatively similar. They are readily available upon request.

10 1ˆ   is the vector ]ˆ,ˆ,ˆ[ˆ1 MOLMHDHMLN .
11 See footnote 9.
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10 0.398 0.767 0.381 0.751 0.000 0.591 0.000 85.49

11 -0.056 0.297 -0.054 0.298 0.230 0.120 0.210 83.91

12 0.088 0.410 0.047 0.380 0.000 0.250 0.005 87.98

13 0.143 0.510 0.122 0.499 0.004 0.330 0.002 78.67

14 0.089 0.433 0.087 0.431 0.000 0.273 0.004 86.02

15 -0.065 0.366 -0.039 0.421 0.248 0.138 0.220 86.12

MOi,
* ˆˆ

MOi,
ˆˆ  

1 1.011 1.251 1.019 1.260 0.000 1.125 0.000 88.60

5 0.878 1.118 0.895 1.139 0.000 1.002 0.000 85.01

6 0.996 1.309 1.006 1.313 0.000 1.149 0.000 83.48

10 0.876 1.100 0.878 1.102 0.000 0.989 0.000 85.49

11 0.851 1.075 0.847 1.074 0.000 0.964 0.000 83.91

15 0.979 1.242 0.984 1.246 0.000 1.111 0.000 86.12

LMHDi,
* ˆˆ

LMHDi,
ˆˆ

1 -0.722 -0.426 -0.742 -0.444 0.002 -0.572 0.000 88.60

5 -0.477 -0.172 -0.502 -0.191 0.002 -0.331 0.000 85.01

6 -0.667 -0.288 -0.665 -0.278 0.002 -0.469 0.000 83.48

10 -0.549 -0.254 -0.574 -0.269 0.002 -0.404 0.000 85.49

11 0.024 0.327 0.017 0.325 0.030 0.180 0.031 83.91

12 0.069 0.345 0.069 0.345 0.006 0.203 0.008 87.98

13 -0.324 -0.010 -0.294 0.007 0.058 -0.163 0.062 78.67

14 -0.897 -0.602 -0.903 -0.604 0.002 -0.752 0.000 86.02

15 -1.038 -0.672 -1.065 -0.691 0.002 -0.872 0.000 86.12

Regression parameters for all bootstrap iterations and “null” regression are estimated by GLS. 
Portfolios for i = 1 and i = 5 are formed on minimal and maximal values of FUN. Portfolios for 
i = 6 and i = 10 are formed on minimal and maximal values of NUM. Portfolios for i = 11 and 
i = 15 are formed on minimal and maximal values of DEN. *

.0̂ is the bootstrapped value of 
the estimator for the 2,5% level and, similarly, *

.0̂  
is the bootstrapped value of the estimator 

for the 97,5% level. The bootstrap quantile is based on 10,000 data resamples. Negative-BV 
stocks are excluded from the portfolios. The errors-in-variables are adjusted and follow Shanken 
(1992). a Corresponds to the significance test for model parameters in the null hypotheses. Bold 
type — the parameter is signifi cantly different from zero at the level of 5%.

The impact of estimation errors of the true beta values in the fi rst pass is 
considered by correcting the standard errors of beta loadings estimated in the 
second pass. With this purpose in mind, Shanken’s estimator is applied; see 
Shanken (1992). 
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Table 1 presents the values of parameters of regression (15) for the full-sam-
ple and for the portfolios of mode 1 type.12 The regression parameters estimated 
in “null” regressions for the fi rst and second sub-periods are subject to Chow’s 
stability tests. In most cases, the results confi rm the stability of the parameters at 
the level of 5%. The regression parameters for test cases, estimated in “null” re-
gression and three bootstrap methods are similar. Also, the cross-section changes 
of systematic risk component, for the portfolios formed on mode 1 and mode 2 
are similar. 

For portfolios formed on FUN and NUM, the systematic risk component 
bi,HMLN increases monotonically from negative values for the smallest FUN and 
NUM quintiles to positive values for the largest quintiles. However, the risk com-
ponent bi,LMHD assumes negative values for all quintiles. 

For portfolios formed on DEN, the systematic risk component bi,LMHD de-
creases monotonically from positive values for the smallest DEN quintiles to neg-
ative values for the largest quintiles. The risk component bi,HMLN assumes positive 
values for all quintiles.

The schemes of return changes on portfolios formed on FUN and DEN (for 
the full-sample and for the portfolios of mode 1 type) are presented in Figure 1 
and Figure 2. 
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Figure 1. Infl uence of f HMLN factor on returns of portfolios formed on FUN and DEN a

Figure 1 shows the infl uence of f HMLN on returns of portfolios formed on FUN 
(Figure 1a) and DEN (Figure 1b). Portfolio for i = 1 is formed on minimal value 
of FUN or DEN. Portfolio for i = 5 is formed on maximal value of FUN or DEN. 
Negative–BV stocks are excluded from the portfolios. The sample period is from 
1995 to 2010, 56 Quarters. 

12 Parameter values for the sub-periods, and for mode 2 are available on request.
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Figure 2. Infl uence of f LMHD factor on returns of portfolios formed on FUN and DEN a

This fi gure shows the infl uence of f LMHD on returns of portfolios formed on 
FUN (Figure 2a) and DEN (Figure 2b). Portfolio for i=1 is formed on minimal 
value of FUN or DEN. Portfolio for i=5 is formed on maximal value of FUN or 
DEN. Negative-BV stocks are excluded from the portfolios. The sample period is 
from 1995 to 2010, 56 Quarters. 

The conducted research indicates that long investments in companies with 
large FUN or NUM values lead to higher returns for growing f HMLN and decreas-
ing f LMHD values. 

Long investments in companies with large DEN (low BV/MV and E/MV) 
demonstrate higher returns for growing f HMLN and decreasing f LMHD values. How-
ever, long investments in companies with small DEN values (high BV/MV and 
E/MV) demonstrate higher returns for growing f HMLN and f LMHD values. The val-
ues of the R2 coeffi cient reach high values at 90%. 

Cross-section changes of risk components bi,HMLN and bi,LMHD are similar for 
the whole sample and the fi rst sub-period. Beta distributions in the second sub-
period, for portfolios formed on DEN, are similar, while these changes for portfo-
lios formed on FUN and NUM are more diffi cult to interpret. 

The values of parameters of regression (16) are presenting in Table 2. Coef-
fi cients g1 gMO, g2 gHMLN and g3 gLMHD constitute systematic risk premium in 
terms of the factor connected with a market portfolio and the f HMLN and f LMHD 
factors. 

The results for the whole sample are as follows: the risk premiums gHMLN 
and gLMHD estimated by three bootstrap methods are signifi cantly higher than 
zero; these results for the portfolios formed on mode 1 and mode 2 are simi-
lar; however, if speculative stocks are not excluded from consideration, gLMHD 
estimated in “null” regression (also, in the second sub-period) is equal to 
zero. 
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The components gHMLN and gLMHD estimated by bootstrap are signifi cantly 
higher than zero in the both sub-periods. The gLMHD component ranges from 4% 
in 1996–2005 to 8% in 2005–2010. However, gHMLN ranges from 6% in 1996–2005 to 
2% in 2005–2010. 

The component gMO estimated in “null” regression is insignifi cantly different 
from zero for all the tested periods. The corresponding p-values are higher than 
0.19. However, the bootstrap estimations for the full sample and fi rst sub-period 
indicate the signifi cant positive results. 

Table 2

The risk premium vector (g) values estimated from the second-pass regression 
for the aggregated three-factor model

 ,...,T;t,...,;iRFr iti,MOMOi,LMHDLMHDi,HMLNHMLNtit 11ˆˆˆ
0

Mode
Quantile bootstrap, * BCa bootstrap, * t-boot-

strap
“null” 

regression
Para-
meter

*
.2̂

*
.

ˆ *
.2̂  *

.
ˆ p-value a ˆ  p-value a

The sample period is from 1995 to 2010, 
T = 56 Quarters

1

0ˆ  -0.12 -0.02 -0.09 -0.09 0.00 -0.09 0.14

HMLNˆ 0.03 0.06 0.03 0.08 0.00 0.05 0.02

MOˆ 0.01 0.11 0.05 0.18 0.00 0.07 0.21

LMHDˆ 0.01 0.06 0.02 0.08 0.00 0.04 0.11

2

0ˆ  -0.15 0.01 -0.10 -0.12 0.01 -0.08 0.32

HMLNˆ 0.03 0.08 0.04 0.10 0.00 0.05 0.01

MOˆ -0.04 0.14 0.01 0.33 0.07 0.06 0.48

LMHDˆ 0.03 0.07 0.04 0.09 0.00 0.05 0.02

The sample period is from 1995 to 2005, 
T = 36 Quarters

1

0ˆ  -0.14 -0.02 -0.11 -0.12 0.00 -0.09 0.12

HMLNˆ 0.03 0.08 0.04 0.11 0.00 0.06 0.03

MOˆ 0.01 0.12 0.04 0.20 0.00 0.08 0.19

LMHDˆ 0.01 0.06 0.02 0.09 0.00 0.04 0.13
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The sample period is from 2005 to 2010, 
T = 20 Quarters

1

0ˆ  -0.06 0.04 -0.02 -0.03 0.50 -0.01 0.85

HMLNˆ 0.00 0.03 0.01 0.00 0.14 0.01 0.64

MOˆ -0.05 0.09 0.00 -0.04 0.46 0.02 0.82

LMHDˆ -0.01 0.04 0.01 0.00 0.15 0.02 0.60

2

0ˆ  -0.17 0.09 -0.10 -0.19 0.34 -0.06 0.67

HMLNˆ -0.01 0.05 0.01 -0.02 0.03 0.02 0.42

MOˆ -0.12 0.14 -0.05 0.18 0.63 0.02 0.87

LMHDˆ 0.04 0.11 0.07 0.15 0.00 0.08 0.00

Regression parameters for all bootstrap iterations and “null” regression are estimated by GLS. 
Portfolios for i = 1-5 are formed on FUN. Portfolios for i = 6-10 are formed on NUM. Portfolios 
for i = 11-15 are formed on DEN. *

.2̂ is the bootstrapped value of the estimator for the 2,5% 
level and, similarly, *

.
ˆ  is the bootstrapped value of the estimator for the 97,5% level. The 

bootstrap quantile is based on 10,000 data resamples. In mode 1 negative-BV stocks are excluded 
from the portfolios. In mode 2 speculative stocks are excluded from the portfolios. It is assumed 
that speculative stocks meet one of the following two conditions: 1) MV/BV > 100 and rit > 0, 2) 
ROE < 0 and MV/BV > 30 and rit > 0, where MV is the stock market value, ROE is the return 
on book value (BV), rit is the return of portfolio i in period t. a Corresponds to the significance 
test for model parameters in the null hypotheses. Bold type —  the parameter is signifi cantly 
different from zero at the level of 5%. Italic type — the parameter is signifi cantly different from 
zero at the level of 10%.

The value of gMO for the second sub-period is equal to zero also for bootstrap 
and “null” estimations pointing toward the decisive impact of risk in terms of 
the f HMLN and f LMHD  factors on cross-section returns. This indicates that f MO does 
not appear to be important factor in ICAPM confi rming the previous studies (see, 
for example, Fama and French (1992), Jagannathan and Wang (1996), Lettau and 
 Ludvigson (2001) and Pekova (2006)).
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Table 3

The results of multifactor effi ciency tests

 ,...,T;tefffRFr it
MO

ti,MO
LMHD

ti,LMHD
HMLN

ti,HMLNitit 1 ; i = 1, …

Mode
Quantile bootstrap, W* W GRS

*ˆ  *
10

ˆ p-value
(χ2)

Statistic
value

p-value
(χ2)

Statistic
value

p-value
(F)

Panel A: The sample period is from 1995 to 2010, T = 56 Quarters

1 141.16 124.47 0.99 36.24 0.00 1.77 0.08

2 150.65 134.24 0.97 43.18 0.00 2.10 0.03

The sample period is from 1995 to 2010, T = 36 Quarters

1 197.16 167.03 0.97 42.97 0.00 1.61 0.17

The sample period is from 2005 to 2010, T = 20 Quarters

1 1140.63 787.38 0.65 166.53 0.00 1.39 0.50

2 2754.80 1825.96 0.99 57.43 0.00 0.48 0.84

Panel B: Chou and Zhou (2006), Fama-French’s Factors

Period: 1964–1993 0.03 <0.01 0.01

Panel C: Chou and Zhou (2006), CRSP index

Period: 1926–1995 0.07 0.01 0.03

Period: 1986–1995 0.38 0.21 0.28

Panel A; nii ,...,1,0H0 . W is the statistic of Wald. GRS is the F-statistic of Gibbons et al 
(1989). In mode 1 negative-BV stocks are excluded from the portfolios. In mode 2 speculative 
stocks are excluded from the portfolios. It is assumed that speculative stocks meet one of the 
following two conditions: 1) MV/BV > 100 and rit > 0, 2) ROE < 0 and MV/BV > 30 and rit > 0, 
where MV is the stock market value, ROE is the return on book value (BV), rit is the return of 
portfolio i in period t. 
In Panel B the authors examine the joint effi ciency of the Fama-French’s factors in: 

ittti,MO
SMB

ti,SMB
HML

ti,HMLitit eRFRMffRFr )( , where rit’s are monthly 
returns on 25 Fama-French’s portfolios and RMt–RFt is the excess return on a market index. In 
Panel C the authors examine the effi ciency of the CRSP value-weighted index in the standard 
market model: tptt eR , where Rt is a vector of returns on 10 CRSP size decile 
portfolios in excess of the 30-day T-bill rate. The bootstrap quantile is based on 10,000 data 
resamples.
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ME is tested under the assumption that errors of the regression (15) are iid. 
Also, we test the normality of residuals.13 We employ three effi ciency tests, the 
GRS test, the asymptotic Wald test and bootstrap tests. The empirical results are 
reported in Table 3. Under iid assumption, the asymptotic Wald test reject ME of 
the tested portfolios for all the investigated periods at the signifi cance level below 
1%. The GLS test rejects ME for the whole sample for portfolios formed under as-
sumption mode 1 at the 8% signifi cance level, and under assumption mode 2 at 
the 4% signifi cance level. 

However, the bootstrapped Wald test, W*, does not reject effi ciency for inves-
tigated periods. We may conclude that the aggregated tree-factor model gener-
ates ME portfolios on the WSE when stock returns are assumed to come from iid 
models.

Moreover, we also compare our ME results to other procedures implemented 
on American market; see Chou and Zhou (2006). The results are presented in 
Panel B and C of Table 3. The p-values obtained suggest a strong rejection. It is, 
nevertheless, quite interesting to observe that the bootstrap derived p-values are 
greater than the non-boostrap ones.

5. CONCLUSIONS

The usage of bootstrap to test the ICPM application proposed by Urbański (2011) 
is presented for WSE stocks. The conducted research leads to the following con-
clusions: 
1. The use of bootstrap procedures allows for an accurate assessment of return 

changes as compared with classical asymptotic methods. 
2. Long investments in companies with large FUN or NUM demonstrate higher 

returns for growing f HMLN and decreasing f LMHD values. 
3. Long investments in companies with large DEN (low BV/MV and E/MV) 

demonstrate higher returns for growing f HMLN and decreasing f LMHD values.
4. Long investments in companies with small DEN values (high BV/MV and 

E/MV) record higher returns for growing f HMLN and f LMHD values. 
5. Estimates of systematic risk components for test cases using classical proce-

dures and bootstrap methods are similar. 
6. The cross-section changes of systematic risk component, for the portfolios 

formed on the basis of all analyzed stocks (Mode 1) and stocks with the ex-
ception the speculative stocks (Mode 2), are similar. 

7. The risk premium components estimated by bootstrap are signifi cantly differ-
ent from zero in all tested cases. 

13 The Shapiro–Wilk tests confi rm the residuals normality for the whole sample in 9 out of 15 tested 
portfolios.
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 8. If speculative stocks are not excluded from consideration, risk premium com-
ponent, gLMHD estimated in ”null” regression is insignifi cantly different from 
zero in all tested periods. 

 9. The risk premium gHMLN (determining the investor sensitivity to fi nancial re-
sults) equals approx. 6% per quarter in the fi rst sub-period and decreases to 
1% in the second sub-period. 

10. The risk premium gLMHD (determining the investor sensitivity to the value) 
equals approx. 4% per quarter in the fi rst sub-period and grows in the second 
sub-period to 8%, after the elimination of speculative stocks. 

11. GRS and asymptotic Wald tests reject ME of the most portfolios simulated by 
the tested ICAPM application. However, the bootstrapped Wald test does not 
reject effi ciency for the tested cases.
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