JOURNAL OF PLANT PROTECTION RESEARCH Vol. 51, No. 3 (2011) DOI: 10.2478/v10045-011-0049-1 # EVALUATION OF THE EFFICACY OF MESOTRIONE PLUS NICOSULFURON WITH ADDITIVES AS TANK MIXTURES USED FOR WEED CONTROL IN MAIZE (ZEA MAYS L.) Grzegorz A. Skrzypczak*, Łukasz Sobiech, Wojciech Waniorek Poznań University of Life Sciences, Agronomy Department Mazowiecka 45/46, 60-623 Poznań, Poland Received: September 15, 2010 Accepted: June 7, 2011 Abstract: The evaluation of the effects of grass and broadleaf weed control with different mixture rates of mesotrione plus nicosulfuron with methylated rapeseed oil and urea-ammonium nitrate liquid fertilizer (UAN) applied postemergence in maize was conducted in field experiments during the agricultural seasons of 2006, 2007 and 2008. Contact angle and surface tension were measured for all tank-mix solutions. There was no phytotoxicity observed on maize following the application of the herbicide-plus-additives treatment. Reduced rates of herbicide with additives provided similar control levels of *Echinochloa crus-galli* (L.) Beauv. as mesotrione used alone. The tank-mix of herbicides and adjuvants gave no antagonistic effect and it increased weed control. Plots treated with a reduced rate of tank-mix with additives, were always among the highest yielding as compared to untreated plots. Any reductions in cob and grain yield were associated with high weed fresh matter yields, indicating that it was the competition with weeds that led to a reduction in the maize grain yield and not the herbicide phytotoxicity. Key words: weed control, tank-mix, mesotrione, nicosulfuron, additives, maize, Zea mays ### INTRODUCTION Weed control is an important management practice for maize production that should be carried out to ensure optimum grain yield (Skrzypczak and Pudełko 1993; Skrzypczak *et al.* 1995, 2005; Adamczewski *et al.* 1997). Mesotrione is a new callistemone herbicide that inhibits the HPPD enzyme (p-hydroxyphenylpyruvate dioxygenase), a component of the biochemical pathway that converts tyrosine to plastoquinone and α -tocopherol (Lee et al. 1998; Cornes 2005). Following treatment in sensitive plants, carotenoid biosynthesis is disrupted in the chlorophyll pathway, resulting in a bleaching effect (Wichert et al. 1999). Mesotrione is a member of the benzoylcyclohexane-1,3-dione family of herbicides, which are chemically derived from a natural phytotoxin obtained from the Callistemon citrinus (Curtis) Skeels plants. Mesotrione has been shown to be effective for both pre- and postemergence control of weeds in maize (Sutton et al. 1999; Armel et al. 2003b). However, as it is a weak acid, mesotrione has been found to be highly absorbed by soil organic matter in acid soils, thus requiring higher rates when applied pre-emergent in these environments (Wichert et al. 1999). Mesotrione can be used to control weeds in conventional and no-till maize. It can also be used too control glyphosate tolerant weeds in glyphosate-resistant maize (Armel et al. 2003a, 2003c). Mesotrione, which provides control of major broad-leaved weeds, can be used in integrated weed management programmes, depending on the grower's preferred weed control strategy. With postemergence applications, mesotrione provides naturally selective control of key weed species that may show triazine resistance e.g. Chenopodium album L., Amaranthus spp., Solanum nigrum L., as well as weed species that show resistance to acetolactase synthase (ALS) inhibitors e.g. Xanthium strumarium L., and Sonchus spp. Thus, mestrione introduces a new naturally selective tool into weed management programmes for use in maize (Mitchell et al. 2001; Sutton et al. 2002). Maize is tolerant to mesotrione due to the slower uptake and selective metabolism of maize. In all cases, a grass herbicide is still needed in the weed control programme. Recently, mesotrione has been used as an effective tank-mix partner with pre-emergence or postemergence applications in maize for controlling broadleaf weeds and grasses (Mitchell et al. 2001). Weed control can be influenced by factors such as postemergence herbicide application rate, and timing, and use of additives. Since the activity of mesotrione in the soil is relatively short, optimum application methods and rates are essential for providing control of weeds that emerge before and after postemergence applications of mesotrione. Previous research has shown a synergistic activity between mesotrione and photosystem II inhibitors in the mixture, where herbicidal activity observed in the target 301 plant was greater than expected (Sutton *et al.* 2002; Abendroth *et al.* 2006). Nicosulfuron is a postemergence sulfonylurea herbicide that in low rates is able to control many difficultto-manage monocotyledonous weeds, in maize. Nicosulfuron is safe for maize and the environment when used according to label recommendations. The water solubility of nicosulfuron and other sulfonylurea herbicides directly relates to the pH of the spray mixture and pKa of a hydrogen atom on the urea bridge. Some adjuvants called "basic blends", increase the pH of the spray mixture to increase solubility of weak acid herbicides and enhance biological activity (Green and Hale 2005). Tank-mixing of two or more herbicides is a practice which is becoming more common. Tank-mixing is done with most agronomic crops to control a wide spectrum of weeds, reduce production costs, and/or prevent the development of herbicideresistant weeds (Zhang et al. 1995). Synergistic herbicidal activity has the potential to reduce application costs and amount of pesticides entering the environment (Streibig and Jensen 2000; Kudsk and Mathiassen 2004). Furthermore, the application of herbicides with independent modes of action in combination (tank-mix) rather than in rotation, has the potential to significantly delay the onset of herbicide resistance. Specific surfactants can alter the solubility of the leaf surface or perhaps the solubility of the herbicide, thereby increasing absorption. This allows polar herbicides to penetrate the nonpolar cuticle as well as enhance penetration through the slightly polar pectin portion of the leaf. The herbicide is available for cellular uptake, translocation, or action, but only after penetration through the cuticle, pectin, and cell wall. Activator adjuvants increase the activity of a given herbicide. The most common activator adjuvants are surfactants, which help with wetting, spreading, and dispersal. Surfactants either decrease phototransformation or increase absorption, or both (Penner 2000; Woźnica and Skrzypczak 1998). Tank mixing of mesotrione and nicosulfuron is a common practice according to regulations of the European Union. In some cases these herbicides may replace the use of atrazine. The objective of this research was to determine the influence of postemergence application rates of mesotrione plus nicosulfuron in combination with different additives on weed control and maize. ### MATERIALS AND METHODS Field trials were conducted using maize (cv. PR39B56) grown at the Brody Research and Education Station of Poznan University of Life Sciences, during the 2006–2008 agricultural seasons. The soil type was luvisoil with a pH ranging from 5.8 to 6.1. fertiliser and agronomic practices were applied according to State Soil Testing Laboratory recommendations. The experimental design was a randomised complete block with four replicates. The plot size was 2.8 m wide and 10 m long. Each plot contained four rows of maize planted at 70 cm row spacing. Mesotrione (Callisto 100 SC® – Syngenta®) and nicosulfuron (Milagro 040 SC® – supplied by Syngenta®) as the tank-mix were used at different rates [100+32 g/ha with- out additives, 75+30 g/ha and 50+20 g/ha both with MSO (methylated oilseed rape oil + buffer agent of 7.3–7.8 pH) at 1.5 l/ha, 75+30 and 50+20 g/ha both with UAN (urea-ammonium nitrate liquid fertilizer) at 4.0 l/ha and MSO at 1.5 l/ha, and 150 g/ha mesotrione only]. The parameters studied in the laboratory were surface tension and contact angles for all tanks-mix combinations. A drop of solution was used to measure the contact angle with optical tensiometer (Theta Lite) on a clean and dry Parafilm® surface. The instrument was calibrated. The calibration was confirmed using double-distilled water with a surface tension of 72.8 mN/m at 20°C. Treatments were applied during the 4–6 leaf stage (BBCH 14–16) of maize growth using a bicycle mounted sprayer with fan nozzles of the Lurmark 02 110 type. The sprayer delivered 230 l/ha of spray solution at 220 kPa pressure. Grass and broadleaf weed control as well as herbicide selectivity assessment to maize were evaluated 2 weeks after postemergence treatments using visual estimations (0 – no control and 100 complete controls). In July (8–10 weeks after planting), weeds were taken for fresh matter, and efficacy of weed treatments were calculated. Weed fresh matter was determined by cutting and collecting weeds at ground level in two middle rows, randomly selected from a 0.5 m² frame placed in each plot. The collected weeds were separated into grass and broadleaf species and then weighed. Cobs as well as grain yield were collected each year from the two adjacent middle rows in each plot. Maize grain, collected from each plot, was weighed and seed moisture was determined using a grain moisture tester. The seed yield was adjusted to 15.5% moisture. Weed control and yield of maize data were subjected to the analysis of variance, and treatment means were compared using the least significant difference test at 5% probability level. ## **RESULTS AND DISCUSSION** In conducted trials, maize plants showed good tolerance to mesotrione. No phytotoxic symptoms were observed in any of the mesotrione treatments alone or combinations with nicosulfuron and additives. These results agree with, James *et al.* (2006) and Sulewska *et al.* (2005), who indicated that maize plants showed good tolerance to mesotrione. The study conducted by Waligóra and Duhr (2004) showed no phytotoxicity to sweet maize in the cases where a mixture of mesotrione and atrazine were used. The main weeds occurring on the untreated plots were: *E. cruss-galli, C. album, Viola arvensis* Murr., *Geranium pusillum* L., *Polygonum aviculare* and *P. convolvulus* L. (Table 1). Reduced rates of herbicide-with-additives provided similar levels of *E. crus-galii* control as mesotrione used alone. The addition of nicosulfuron to mesotrione or reduced rates in tank- mix with both herbicide and both additives, improved the control of broadleaf weeds. The addition of nicosulfuron to mesotrione improved the control of *P. convolvulus*, *P. aviculare, and V. arvensis*. Species like *G. pusillum*, were not adequately controlled by the mesotrione-treatment alone nor by tank-mix treatments. Table 1. Weed control efficacy in applied treatments (2006–2008) | | Rate
[g/ha] | Weed control efficacy [%] | | | | | | | | |---|--------------------------------------|----------------------------|-------------------|-------|-------|-------|-------|-------|-------| | Treatment | | visual
broad-
leaved | visual
grasses | ECHCG | CHEAL | POLCO | POLAV | GERPU | VIOAR | | Mesotrione | 150 | 94 a | 89 a | 84 | 100 | 80 | 82 | 48 | 93 | | Mesotrione
+ nicosulfuron | 100
+ 32 | 94 a | 92 a | 88 | 100 | 86 | 97 | 20 | 98 | | Mesotrione
+ nicosulfuron
+ MSO* | 75
+ 30
+1.5 l/ha | 95 a | 94 a | 86 | 100 | 73 | 47 | 0 | 100 | | Mesotrione
+ nicosulfuron
+ MSO*
+ UAN** | 75
+ 30
+1.5 l/ha
+4.0 l/ha | 97 a | 95 a | 88 | 100 | 88 | 76 | 84 | 98 | | Mesotrione
+ nicosulfuron
+ MSO* | 50
+ 20
+1.5 l/ha | 94 a | 94 a | 85 | 100 | 44 | 56 | 0 | 95 | | Mesotrione
+ nicosulfuron
+ MSO*
+ UAN** | 50
+ 20
+1.5 l/ha
+4.0 l/ha | 93 a | 93 a | 80 | 100 | 80 | 65 | 54 | 95 | | Untreated (weeds g/m²) | _ | 0 b | 0 b | 544 | 1145 | 57 | 13 | 37 | 13 | | LSD (0.05) | - | 4.2 | 6.4 | - | _ | - | - | - | - | Values followed by a common letter in columns are not significantly different at p < 0.05 ECHCG - Echinochloa crus-galli; CHEAL - Chenopodium album; POLCO - Polygonum convolvulus; POLAV - Polygonum aviculare; GERPU – Geranium pusillum; VIOAR – Viola arvensis Table 2. Cob and grain yield of maize and some elements of yield structure as influenced by herbicide treatments (2006–2008) | Treatment | Rate | Yield | [t/ha] | Weight of 1,000 | Plant height [cm] | | |--|--------------------------------------|--------|--------|-----------------|-------------------|--| | Treatment | [g/ha] | cobs | grain | grains [g] | | | | Mesotrione | 150 | 12.0 a | 7.0 b | 331.5 a | 176 a | | | Mesotrione
+nicosulfuron | 100
+ 32 | 13.0 a | 8.5 a | 334.0 a | 182 a | | | Mesotrione
+ nicosulfuron
+ MSO | 75
+ 30
+1.5l /ha | 12.7 a | 8.5 a | 333.6 a | 183 a | | | Mesotrione
+ nicosulfuron
+ MSO
+ UAN | 75
+ 30
+1.5 l/ha +4.0 l/ha | 12.4 a | 8.2 ab | 328.3 a | 183 a | | | Mesotrione
+ nicosulfuron
+ MSO | 50
+ 20
+ 1.5 l/ha | 12.2 a | 8.5 a | 329.3 a | 182 a | | | Mesotrione
+ nicosulfuron
+ MSO
+ UAN | 50
+ 20
+1.5 l/ha
+4.0 l/ha | 12.0 a | 7.8 ab | 328.8 a | 180 a | | | Untreated | _ | 5.3 b | 4.5 c | 279.4 b | 130 b | | | LSD (0.05) | - | 2.04 | 1.31 | 17.22 | 19.3 | | Values followed by a common letter in columns are not significantly different at p < 0.05 ^{*}MSO – methylated oilseed rape oil + buffer agent of 7.3–7.8 pH ^{**}UAN – urea-ammonium nitrate liquid fertilizer However, the addition of urea-ammonium nitrate liquid fertilizer to reduced rates of herbicides always improved the control of the G. pusillum species. According to research conducted by Wichert and Pastushok (2000), the postemergence herbicide applications can be improved by adding 1% v/v crop-oil concentrate (COC) and 2.5% v/v urea ammonium nitrate (UAN). As a result, their addition to mesotrione, which inhibits carotenoid biosynthesis by inhibition of the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD), is complementary. Also, other research indicated that the addition of mesotrione plus atrazine to a sulfonylurea herbicide decreased herbicidal efficacy on Setaria viridis L., Setaria glauca L., and Sorghum bicolor L., compared with the sulfonylurea herbicide applied alone. In addition, increasing mesotrione application from 53 to 105 g/ha decreased efficacy of sulfonylurea herbicide in the tank-mix, on selected grass species (Schuster et al. 2008). Also, Sulewska et al. (2005) reported that mesotrione needs an herbicide 'partner' to be more effective against *G. pusillum* control. The work of Lingenfelter et al. (2002) has shown that mesotrione applied postemergence provided > 90% control of *C. album, Abutilon theophrasti* Med. and *Amaranthus hybridus* L., but *Ambrosia artemisiifolia* L. and *P. convolvulus* control was improved by adding atrazine. Sulewska and Koziara (2006) also obtained better results of broadleaf weed control when mesotrione with atrazine was applied as a tank-mix. They observed complete weed control of such species as: *C. album, V. arvensis, Capsella bursa-pastoris* L., *Lamium purpureum* L. as well as *P. convolvulus*. James et. al. (2006) reported that all the broadleaf weeds present were significantly reduced by mesotrione, with the exception of *Portulaca oleracea* L. Portulaca was adequately controlled by atrazine, dicamba and nicosulfuron. Our presented results, and research work done by other authors are done with the new sustainable use directive of the European Union in mind. The new directive's preference is for the use of pesticides and other forms of intervention to be kept down to levels that are only necessary, *e.g.* by using reduced doses, reduced application frequency or partial applications, considering that the level of risk in vegetation is acceptable and that intervention does not increase the risk for development of resistance in populations of harmful organisms (http://eur-lex.europa.eu). Plots treated with mesotrione and mesotrione plus nicosulfuron with additives, were always among the highest yielding as compared to untreated plots. Any reductions in cob and grain yield were associated with high weed fresh matter yields, indicating that it was the weed competition that led to reduced yield and not herbicide phytotoxicity (Table 2). Dynamic surface tension from the start was in the 29–44 mN/m range, but after 1 second, all measurements were stable at around 30 mN/m and did not influence efficacy (Fig. 1). All additives reduced contact angles of droplets on Parafilm® surface (Table 3). UAN may enhance herbicide absorption and translocation and deactivate antagonistic water salts. Oil additives increase herbicide absorption and spray retention. The water solubility limit of nicosulfuron increased after a buffer agent was added. Fig. 1. Dynamic surface tension of all tank mix combinations www.czasopisma.pan.pl Table 3. Contact angle on the Parafilm® surface | Treatment | Rate
[g/ha] | Contact angle [°] | | |----------------|----------------|-------------------|--| | | | | | | Mesotrione | 150 | 62.1 | | | | | V-1- | | | Mesotrione | 100 | 60.0 | | | + nicosulfuron | + 32 | | | | | | | | | Mesotrione | 75 | 55.1 | | | + nicosulfuron | + 30 | | | | + MSO | + 1.5 l/ha | | | | | | | | | Mesotrione | 75 | 50.2 | | | + nicosulfuron | + 30 | | | | + MSO | + 1.5 l/ha | | | | + UAN | + 4.0 l/ha | | | | | | | | | Mesotrione | 50 | 53.0 | | | + nicosulfuron | + 20 | | | | + MSO | + 1.5 l/ha | | | | | | | | | Mesotrione | 50 | 55.9 | | | + nicosulfuron | + 20 | | | | + MSO | + 1.5 l/ha | | | | + UAN | + 4.0 l/ha | | | | | | | | | Water | _ | 110.6 | | | | 1 | l | | ### **CONCLUSIONS** The presented results demonstrate that mesotrione was an effective herbicide for post-emergence control of weeds in maize, especially to broadleaf weeds. However, to ensure effective control of all weeds, mesotrione should be used in combination with an herbicide that has more activity on grass weeds (like a nicosulfuron). Using a combination of reduced rates of this postemergence herbicide with additives, overcomes many of the potential problems and also provides the best strategy for avoiding herbicide resistance. Selection will mainly depend on weed spectrum, cost, and use of restrictions. # **ACKNOWLEDGEMENTS** The authors would like to acknowledge Dr. Paweł Wiatrak from Clemson University (South Carolina, USA) for reviewing the paper and correcting the English spelling. # **REFERENCES** Abendroth J.A., Martin A.R., Roeth F.W. 2006. Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol. 20 (1): 267-274. - Adamczewski K., Skrzypczak G., Lisowicz F., Bubniewicz P. 1997. Aktualne problemy ochrony kukurydzy w Polsce. Zesz. Probl. Post. Nauk Rol. 450: 63-78. - Armel G.R., Wilson H.P., Richardson R.J., Hines T.E. 2003a. Mesotrione combinations in no-till corn (Zea mays). Weed Technol. 17 (1): 111-116. - Armel G.R., Wilson H.P., Richardson R.J., Hines T.E. 2003b. Mesotrione, acetochlor, and atrazine for weed management in corn (Zea mays). Weed Technol. 17 (2): 284-290. - Armel G.R., Wilson H.P., Richardson R.J., Hines T.E. 2003c. Mesotrione alone and in mixtures with glyphosate in glyphosate-resistant corn (Zea mays). Weed Technol. 17 (4): 680-685. - Cornes D. 2005. Callisto: a very successful maize herbicide inspired by allelochemistry. http://www.regional.org.au/au/allelopathy/2005/2/7/2636_cornesd.htm. Accessed: February - Green J.M., Hale T. 2005. Increasing and decreasing pH to enhance the biological activity of nicosulfuron. Weed Technol. 19 (2): 468-475. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri= OJ:L:2009:309:0071:0086:EN:PDF. Accessed: May 15, 2011. - James T.K., Rahman A., Hicking J. 2006. Mesotrione a new herbicide for weed control in maize. NZ Plant Protec. 59: 242-249 - Kudsk P., Mathiassen S.K. 2004. Joint action of amino acid biosynthesis inhibiting herbicides. Weed Res. 44 (4): 313-322. - Lee D.L., Knudsen C.G., Michaelay W.J., Chin H., Nguyen N.H., Carter C.G., Cromartie T.J., Lake B.H., Shribbs J.M., Fraser T. 1998. The structure-activity relationships of the triketone class of HPPD herbicides. Pest Manage. Sci. 54 (4): 377-384. - Lingenfelter D.D., Curran W.S., Handwerk K. 2002. Isoxaflutole vs. mesotrione: the battle of the bleachers. Proc. New East Weed Sci. Soc. - Annual Meeting, Philadelphia, USA. 7-10 January, 241 pp. - Mitchell G., Bartlett D.W., Fraser T.E.M., Hawkes T.R., Holt D.C., Townson J.K., Wichert R.A. 2001. Mesotrione: a new selective herbicide for use in maize. Pest. Manage. Sci. 57 (2): 120-128. - Penner D. 2000. Activator adjuvants. Weed Technol. 14 (4): 785- - Schuster Ch.L., Al-Khatib K., Dille A.J. 2008. Efficacy of sulfonylurea herbicides when tank mixed with mesotrione. Weed Technol. 22 (1): 222-230. - Skrzypczak G., Pudełko J. 1993. Assessment and economic aspect of herbicides used for weed control in maize (Zea mays L.). p. 267-273. In: Proc. 8th EWRS Symposium, Braunschweig, Germany. 14-16 June 1993. - Skrzypczak G., Pudełko J., Bleharczyk A., Woźnica Z. 1995. Adjuvants and herbicides in maize (Zea mays L.) production. p. 315-319. In: Proc. 9th EWRS Symposium, Budapest, Hungary. 10-12 July, 1995. - Skrzypczak G., Pudełko J., Waniorek W. 2005. Ocena skuteczności herbicydów do zwalczania Echinochloa crus-galli w uprawie kukurydzy. Prog. Plant Protection/Post. Ochr. Roślin 45: 1078-1080. - Sulewska H., Ptaszyńska G., Jazic P., Waligóra H. 2005. Ocena zachwaszczenia kukurydzy po powschodowym użyciu wybranych herbicydów. Prog. Plant Protection/Post. Ochr. Roślin 45: 1120-1122. - Sulewska H., Koziara W. 2006. Skuteczność wybranych herbicydów stosowanych powschodowo w kukurydzy. Prog. Plant Protection/Post. Ochr. Roślin 46: 1120–1122. - Sutton P.B., Foxon G.A., Beraud J-M., Anderdon J., Wichert R. 1999. Integrated weed management systems for maize using mesotrione, nicosulfuron and acetochlor. The BCPC Conference Weeds 1: 225–230. - Sutton P., Richards C., Buren L., Glasgow L. 2002. Activity of mesotrione on resistant weeds in maize. Pest Manage. Sci. 58 (9): 981–984. - Streibig J.C., Jensen J.E. 2000. Actions of herbicides in mixtures. p. 153–180 In: "Herbicides and Their Mechanisms of Action" (A.H. Cobb, R.C. Kirkwood, eds.). Sheffield, England, UK: Sheffield Academic, 295 pp. - Waligóra H., Duhr E. 2004. Skuteczność chwastobójcza preparatów Callisto 100 SC, Titus Plus DF i Emblem 20 WP w kukurydzy cukrowej. Prog. Plant Protection/Post. Ochr. Roślin 44: 1183–1186. - Wichert R., Townson J.K., Bartlett D.W., Foxon G.A. 1999. Technical review of mesotrione, a new maize herbicide. The BCPC Conference Weeds 1: 105–110. - Wichert R.A., Pastushok G. 2000. Mesotrione weed control with different adjuvant systems. p. 55–81. In: Proc. N. Cent. Weed Sci. Soc. Annual Meeting Kanos City, USA. 11–14 December, 230 pp. - Woźnica Z., Skrzypczak G. 1998. Adjuvants for foliar applied herbicides. Ann. Warsaw Agric. Univ. Agriculture 32: 33–42. - Zhang J., Hamill A.S., Weaver S.E. 1995. Antagonism and synergism between herbicides: trends from previous studies. Weed Technol. 9 (1): 86–90. # **POLISH SUMMARY** OCENA MIESZANINY MEZOTRIONU I NIKOSULFURONU Z RÓŻNYMI WSPOMAGACZMI NA SKUTECZNOŚĆ ZWALCZANIA CHWASTÓW W KUKURYDZY (ZEA MAYS L.) Po przeprowadzeniu badań polowych oceniono skuteczność zwalczania chwastów prosowatych i gatunków dwuliściennych w uprawie kukurydzy na ziarno, po zastosowaniu mieszaniny preparatów zawierających substancje aktywne: mezotrion i nikosulfuron. Stosowano je w obniżonych dawkach, z dodatkiem wspomagaczy zawierających ester metylowy oleju rzepakowego oraz płynny roztwór mocznika i saletry amonowej (RSM). Badania wykazały, że zastosowanie mieszaniny herbicydów w obniżonych dawkach wraz z ocenianymi wspomagaczami, pozwalało na uzyskanie podobnej skuteczności chwastobójczej, jak po zastosowaniu wyższych dawek herbicydów, lecz bez wspomagaczy. Ponadto stwierdzono, że zastosowane adiuwanty obniżały kąt przylegania kropli do powierzchni i szybko, po zabiegu, stabilizowały napięcie powierzchniowe cieczy użytkowej. Dodatek nicosulfuronu do mezotrionu i zastosowanie niższych dawek tych herbicydów z adiuwantami, nie powodowało efektów antagonistycznych i obniżenia skuteczności zwalczania chwastów, a także nie miało fitotoksycznego wpływu na rośliny kukurydzy.