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Abstract 
 
The problem considered in the paper is motivated by production planning in a foundry equipped with the furnace and casting line, which 
provides a variety of castings in various grades of cast iron/steel for a large number of customers. The quantity of molten metal does not 
exceed the capacity of the furnace, the load is a particular type of metal from which the products are made. The goal is to create the order 
of the melted metal loads to prevent delays in delivery of goods to customers. This problem is generally considered as a lot-sizing and 
scheduling problem. The paper describes a mathematical programming model that formally defines the optimization problem and its 
relaxed version that is based on the conception of rolling-horizon planning. 
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1. Introduction 
 
In this paper we studied a scheduling problem in a mid-size 

foundry that makes castings to clients order In this case, the 
production planning problem consists in determining the lot size of 
the items and the required alloys to be produced during each period 
of the finite planning horizon that is subdivided into smaller periods 
(work shifts). Decision maker must take into account two main 
criteria: timeliness of orders and maximization of production 
capacity. Assuming that a production bottleneck is the melting 
furnace, a mixed-integer programming (MIP) models are usually 
proposed to solve the outlined above lot-sizing and scheduling 
problem.  

The aim of this paper is to explore whether Excel or 
commercial nonlinear solvers may be used successfully towards 
small and medium-sized foundries when planning and scheduling 
decisions are taken. Section 2 provides a MIP model for foundry 
scheduling problem. In Section 3, the details of proposed 
approaches are given. The computational experiments are described 
in Section 4, and the conclusions are drawn in Section 5. 

2. Lot-sizing and scheduling model 
 
 
2.1. MIP lot-sizing model 

 
The MIP model presented in this section is an extension of 

Araujo et al. lot sizing and scheduling model for automated 
foundry [1]. We use the following notation: 
Indices 
i=1,…,I - produced items; k=1,…,K - produced alloys, 
t=1,…,T - working days; n=1,…,N - sub-periods, 
Parameters 
dit - demand for item i in day t; wi - weight of item i, 
ai

k = 1, if item i is produced from alloy k, otherwise 0, 
stk - setup loss for alloy k; C - loading capacity of the furnace, 
hi

–, hi
+ - cost for delaying (–) and storing (+) production of item I, 

s - setup penalty (cost) when alloy is change in the furnace. 
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Variables 
Iit

–, Iit
+ - number of items i delayed (–) and stored (+) at the end of 

day t, 
zn

k = 1, if there is a setup (resulting from a change) of alloy k in 
sub-period n, otherwise 0, 
yn

k = 1, if alloy k is produced in n in sub-period, otherwise 0, 
xin - number of items i produced in sub-period n. 

Production planning problem in a foundry is defined as 
follows: 
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The goal (1) is to find a plan that minimizes the sum of the 
costs of delayed production, storage costs of finished goods and 
the setup costs for alloy changing in the furnace. 

Equation (2) balances inventories, delays and the volume of 
production of each item in each day. Constraint (3) ensures that 
the furnace capacity is not exceeded in a single load. Constraint 
(4) sets variable zn

k to 1, if there is a change in an alloy in the 
subsequent periods, while constraint (5) ensures that only one 
alloy is produced in each sub-period. 

The model itself can be seen as an extension of generalised 
lot-sizing and scheduling problem (GLSP) that is well described 
in literature and for which standard MIP methods usually achieve 
acceptable results [2,3]. However, since the lot-sizing model for a 
foundry takes into account also the order of alloys – setup penalty 
is calculated as a part of the objective function (1) and alloy 
changing loss is included in constraint (3) – it is much harder to 
solve than the classic lot-sizing model. 
 
 
2.2. Relaxed lot-sizing model 

 
The model presented in the previous section, even for the 

smallest problem considered later in the experiments and 
containing 10 items, 2 different alloys and the planning horizon of 
50 sub-period in total, results in 830 optimization variables (210 
binary and 630 integer). This is far too many Excel Solver can 
handle (the limit for standard built-in MS Excel Solver is 200 
variables). Thus we decided to apply a method similar to the fix 

and relax method proposed by Araujo et al. in [1]. The main idea 
behind this method is to compute the exact plan only for a single 
day, while for remaining days only rough plan is determined. This 
is called rolling-horizon planning [4].  

Araujo et al. [1] relaxed all variables xin and yn
k for not fixed 

sub-periods. Variable xin representing the number of items i 
produced in sub-period n is of a float type instead of integer, 
while yt

k is now integer value reflecting in how many sub-periods 
a given alloy will be produced.  

Thus constraint (2) is valid only for the fixed day (tf) and for 
other days it looks as follows: 
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Analogously constraint (5) for the days other than the fixed 

one is extended to the following formula: 
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Instead of one model computed once, the model for rolling-

horizon is computed T times. Each time values of fixed variables 
computed for one day are included as constants in the following 
days. 

In order to make the model possible for solving by MS Excel 
Solver we decided to farther reduce the size of the model. For 
non-fixed days we replaced variables xin with xit, what means that 
the production equation (2) for the relaxed days is balanced as: 

 

fitititittiti ttTtIidIIxII ≠===+−+− −+−
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 (9) 
 
This allows for the reduction of variables to only 140 integer 

variables (100 for the fixed day and 40 for the remaining days). 
Variable yn represents the alloy grade produced in a given sub-
period (only for the fixed day). Constraint (8) is then not used, 
and only total capacity of furnace is checked for the relaxed days: 
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This allows for farther reduction of binary variables from 130 

to only 10, giving the total number of 150 variables. 
 
 

3. Solution methods 
 

Experiments performed by the authors [5] for large instances 
of lot-sizing and scheduling problem indicated that such problems 
are hard to solve and it is worth to apply computational 
intelligence methods like genetic algorithms. In this paper we 
want to examine whether Excel Solver can be used for small 
instances of the problem and what is the impact of problem 
relaxation on the final result. 
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3.1. Excel Solver 
 

Excel Solver is provided by Frontline Systems. The firm also 
sales an extended version of the solver, which enables to solve larger 
problems. For non-linear problem, like ours, it can handle 500 
variables and 250 constraints (compare [6]), while the version built-in 
MS Excel application is limited to 200 variables and 100 constraints. 
We decided to use Frontline Solver Pro, as we found that it performs 
better than standard Excel Solver even for the same amount of 
variables and constraints. This solver is continuously updated, while 
the built-in MS Excel version changes only with a new version of 
application (usually once every three years). 

Regarding the solver limitation for non-linear problems we were 
able to compute only the smallest example with 10 items and  
2 different alloys. The problem with 50 items and 10 alloys would 
require using 710 variables, what exceeds the limit. 

The main fragment of a spreadsheet that calculates production 
plan in a foundry is shown in Fig. 1. First table contains input data, 
while the second one contains a detailed plan for one day (with 10 
sub-periods) and rough plan for the remaining days (2-5). 

 

 
Fig. 1. Fragment of a spreadsheet that calculates production plan 

 
 
3.2. CPLEX solver 

 
We wrote the model in optimization programming language 

(OPL) that was later run in IBM CPLEX Optimization Studio 12.6. 
The basic model in OPL language is shown in Fig. 2. 

 
minimize 
 sum(i in ir, t in tr) (hm[i]*im[i][t]+hp[i]*ip[i][t]) 
 + sum(k in kr, t in tr, n in nr) sp*z[k][t][n]; 
subject to 
{ 
 forall(i in ir) im[i][0]==0; 
 forall(i in ir) ip[i][0]==0; 
 forall(k in kr,t in tr, n in nr) y[k][t][0]==0; 
 forall(i in ir,t in tr) ip[i][t-1]-im[i][t-1]+ sum(n in nr) 
x[i][t][n]-ip[i][t]+im[i][t] == d[i][t]; 

 forall(k in kr, t in tr, n in nr) sum(i in ir) 
w[i]*x[i][t][n]*a[i][k]+st[k]*z[k][t][n]<=C*y[k][t][n]; 

 forall(k in kr, t in tr, n in nr) sum(i in ir)  
 forall(k in kr, t in tr,n in nr) 
 z[k][t][n]>=y[k][t][n]-y[k][t][n-1]; 

 forall(t in tr, n in nr) sum(k in kr) y[k][t][n]==1; }; 
 

Fig. 2. Basic OPL model for foundry production planning 

Arrays hm, hp represent costs hi
– and hi

+, while arrays im and ip 
represents variables Iit

– and Iit
+, respectively. Variables x, y and z 

are indexed by both day (t) and its sub-periods (n). Sub-period 
number that is used in the model 2.1 can be calculated as: t*N+n. 
 
 
3.3. CPLEX solver with relaxation 

 
For the largest problem considered in the experiments CPLEX 

was not able to provide optimal solution for the model. The solution -
even after 10 minutes - was on average 50-70% distant from the 
theoretical lower bound, so we decided to experiment with the fixed 
and relaxed approach described in section 2.2. The objective function 
remains the same (however this time it is calculated in T steps). The 
constraints in the rolling horizon version of the model written in OPL 
language are shown in Fig. 3. 
 
subject to 
{ 
 forall(i in ir) im[i][0]==0; 
 forall(i in ir) ip[i][0]==0; 
 forall(k in kr, t in tr) y[k][t][0]==0; 
 forall(i in ir, t in fixed_periods, n in nr) xr[i][t][n]==0; 
 forall(i in ir, t in relaxed_periods, n in nr) x[i][t][n]==0; 
 forall(k in kr, t in relaxed_periods, n in nr) y[k][t][n]==0; 
 forall(k in kr, t in fixed_periods) yr[k][t]==0; 
 forall(i in ir,t in tr) ip[i][t-1]-im[i][t-1]+ sum(n in nr) 
(x[i][t][n] + xr[i][t][n])-ip[i][t]+im[i][t] == d[i][t]; 

 forall(k in kr, t in fixed_periods, n in nr) sum(i in ir) 
w[i]*x[i][t][n]*a[i][k]+st[k]*z[k][t][n]<=*C*y[k][t][n]; 

 forall(k in kr,t in relaxed_periods) sum(i in ir, n in nr) 
w[i]*xr[i][t][n]*alloy[i][k]<=C*yr[k][t]; 

 forall(k in kr, t in fixed_periods, n in nr) 
z[k][t][n]>=y[k][t][n]-y[k][t][n-1]; 

 forall(t in fixed_periods, n in nr) sum(k in kr) 
y[k][t][n] == 1; 

 forall(t in relaxed_periods) sum(k in kr) yr[k][t] == N; }; 
 

Fig. 3. Constraints in rolling-horizon model for foundry 
production planning 

 
Arrays xr and yr represent relaxed variables xin and yt

k, 
respectively. Fixed_periods are changed from 1,…,1, to 1,…,5 
and relaxed_periods are changed from 2,…,5 to empty range in 
the last iteration.  

In order to automate the computing process we wrote C# 
application that run the rolling horizon models iteratively day after 
day, taking the values of the fixed variables from the previous 
solution. We set the time limit for each model to 3 minutes, however 
usually the partial solution was provided within 1 minute or almost 
immediately, so the final solution after 5 days was usually achieved 
within 6-7 minutes. 
 
 

4. Computational experiments 
 
 
4.1. Test problems 
 

Computational experiments were conducted on the basis of the 
test problems proposed in [1]. The characteristic of these problems is 
covered in Table 1. The values for demand and weight were 
determined using uniform distribution within a given range. 
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Table 1. 
Test problems characteristics 
Parameter Value 
number of items (I), number of alloys (K) (10,2); (50,10); (100,20) 
number of days (T) 5 
number of subperiods (N) 10 
demand (dit) [10, 60] 
weight of item (wi) [1, 30] 
setup loss for alloy (stk) [5, 10] 
setup penalty (s) 5 

We extended the test problems by introducing costs for 
delayed items and costs for storing the items produced that do not 
match the demand. Those parameters were randomly generated as 
follows: 

 
hi

–
 = 6 * random01 + 3 

 
hi

+
 = wi * 0.02 + 0.05 

(11) 
 

(12) 
 
Ten instances of the problem for each size were generated. 

The basis furnace capacity C was generated using the following 
formula corresponding to the total sum of the weights of ordered 
items:  
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4.2. Results of the experiments 
 

Computational experiments were conducted for three sizes of 
planning problems: with 10 items made from 2 different alloys, 
50 items made from 10 alloys, and with 100 items and 20 alloys. 
For each problem size ten instances were computed. Excel Solver 
was able to handle only the smallest problem, regarding the limit 
of optimization variables. The computational time was similar for 
all the examined methods and ranged from 6 to 8 minutes. 

The average results achieved for all 10 instances along with 
the standard deviations are presented in Table 2. 

 
Table 2. 
Results of the experiments for examined methods 
Problem  Excel CPLEX CPLEX-RH 

(10,2) average 
std.dev. 

151.85 
66.82 

54.54 
13.51 

68.03 
23.87 

(50,10) average 
std.dev.  – 6,794.15 

1,292.54 
6,254.24 
1,021.46 

(100,20) average 
std.dev.  – 34,695.10 

2,339.14 
29,038.12 
1,961.16 

 
The experiments for 10 items and 2 alloys clearly show that 

the solution provided by Excel cannot compete with the solution 

achieved by the advanced MIP solver that is commercially 
available from IBM. Nevertheless, our goal was to demonstrate 
that when model is appropriately relaxed Excel can be used as a 
basic and cheap tool for optimization of production planning in a 
foundry. However, when more variables need to be covered in the 
model or more accurate solution is desired advanced MIP solvers 
like CPLEX should be recommended. 

For the larger instances of the problem fixed and relax method 
based on the rolling-horizon planning gave on average better 
results than when the planning model was optimized for all the 
periods at once. This is due to the fact that a single relaxed 
problem can be solved optimally or close to optimal, while for the 
non-relaxed problem the solver usually delivers solutions that can 
be even 70% distant from the theoretical lower bound.  

 
 

5. Conclusions 
 

In this paper the mathematical programming is applied for 
foundry production planning. The model is based on a well-
known lot-sizing problem that was extended to handle the 
constraints regarding changes in alloy grade. Such a model is 
difficult to solve as it includes large amount of decision variables 
(few thousand for the problem of a medium size). The number of 
variables can be reduced by applying the concept of rolling-
horizon planning. In such approach variables are computed 
precisely only for one period (e.g. a day), while for remaining 
periods (days) variables are roughly computed in order to satisfy 
the constraints. Although such relaxed problem usually does not 
allow to find optimal solution it can provide good approximation 
of optimal solution and within shorter computational time. 
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