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Abstract 
 
Thermal processes in domain of thin metal film subjected to a strong laser pulse are discussed. The heating of domain considered causes 
the melting and next (after the end of beam impact) the resolidification of metal superficial layer. The laser action (a time dependent bell-
type function) is taken into account by the introduction of internal heat source in the energy equation describing the heat transfer in domain 
of metal film. Taking into account the extremely short duration, extreme temperature gradients and very small geometrical dimensions of 
the domain considered, the mathematical model of the process is based on the dual phase lag equation supplemented by the suitable 
boundary-initial conditions. To model the phase transitions the artificial mushy zone is introduced. At the stage of numerical modeling the 
Control Volume Method is used. The examples of computations are also presented.  
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1. Introduction  
 
The base for the  macroscopic model of alloys solidification 

or melting is the Fourier equation with an additional term (the 
source function) controlling the evolution of latent heat [1, 2, 3]. 
With the introduction of parameter called the substitute thermal 
capacity (e.g. [2]) the governing equation concerns the whole, 
conventionally homogeneous metal domain (one domain method). 
In the case of pure metal solidification the similar approach can 
be used, but the solidification point T* must be substituted by a 
certain temperature interval [T*−∆T, T*+∆T]. Next, for this 
interval the substitute thermal capacity should be defined. It 
turned out that the width of this interval is not critical for the 
results of numerical simulations [4]. In literature, as a rule, the 

macro models of solidification are discussed (e.g. [1 - 8]. In this 
paper the similar concept is applied, but the governing equation 
describing the thermal processes in domain of metal film 
corresponds to the dual phase lag equation. DPLE results from the 
generalized form of the Fourier law and it contains two lag times, 
in particular the relaxation and thermalization times [9, 10, 11]. 
Such a model describes well the heat transfer in micro-scale when 
the values of lag times are significant because of extremely short 
duration, extreme temperature gradients and  small dimensions of 
the domain. The external action of laser beam is substituted by the 
introduction of internal volumetric heat source [9, 10] and then on 
the surface limiting the domain of metal film the adiabatic 
boundary conditions should be taken into account. Additionally, 
the initial temperature distribution and the initial heating rate are 
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assumed to be known. The other approaches to the microscale 
heat transfer modelling are also used, e.g. [12, 13].  
 
 

2. Governing equations  
 

The following generalization of the Fourier law is introduced 
 

( , , ) λ ( , , )q Tr z t T r z t+ t = − ∇ + tq        (1) 

 
where τq and τT are the phase lags (relaxation and thermalization 
times), while q is a heat flux, λ is a thermal conductivity, r, z are the 
geometrical co-ordinates (axially-symmetrical problem is 
considered), t is a time.  
Using the Taylor series expansions, the following first-order 
approximation of equation (1) is obtained 
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Introducing this formula to the well known diffusion equation after 
the mathematical manipulations one has  
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Here c is a volumetric specific heat of material, Q is the capacity 
of internal heat sources.  
The mathematical formula determining the intensity of heat source 
QL(r, z, t) resulting from the laser action is assumed in the form  
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where I0 [J/m2] is a laser intensity, tp [s] is a characteristic time of 
laser pulse, δ [m] is an optical penetration depth, R is a reflectivity of 
irradiated surface, rD [m] is a laser beam radius. The derivative of QL 
with respect to time (equation (4)) can be found analytically.  
The next internal heat sources result from the phase changes 
 

( , , ) d ( ) ( , , )( , , )
d

S S
S

f r z t f T T r z tQ r z t L L
t T t

∂ ∂
= =

∂ ∂
        (5) 

 
where L  is a volumetric latent heat, fS is a volumetric solid state 
fraction at the neighborhood of point considered. 
We introduce the artificial mushy zone by ‘stretching’ of 
solidification point T* to a certain interval [T*−∆T, T*+∆T] and 
for this interval the function fS is assumed in the linear form, this 
means. 

* ( , , )( , , )
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One can see that for the border temperatures the function fS  takes 
the values 0 and 1. The source term connected with the evolution 
of latent heat takes a form  
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Taking into account that the second derivative of  the function fS   
is equal to zero one finally obtains 
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So, the energy equation (3) can be written in the form 
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where C is a substitute thermal capacity of mushy zone 
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where cM  is the volumetric specific heat of this sub-region. 
Summing up, the substitute thermal capacity is defined as follows  
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where cL, cS are the volumetric specific heats of liquid and solid 
state, while (for example) cM  is the arithmetic mean of cL and cS. 
One can see that the equation (9) describes the thermal processes 
proceeding in whole, conventionally homogeneous metal domain. 
The adiabatic boundary condition given on the external surface of 
the system is of the form [14] 
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where ( ), ,T r z t⋅∇n is the temperature derivative in the normal 
direction.  
The initial conditions (the initial temperature of domain and the 
initial heating rate) are also given 
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where T0 is the constant initial temperature. 
 
 

3. Control Volume Method  
At the stage of numerical computations the Control Volume 

Mehod (CVM) in the version proposed by Mochnacki and 
Ciesielski [14] is applied. In the cited article one can find the 
comprehensive information concerning the method application in 
the case of hyperbolic equations. As is well known, The CVM 
algorithm allows one to find the transient temperature field at the 
set of nodes corresponding to the central points of control 
volumes. The thermal capacities are concentrated at the nodes 
representing elements, while the thermal resistances are 
concentrated on the sectors joining the nodes. The nodal 
temperatures can be found on the basis of energy balances for the 
successive volumes. The energy balances corresponding to heat 
exchange between the analyzed control volume and adjoining 
control volumes results from the integration of equation (9) with 
respect to volume and time. In Figure 1 the cylindrical, axially 
symmetrical domain is shown. 
 

 
Fig. 1. The discretization of domain 

 
To construct the CVM equations, the successive volumes ∆Vi,j and 
the values of surfaces limiting ∆Vi,j must be known, and they can 
be found on the basis of the simple geometrical considerations 
(annular elements). 
Without going into the detais the CVM approximation of the left 
hand side of equation (9) is the following 
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where ∆t is a time step. Above formula shows that in the case of 
hyperbolic equations three-level CVM approximation must be 
used, in other words, in order to determine the temperature 

,
f

i jT (time level f ) the nodal temperatures corresponding to time 
levels f−1 and f−2 must be known. Taking into account the CVM 
approximation of the right hand side of equation (9), finally one 
obtains the linear algebraic equations from which the nodal 
temperatures for time ft can be found. Because the explicit 
scheme has been used, therefore the stability conditions should be 
fulfilled. 

 
 

4. Examples of computations  
 

Numerical simulation of a thermal process subjected to the 
short-pulse laser heating has been done for the cylindrical domain 
with dimensions Z=100·10−9 m, R=100·10−9 m – Figure 2 [14]. 
 

 
Fig. 2. Micro-domain considered 

 
Thermophysical parameters of material (chromium) are equal to 
λ=93 W/(mK), c=3.2148·106 J/(m3K), L=2904·106 J/m3, 
solidification point T*=1857 oC, ∆T=5 K, tq=0.136·10-12 s, 
tT=7.86·10-12 s [15]. The parameters of the Gaussian laser pulse 
are following: rd=50·10−9 m, I0=10 kW/m2, Rf=0.93, 
δ=15.3·10−12 m, tp=50·10−12 s. The initial temperature of the metal 
is T0=20 oC. The mesh steps used in this example: ∆z=2∙10−9 m, 
∆r=2∙10−9 m and the time step ∆t=0.5∙10−15 s. The results of 
computations are shown in Figures 3 and 4. Figure 3 illustrates 
the temperarure distribution for time 100∙10−12 s. In Figure 4 the 
temperature history at the nodes A(0, 0) and B(0, 49∙10−9 m) is 
presented.  
 
 

5. Final remarks 
 

The authors solved the problem of pure metal melting and re-
solidification by the introduction of artificial mushy zone to the 
mathematical model od the process. The assumption of the 
function describing the volumetric fraction of solid in the linear 
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form allowed one to obtain the DPL equation in the form 
containing the well known parameter called a substitute thermal 
capacity. At the stage of numerical solution of the example 
presented in the Chapter 4 the value ∆T=5 K has been assumed, 
but the testing computations showed that the interval ∆T width 
can be changed. The observation of numerical results confirmed 
the very small changes of temperature close to the solidification 
point. Unfortunately, this effect is not clearly visible in Figure 4 
(the short duration and the narrow interval 2∆T). 
 

 
Fig. 3. Temperature distribution after 100∙10−12 s 

 

 
Fig. 4. Temperature history at the nodes A and B 
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