

A R C H I V E S
o f

F O U N D R Y E N G I N E E R I N G
DOI: 10.2478/afe-2014-0053

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences

ISSN (2299-2944)
Volume 14

Issue 3/2014

17 – 20

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 1 4 , I s s u e 3 / 2 0 1 4 , 1 7 - 2 0 17

Mathematical Programming for Lot Sizing

and Production Scheduling in Foundries

J. Duda*, A. Stawowy, R. Basiura

AGH University of Science and Technology, Faculty of Management, Gramatyka 10, 30-067 Krakow, Poland
*Corresponding author. E-mail address: jduda@zarz.agh.edu.pl

Received 30.04.2014; accepted in revised form 15.05.2014

Abstract

The problem considered in the paper is motivated by production planning in a foundry equipped with the furnace and casting line, which
provides a variety of castings in various grades of cast iron/steel for a large number of customers. The quantity of molten metal does not
exceed the capacity of the furnace, the load is a particular type of metal from which the products are made. The goal is to create the order
of the melted metal loads to prevent delays in delivery of goods to customers. This problem is generally considered as a lot-sizing and
scheduling problem. The paper describes a mathematical programming model that formally defines the optimization problem and its
relaxed version that is based on the conception of rolling-horizon planning.

Keywords: Application of information technology to the foundry industry, Production planning, Scheduling

1. Introduction

In this paper we studied a scheduling problem in a mid-size

foundry that makes castings to clients order In this case, the
production planning problem consists in determining the lot size of
the items and the required alloys to be produced during each period
of the finite planning horizon that is subdivided into smaller periods
(work shifts). Decision maker must take into account two main
criteria: timeliness of orders and maximization of production
capacity. Assuming that a production bottleneck is the melting
furnace, a mixed-integer programming (MIP) models are usually
proposed to solve the outlined above lot-sizing and scheduling
problem.

The aim of this paper is to explore whether Excel or
commercial nonlinear solvers may be used successfully towards
small and medium-sized foundries when planning and scheduling
decisions are taken. Section 2 provides a MIP model for foundry
scheduling problem. In Section 3, the details of proposed
approaches are given. The computational experiments are described
in Section 4, and the conclusions are drawn in Section 5.

2. Lot-sizing and scheduling model

2.1. MIP lot-sizing model

The MIP model presented in this section is an extension of

Araujo et al. lot sizing and scheduling model for automated
foundry [1]. We use the following notation:
Indices
i=1,…,I - produced items; k=1,…,K - produced alloys,
t=1,…,T - working days; n=1,…,N - sub-periods,
Parameters
dit - demand for item i in day t; wi - weight of item i,
ai

k = 1, if item i is produced from alloy k, otherwise 0,
stk - setup loss for alloy k; C - loading capacity of the furnace,
hi

–, hi
+ - cost for delaying (–) and storing (+) production of item I,

s - setup penalty (cost) when alloy is change in the furnace.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 1 4 , I s s u e 3 / 2 0 1 4 , 1 7 - 2 0 18

Variables
Iit

–, Iit
+ - number of items i delayed (–) and stored (+) at the end of

day t,
zn

k = 1, if there is a setup (resulting from a change) of alloy k in
sub-period n, otherwise 0,
yn

k = 1, if alloy k is produced in n in sub-period, otherwise 0,
xin - number of items i produced in sub-period n.

Production planning problem in a foundry is defined as
follows:

Minimize)()(
1 1

_

1 1

_ ∑∑∑∑
= =

++

= =

⋅++
K

k

N

n

k
nitiit

I

i

T

t
i zsIhIh (1)

subject to:

TtIidIIxII ititit

N

n
intiti ,...,1,,...,1,

1
1,1, ===+−+− −+

=

−
−

+
− ∑

(2)

NnKkyCzstaxw k
n

k
nk

k
iin

I

i
i ,...,1,,...,1,

1
==≤+∑

=

(3)

NnKkyyz k
n

k
n

k
n ,...,1,,...,1,1 ==−≥ −

(4)

Nny
K

k

k
n ,...,1,1

1
==∑

=

(5)

IiIIxIIxII iiitititititit ,...,1,0,,,,,0,, 0
_
0

__ ==ℑ∈≥ +++ (6)

The goal (1) is to find a plan that minimizes the sum of the
costs of delayed production, storage costs of finished goods and
the setup costs for alloy changing in the furnace.

Equation (2) balances inventories, delays and the volume of
production of each item in each day. Constraint (3) ensures that
the furnace capacity is not exceeded in a single load. Constraint
(4) sets variable zn

k to 1, if there is a change in an alloy in the
subsequent periods, while constraint (5) ensures that only one
alloy is produced in each sub-period.

The model itself can be seen as an extension of generalised
lot-sizing and scheduling problem (GLSP) that is well described
in literature and for which standard MIP methods usually achieve
acceptable results [2,3]. However, since the lot-sizing model for a
foundry takes into account also the order of alloys – setup penalty
is calculated as a part of the objective function (1) and alloy
changing loss is included in constraint (3) – it is much harder to
solve than the classic lot-sizing model.

2.2. Relaxed lot-sizing model

The model presented in the previous section, even for the

smallest problem considered later in the experiments and
containing 10 items, 2 different alloys and the planning horizon of
50 sub-period in total, results in 830 optimization variables (210
binary and 630 integer). This is far too many Excel Solver can
handle (the limit for standard built-in MS Excel Solver is 200
variables). Thus we decided to apply a method similar to the fix

and relax method proposed by Araujo et al. in [1]. The main idea
behind this method is to compute the exact plan only for a single
day, while for remaining days only rough plan is determined. This
is called rolling-horizon planning [4].

Araujo et al. [1] relaxed all variables xin and yn
k for not fixed

sub-periods. Variable xin representing the number of items i
produced in sub-period n is of a float type instead of integer,
while yt

k is now integer value reflecting in how many sub-periods
a given alloy will be produced.

Thus constraint (2) is valid only for the fixed day (tf) and for
other days it looks as follows:

f

I

i

k
t

k
iini

N

n
ttTtKkyCaxw ≠==≤∑∑

= =

,,...,1,,...,1,
1 1

 (7)

Analogously constraint (5) for the days other than the fixed

one is extended to the following formula:

f

K

k

k
t ttTtNy ≠==∑

=

,,...,1,
1

 (8)

Instead of one model computed once, the model for rolling-

horizon is computed T times. Each time values of fixed variables
computed for one day are included as constants in the following
days.

In order to make the model possible for solving by MS Excel
Solver we decided to farther reduce the size of the model. For
non-fixed days we replaced variables xin with xit, what means that
the production equation (2) for the relaxed days is balanced as:

fitititittiti ttTtIidIIxII ≠===+−+− −+−
−

+
− ,,...,1,,...,1,1,1,

 (9)

This allows for the reduction of variables to only 140 integer

variables (100 for the fixed day and 40 for the remaining days).
Variable yn represents the alloy grade produced in a given sub-
period (only for the fixed day). Constraint (8) is then not used,
and only total capacity of furnace is checked for the relaxed days:

TtKkCstxw kit

I

i
i ,...,1,,...,1,

1
==≤+∑

=

 (10)

This allows for farther reduction of binary variables from 130

to only 10, giving the total number of 150 variables.

3. Solution methods

Experiments performed by the authors [5] for large instances
of lot-sizing and scheduling problem indicated that such problems
are hard to solve and it is worth to apply computational
intelligence methods like genetic algorithms. In this paper we
want to examine whether Excel Solver can be used for small
instances of the problem and what is the impact of problem
relaxation on the final result.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 1 4 , I s s u e 3 / 2 0 1 4 , 1 7 - 2 0 19

3.1. Excel Solver

Excel Solver is provided by Frontline Systems. The firm also
sales an extended version of the solver, which enables to solve larger
problems. For non-linear problem, like ours, it can handle 500
variables and 250 constraints (compare [6]), while the version built-in
MS Excel application is limited to 200 variables and 100 constraints.
We decided to use Frontline Solver Pro, as we found that it performs
better than standard Excel Solver even for the same amount of
variables and constraints. This solver is continuously updated, while
the built-in MS Excel version changes only with a new version of
application (usually once every three years).

Regarding the solver limitation for non-linear problems we were
able to compute only the smallest example with 10 items and
2 different alloys. The problem with 50 items and 10 alloys would
require using 710 variables, what exceeds the limit.

The main fragment of a spreadsheet that calculates production
plan in a foundry is shown in Fig. 1. First table contains input data,
while the second one contains a detailed plan for one day (with 10
sub-periods) and rough plan for the remaining days (2-5).

Fig. 1. Fragment of a spreadsheet that calculates production plan

3.2. CPLEX solver

We wrote the model in optimization programming language

(OPL) that was later run in IBM CPLEX Optimization Studio 12.6.
The basic model in OPL language is shown in Fig. 2.

minimize
 sum(i in ir, t in tr) (hm[i]*im[i][t]+hp[i]*ip[i][t])
 + sum(k in kr, t in tr, n in nr) sp*z[k][t][n];
subject to
{
 forall(i in ir) im[i][0]==0;
 forall(i in ir) ip[i][0]==0;
 forall(k in kr,t in tr, n in nr) y[k][t][0]==0;
 forall(i in ir,t in tr) ip[i][t-1]-im[i][t-1]+ sum(n in nr)
x[i][t][n]-ip[i][t]+im[i][t] == d[i][t];

 forall(k in kr, t in tr, n in nr) sum(i in ir)
w[i]*x[i][t][n]*a[i][k]+st[k]*z[k][t][n]<=C*y[k][t][n];

 forall(k in kr, t in tr, n in nr) sum(i in ir)
 forall(k in kr, t in tr,n in nr)
 z[k][t][n]>=y[k][t][n]-y[k][t][n-1];

 forall(t in tr, n in nr) sum(k in kr) y[k][t][n]==1; };

Fig. 2. Basic OPL model for foundry production planning

Arrays hm, hp represent costs hi
– and hi

+, while arrays im and ip
represents variables Iit

– and Iit
+, respectively. Variables x, y and z

are indexed by both day (t) and its sub-periods (n). Sub-period
number that is used in the model 2.1 can be calculated as: t*N+n.

3.3. CPLEX solver with relaxation

For the largest problem considered in the experiments CPLEX

was not able to provide optimal solution for the model. The solution -
even after 10 minutes - was on average 50-70% distant from the
theoretical lower bound, so we decided to experiment with the fixed
and relaxed approach described in section 2.2. The objective function
remains the same (however this time it is calculated in T steps). The
constraints in the rolling horizon version of the model written in OPL
language are shown in Fig. 3.

subject to
{
 forall(i in ir) im[i][0]==0;
 forall(i in ir) ip[i][0]==0;
 forall(k in kr, t in tr) y[k][t][0]==0;
 forall(i in ir, t in fixed_periods, n in nr) xr[i][t][n]==0;
 forall(i in ir, t in relaxed_periods, n in nr) x[i][t][n]==0;
 forall(k in kr, t in relaxed_periods, n in nr) y[k][t][n]==0;
 forall(k in kr, t in fixed_periods) yr[k][t]==0;
 forall(i in ir,t in tr) ip[i][t-1]-im[i][t-1]+ sum(n in nr)
(x[i][t][n] + xr[i][t][n])-ip[i][t]+im[i][t] == d[i][t];

 forall(k in kr, t in fixed_periods, n in nr) sum(i in ir)
w[i]*x[i][t][n]*a[i][k]+st[k]*z[k][t][n]<=*C*y[k][t][n];

 forall(k in kr,t in relaxed_periods) sum(i in ir, n in nr)
w[i]*xr[i][t][n]*alloy[i][k]<=C*yr[k][t];

 forall(k in kr, t in fixed_periods, n in nr)
z[k][t][n]>=y[k][t][n]-y[k][t][n-1];

 forall(t in fixed_periods, n in nr) sum(k in kr)
y[k][t][n] == 1;

 forall(t in relaxed_periods) sum(k in kr) yr[k][t] == N; };

Fig. 3. Constraints in rolling-horizon model for foundry
production planning

Arrays xr and yr represent relaxed variables xin and yt

k,
respectively. Fixed_periods are changed from 1,…,1, to 1,…,5
and relaxed_periods are changed from 2,…,5 to empty range in
the last iteration.

In order to automate the computing process we wrote C#
application that run the rolling horizon models iteratively day after
day, taking the values of the fixed variables from the previous
solution. We set the time limit for each model to 3 minutes, however
usually the partial solution was provided within 1 minute or almost
immediately, so the final solution after 5 days was usually achieved
within 6-7 minutes.

4. Computational experiments

4.1. Test problems

Computational experiments were conducted on the basis of the
test problems proposed in [1]. The characteristic of these problems is
covered in Table 1. The values for demand and weight were
determined using uniform distribution within a given range.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 1 4 , I s s u e 3 / 2 0 1 4 , 1 7 - 2 0 20

Table 1.
Test problems characteristics
Parameter Value
number of items (I), number of alloys (K) (10,2); (50,10); (100,20)
number of days (T) 5
number of subperiods (N) 10
demand (dit) [10, 60]
weight of item (wi) [1, 30]
setup loss for alloy (stk) [5, 10]
setup penalty (s) 5

We extended the test problems by introducing costs for
delayed items and costs for storing the items produced that do not
match the demand. Those parameters were randomly generated as
follows:

hi

–
 = 6 * random01 + 3

hi

+
 = wi * 0.02 + 0.05

(11)

(12)

Ten instances of the problem for each size were generated.

The basis furnace capacity C was generated using the following
formula corresponding to the total sum of the weights of ordered
items:

50
11 1
∑∑∑
== =

+
=

K

k
ki

N

i

T

t
it stwd

C (13)

4.2. Results of the experiments

Computational experiments were conducted for three sizes of
planning problems: with 10 items made from 2 different alloys,
50 items made from 10 alloys, and with 100 items and 20 alloys.
For each problem size ten instances were computed. Excel Solver
was able to handle only the smallest problem, regarding the limit
of optimization variables. The computational time was similar for
all the examined methods and ranged from 6 to 8 minutes.

The average results achieved for all 10 instances along with
the standard deviations are presented in Table 2.

Table 2.
Results of the experiments for examined methods
Problem Excel CPLEX CPLEX-RH

(10,2) average
std.dev.

151.85
66.82

54.54
13.51

68.03
23.87

(50,10) average
std.dev. – 6,794.15

1,292.54
6,254.24
1,021.46

(100,20) average
std.dev. – 34,695.10

2,339.14
29,038.12
1,961.16

The experiments for 10 items and 2 alloys clearly show that

the solution provided by Excel cannot compete with the solution

achieved by the advanced MIP solver that is commercially
available from IBM. Nevertheless, our goal was to demonstrate
that when model is appropriately relaxed Excel can be used as a
basic and cheap tool for optimization of production planning in a
foundry. However, when more variables need to be covered in the
model or more accurate solution is desired advanced MIP solvers
like CPLEX should be recommended.

For the larger instances of the problem fixed and relax method
based on the rolling-horizon planning gave on average better
results than when the planning model was optimized for all the
periods at once. This is due to the fact that a single relaxed
problem can be solved optimally or close to optimal, while for the
non-relaxed problem the solver usually delivers solutions that can
be even 70% distant from the theoretical lower bound.

5. Conclusions

In this paper the mathematical programming is applied for
foundry production planning. The model is based on a well-
known lot-sizing problem that was extended to handle the
constraints regarding changes in alloy grade. Such a model is
difficult to solve as it includes large amount of decision variables
(few thousand for the problem of a medium size). The number of
variables can be reduced by applying the concept of rolling-
horizon planning. In such approach variables are computed
precisely only for one period (e.g. a day), while for remaining
periods (days) variables are roughly computed in order to satisfy
the constraints. Although such relaxed problem usually does not
allow to find optimal solution it can provide good approximation
of optimal solution and within shorter computational time.

References

[1] de Araujo, S.A., Arenales, M.N. & Clark, A.R. (2008). Lot

sizing and furnace scheduling in small foundries. Computers
& Operations Research. 35(3), 916-932. DOI: 10.1016/
j.cor.2006.05.010.

[2] Drexl, A., Kimms, A. (1997). Lot sizing and scheduling—
survey and extensions. European Journal of Operational
Research. 99(2), 221-235. DOI: 10.1016/S0377-2217
(97)00030-1.

[3] Fleischmann, B., Meyr, H. (1997). The general lot sizing and
scheduling problem. Operational Research Spektrum. 19(1),
11-21. DOI: 10.1007/BF01539800.

[4] Clark, A.R. (2005). Rolling horizon heuristics for production
and setup planning with backlogs and error-prone demand
forecasts. Production Planning & Control. 16, 81-97. DOI:
10.1080/09537280412331286565.

[5] Stawowy, A. & Duda, J. (2013). Production scheduling for
the furnace - casting line system. Archives of Foundry
Engineering. 13(3), 84-87. DOI: 10.2478/afe-2013-0065.

[6] http://www.solver.com

	Abstract

