

ARCHIVES of FOUNDRY ENGINEERING

DE DE GRUYTER
OPEN

ISSN (2299-2944) Volume 16 Issue 1/2016

29 - 32

DOI: 10.1515/afe-2015-0098

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences

Thermal Properties of Foundry Mould Made of Used Green Sand

P.K. Krajewski*, G. Piwowarski, J. Buraś

Department of Foundry Processes Engineering, Faculty of Foundry Engineering, AGH University of Science and Technology, 23 Reymonta Street, 30-059 Krakow, Poland *Corresponding author. E-mail address: krajpaw@agh.edu.pl

Received 01.07.2015; accepted in revised form 17.07.2015

Abstract

The paper presents results of measuring heat diffusivity and thermal conductivity coefficients of used green foundry sand in temperature range ambient -600 °C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that the obtained relationships are complex and that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured and solidified casting.

Keywords: Castings, Solidification, Used green sand, Thermo-physical properties

1. Introduction

In foundry practice in many cases shape castings solidify in sand-moulds. The solidification and feeding processes depend on grain-size of the casting, which can be controlled by heterogeneous nucleation and/or or by the intensity of cooling [1-2]. The latter strongly depends on the thermo-physical properties of the mould [3]. It well known that the amount and rate of heat transferred from a solidifying melt to foundry mould and ambient determines the structure and properties of the casting. Nowadays designing of the casting technology uses numerical simulation of the heat and mass exchange processes. Simulation of the solidification processes requires knowledge of several boundary parameters, among others, the thermo-physical parameters of the system casting - mould - ambient [4-5]. For a mould these are: coefficient of thermal diffusivity, coefficient of heat capacity, coefficient of thermal conductivity and mass density. For a casting these are: mainly: densities of liquid and solid state, liquid and solid heat capacities and heat of solidification. Thermophysical properties of sand moulds strongly depend on temperature changes during cooling of poured castings. It is also well known that transport of moisture from the interface casting-mould through the mould body strongly influences mould thermal conductivity [4, 6-11]. Unfortunately these relationships are in most cases unknown. Moreover, the available software packages have mean values of those existing in literature and using them can lead to low accuracy of the calculations. Thus, there is a need of establishing the temperature dependencies of the mentioned thermo-physical properties as well as a need of performing a confrontation: experimental results vs. numerical calculations of the solidification process. Many different methods of measurements of the thermo-physical properties are available in literature [4] and their describing is beyond scope of this paper.

2. Experimental

In this experiment pure Cu plate was cast into used greensand mould containing bentonite of about 5 wt.% and water of about 3 wt.%. During the experiment temperature field of the mould as well as cooling curve of the solidifying casting were registered. The details of the experiment are shown in Figure 1 and are already described in detail in [8-11].

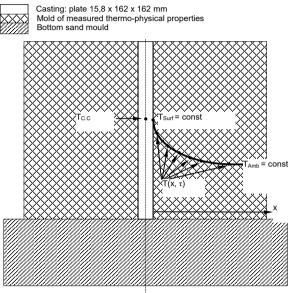


Fig. 1. Scheme of measuring system. Thermocouples location: $T_{\text{C.C}}$ – centre of the casting; T_{Surf} – surface of sand mould; $T(x,\tau)$ - thermocouples located in different distances from the surface; T_{Amb} – mould temperature unchanged during the solidification of casting (ambient temperature for the casting) [8, 11-12]

The sand mould with mounted thermocouples is shown in Figure 2. The material properties of the casting – mould system used during calculations are collected in Table 1. The measured time of solidification was confronted with the one calculated from the analytical formula (1), [3, 8-11]:

$$\sqrt{\tau_{\rm SOL}} = \frac{\sqrt{\pi} M_{\rm C}}{2 F_{\rm C} b_{\rm M} \left(T_{\rm CRYST} - T_{\rm Amb}\right)} \left(L_{\rm C} + C_{\rm C}^{\rm liq} \Delta T_{\rm OH}\right) \tag{1}$$

 $M_{\rm C}$ and $F_{\rm C}$ – mass and cooling surface of casting; $b_{\rm M}$ – coefficient of heat accumulation of mould material is given by the mould thermal conductivity λ_M , heat capacity C_M and density ρ_M :

$$b_M = \sqrt{\lambda_M \ C_M \ \rho_M} \tag{2}$$

Combining relationships:

$$b = \sqrt{\lambda C \rho} \qquad a = \frac{\lambda}{\rho C} \tag{3}$$

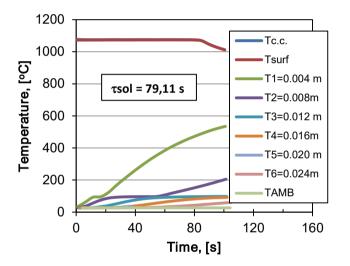
one can easily calculate required coefficients as follows:

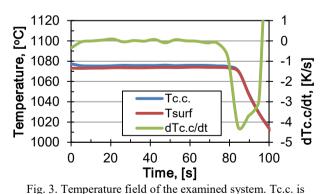
$$\lambda_{\rm M} = b_{\rm M} \sqrt{a_{\rm M}} \qquad C_{M} = \frac{b_{\rm M}}{\rho_{\rm M} \sqrt{a_{\rm M}}} \tag{4}$$

where: $a_{\rm M}$ – heat diffusivity coefficient of the mould material.

Fig. 2. The experimental mould after pouring. Visible thermocouples mounted in the mould cavity and in the mould body [9, 12]

Table 1
Properties and geometrical dimensions of the casting and mould used during the calculations


used during the calculations	
Property – Symbol [Unit]	Value
Liquid Cu density - ρ _{LC} [kg/m ³]	8300
Solid Cu density - ρ _{SC} [kg/m ³]	8900
Cu heat capacity in liquid state near temperature of melting C_C^{liq} [J/(kgK)]	540
Cu latent heat of fusion - L _C / J/kg	205000
Melt overheating - ΔT_{OH} / K	20
Measured mean temperature of casting crystallization - T _{CRYST} [°C]	1075.7
Dimensions of plate-shape casting [mm]	130 x 130 x 13
Measured density of sand mould - ρ_M [kg/m ³]	1476
Initial mould temperature T _{Amb} [°C]	26.4
Measured in experiment time of solidification - τ_{sol} [s]	79.1


The $a_{\rm M}$ heat diffusivity coefficient can be determined from the registered temperature field of the mould described by error function [8]:

$$\frac{T_{\rm X,\tau} - T_{\rm Surf}}{T_{\rm Amb} - T_{\rm Surf}} = erf(u); \quad \text{where: } u = \frac{x}{2\sqrt{a_{\rm M}\tau}}$$
 (5)

3. Results and Discussion

The temperature field in the examined system casting – used green sand mould is shown in Fig. 3. The temperature dependences of the investigated sand thermal diffusivity and thermal conductivity are shown in Figs 4 and 5. From Figure 5 it can be seen that the coefficient of thermal conductivity takes value from the range well above 2 W/(mK) during the first period of the mould heating, just after pouring. During this period water evaporation starts and vapour transport from the mould surface to the mould body takes place.

temperature measured in the centre of the plate-casting; dTc.c./dt is T.c.c first derivative after time; Tsurf is temperature of the mould inner surface; T1 to T6 are temperatures measured inside the mould body on different distances from the inner surface

Then the thermal conductivity value significantly decreases and stabilizes around $0.5~\rm W/(mK)$ in temperatures $100-500~\rm ^{\circ}C$. Fig. 6 shows thermal conductivity changes of different mould regions during casting solidification. From Figs 5 and 6 it can be seen that moisture vaporization strongly influences thermal conductivity during the first period of the mould heating by the cast copper. This experiment shows that the thermal conductivity reaches higher level in outer mould parts after pouring the casting. However, it should be noted that the first period of mass (water vapour) and heat transfer can strongly influence the shaping of the inner layer of the solidifying casting.

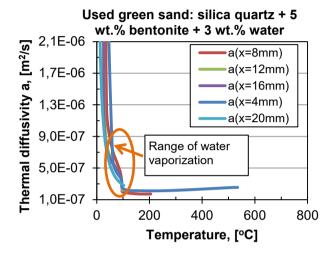


Fig. 4. The relationships: thermal diffusivity vs. temperature obtained in the Casting Method experiment for the examined green-sand at different distances from the inner surface

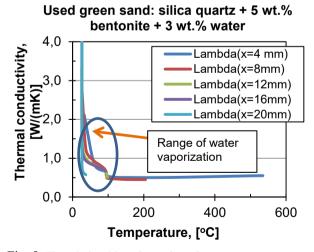


Fig. 5. The relationships: *thermal conductivity vs. temperature* obtained in the *Casting Method* experiment for the examined green-sand at different distances from the inner surface

It should be also noted that the stabilization of thermal conductivity in the whole mould body takes about 30% of the

total time of casting solidification. It should be also noted that thermal conductivity mean values of different mould parts are also different as it is shown in Fig. 6. The observed differences depend, among others, on initial moisture content as well as on the rate of moisture transport connected with melt casting temperature.

Finally, it should be concluded that real temperature dependences of given sand thermo-physical properties, especially the thermal conductivity coefficient, should be implemented to ensure high accuracy of the numerical calculations.

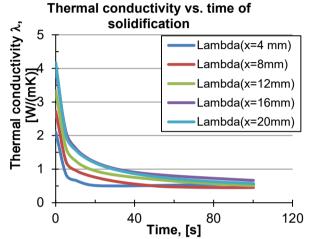


Fig. 6. Thermal conductivity changes during solidification of the casting

Acknowledgements

The authors are grateful to the NCN - Polish Science National Centre for financial support under grant Preludium 5 No. UMO-2013/09/N/ST8/00256.

References

- [1] Krajewski, P.K., Zovko Brodarac, Z. & Krajewski, W.K. (2013). Heat Exchange in the System Mould Riser Ambient. Part I: Heat exchange coefficient from mould external surface. Archives of Metallurgy and Materials 58(3), 833-835. DOI: 10.2478/amm-2013-0081.
- Krajewski, P.K., Gradowski, A. & Krajewski, W.K. (2013).
 Heat Exchange in the System Mould Riser Ambient. Part

- II: Heat emission coefficient from open riser surface to ambient. *Archives of Metallurgy and Materials* 58(4), 1149-1153. DOI: 10.2478/amm-2013-0140.
- [3] Krajewski, P.K., Magda, K. & Stojecki, P. (2013). Examining and modelling the influence of thermo-physical properties of liquid metal and sand mould on solidification time of pure Al castings. Archives of Foundry Engineering 13(SI3), 89–94.
- [4] Ignaszak Z. (1989). Thermo-physical properties of materials, forms in terms of casting solidification process control. Poznań: Wydawnictwo Politechniki Poznańskiej. (in Polish).
- [5] Krajewski, P.K., Piwowarski, G., Suchy, J.S. (2012). Formulating the boundary conditions for numerical model of heat transfer in a system heat source heat sink. Thermal conductivity of the system, Proceedings of the 1st International Workshop "90 Years of Foundry Engineers Educating by the AGH University of Science and Technology", Faculty of Foundry Engineering, http://www.lodlewnictwo.agh.edu.pl/inne/konferencje/konferencja 2012/abstract/streszczenia.html
- [6] Kubo, K. & Pehlke, R.D. (1986). Heat and moisture tran sfer in sand molds containing water. *Metallurgical Transactions* 17B (Dec. 1986), 903-911.
- [7] Ignaszak, Z., Graczyk, L. & Popielarski, P. (2006). Eksperymentalno – symulacyjny sposób identyfikacji strefy przewilżonej w formie. Archives of Foundry 6(22), 216–223.
- [8] Krajewski, P.K., Piwowarski, G. Krajewski, W.K. (2014). Determining Temperature Dependencies of Sand Mould Thermal Properties. *Materials Science Forum* 791-792, 452-457. Doi:10.4028/www.scientific.net/MSF.790-791.452.
- [9] Krajewski, P.K., Piwowarski, G., Suchy, J.S., Krajewski, W.K. (2014). Thermo-physical properties vs. temperature of selected foundry sands. Proceedings of 71st World Foundry Congress. Bilbao, Spain: World Foundry Organization (on USB flash).
- [10] Krajewski, P.K., Piwowarski, G., Żak, P.L. & Krajewski, W.K. (2014). Experiment and numerical modelling the time of plate-shape casting solidification vs. thermal conductivity of mould material. *Archives of Metallurgy and Materials* 59(4), 1405-1408. DOI: 10.2478/amm-2014-0238.
- [11] Krajewski, P.K., Piwowarski, G. & Suchy, J.S. (2014). Thermal conductivity of the green-sand mould poured with copper. *Archives of Foundry Engineering* 14(SI4), 67–70.
- [12] Krajewski, P.K., Suchy, J.S., Piwowarski, G. & Krajewski, W.K. (2015). High Temperature Thermal Properties of Bentonite Foundry Sand. Archives of Foundry Engineering 15(2), 47–50.

Information:

The English text of this paper bases on the previously published [11-12] ones, however the paper brings new, unpublished yet results of the examinations and calculations of used green sand.