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Accepted: 28 November 2012 Traditional statistical process control approaches are less effective in dealing with multivari-
ate and autocorrelated processes. With the continual increase in process complexity, this
inefficiency is becoming more apparent. A special type of multivariate and autocorrelated
process is a process occurring within a heterogeneous production environment (a variety of
types of machines, pots, etc. used for the same task). This makes the quality control of such
processes more difficult. The approach presented in the paper utilizes time series fitting, clus-
ter analysis and association mining in relation to a single data mining model for the analysis
of complex multivariate autocorrelated processes. The aim is to divide the production cells
(machines, pots, etc.) into groups exhibiting similar behaviors. This can then be used for
more effective quality control of the entire process and afterwards to analyze the reasons
for this behavior. This paper includes someof the results obtained from applying the model
to an actual multivariate high autocorrelated process, the production of primary aluminum
using the Hall-Heroult electrolysis process. The Hall-Heroult electrolysis process is a contin-
ual process that is ongoing in several pots simultaneously. The average plant operates 300
pots. Therefore, the quality control of such a complex process faces many issues concerning
monitoring and problem diagnosis. The paper describes a method for dividing the pots into
control groups exhibiting similar behaviors, which can then be used in the planning phase
of the quality control analysis and to make improvements within these groups and thereby
within the whole process.
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Introduction

Process monitoring and diagnosis have been
widely recognized as key tools for detecting abnormal
behavior and assessing quality improvement. Tra-
ditional statistical process control approaches are
less effective in dealing with multivariate and au-
tocorrelated processes. With the continual increase
in process complexity, this inefficiency is becoming
more apparent. A special type of multivariate process
is a process occurring within a heterogeneous pro-
duction environment (a variety of types of machines,
pots, etc. used for the same task). Carrying out

controls on this kind of process is more difficult if
the process variables are autocorrelated. Both these
conditions frequently occur in continual production
processes, commonly found in the metallurgy indus-
try, making the quality control of these processes
more difficult. The purpose of this paper is to present
some of our findings obtained during research into
the use of the data mining approach in quality man-
agement systems. The approach discussed here is a
new data mining model capable of promoting quality
control and quality improvement in an organization
with a heterogeneous production environment. The
approach utilizes time series fitting, cluster analy-
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sis and association mining in a single data mining
model in order to analyze complex multivariate au-
tocorrelated processes. The aim is to divide the pro-
duction cells (machines, pots, etc.) into groups ex-
hibiting similar behavior. These can then be used
to make quality control of the entire process more
effective and to analyze the causes of this behavior
afterwards.

Data mining methods can be described as meth-
ods used to discover meaningful correlations, pat-
terns and trends by sifting through large amounts
of data stored in repositories. Data mining employs
pattern recognition technologies as well as statisti-
cal and mathematical techniques [1]. Data mining
methods include, for example, cluster analysis, asso-
ciation rules mining and classification. Data mining
algorithms have the potential to aid process moni-
toring of complex processes because of their proven
capability to manage and analyze large amounts of
multivariate data. The data mining model describes
the sequence and eventually the configuration of the
particular data mining methods up to a specific al-
gorithm. The data mining model described here con-
sists of four steps. The inputs used in the mod-
el are daily means of monitored variables for each
production cell. The model is not limited to a par-
ticular number of input variables. A higher num-
ber of variables can cause higher hardware perfor-
mance demands. In this paper we have decided to
apply the data mining model to a selected process
in order to gain a better understanding of the mod-
el. A typical example of a multivariate and corre-
lated process in a heterogeneous production envi-
ronment is the primary production of aluminum.
Section 2 briefly describes the production process,
while Sec. 3 provides a step-by-step description of
the data mining model and its use within the select-
ed process.

Description of the example process

The main production process used in the com-
mercial production of primary aluminum is the Hall-
Heroult electrolytic process invented in 1886. The
electrolytic production of primary aluminum is a
process that has many variables and involves compli-
cated systems such as mass and energy balance [2].
Production takes place in separate electrolytic pots
with carbon based lining. Aluminum oxide (Al2O3)
is dissolved in molten cryolite (Na3AlF6). A direct
current is supplied to the electrolytic pot via graphite
anodes and passes through the electrolyte at a low
voltage but at high current rates (typically from 200
to 350 kA) towards the cathodes situated at the base

of the electrolytic pot. Smelted aluminum is elec-
trolytically deposited at the cathodes, in the base of
the pot. The aluminum is periodically tapped. Alu-
minum oxide is constantly replenished from storage
containers above the electrolytic pot. An electrolyt-
ic pot produces annually on average 150000 tons of
aluminum.

Fig. 1. Principle of Hall-Herout electrolytic process [3].

Studies on the nature of these physical and chem-
ical actions indicate that this process is very unsta-
ble and affected by a number of factors. Performing
controls on an electrolytic pot requires the contin-
ual monitoring of variables, rapid reactions to any
changes and a very good knowledge of running re-
actions. Controlling the process is complicated by
the fact that for efficiency reasons production occurs
simultaneously in several electrolytic pots connect-
ed serially. Groups of electrolytic pots connected in
this way form potlines. An average potline consists
of 300 interconnected electrolytic pots. In order to
account for the continual abrasion of the pot lining
and cathodes, and to reduce downtimes for shutdown
and repairs, production is begun on an individual
pot basis in each potline (for example one pot per
week). It is this that creates a heterogeneous pro-
duction environment. It is very common to find that
in one potline the electrolytic pots are running at
various run times, that different kinds of pots are
in use, and that the linings are worn to various de-
grees. In practice it is very common to find mul-
tiple potlines operating simultaneously in a single
plant.
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Fig. 2. Example of a potline [4].

Data mining model for production cell

segregation

Monitoring and controlling complex production
processes running simultaneously in several produc-
tion cells is more challenging than monitoring and
controlling a process involving a single production
cell, given the large number of monitored and con-
trolled variables. The scope of the data generat-
ed makes analysis more difficult. The heterogeneous
production environment and the autocorrelation of
the variables make effective analysis and quality im-
provement of the process extremely problematic. The
data mining model discussed here can benefit the
production process analysis by segregating produc-
tion cells into control groups according to behavior.
The control groups can then be used to further ana-
lyze reasons for the behavior and to more effectively
control the process.
The data mining model has been used in relation

to real production data from a primary aluminum
production process operating in a heterogeneous pro-
duction environment and with very strongly autocor-
related variables. The rules on the collaborative re-
search mean that certain detailed information about
the production process and the results of the analy-
sis cannot be published. The input consisted of data
from 226 electrolytic pots obtained over a calendar
year. For each electrolytic pot 13 variables were mon-
itored on a daily basis. Thus the input for the mod-
el was a database containing 1072370 data points.
Figure 3 illustrates the variation of a single variable
in January 2011. Each line represents an electrolytic
pot. The Hall-Heroult electrolytic process produces
high variability in production cell behavior and find-
ing two production cells with similar behavior is a
difficult task when analyzing just one variable.

Fig. 3. Variation in a single variable for each separate pot
in January 2011.

Data preparation

It is apparent that we need to reduce the amount
of input data. Given the scope of the data mining
model, behavior analysis of the division of produc-
tion cells can be conducted on a time basis (for ex-
ample weeks, months). In order to make the analy-
sis more effective, the next step is to summarize the
input variables within the selected time frame. Us-
ing the usual method of summarizing and comput-
ing mean and standard deviation would mean los-
ing some information on the input variable statistical
distribution in the selected time frame.

Therefore we decided to compute seven parame-
ters of statistical distribution: mean, median, stan-
dard deviation, upper and lower quartile, min and
max for each selected time frame and input variable.
With the help of these parameters we can describe
the statistical distribution of the summarized input
variables more precisely. The benefit of this method
is that it significantly reduces the amount of analyzed
data with no major loss of accuracy. For example if
we were to analyze segmentation of 100 production
cells with 13 input variables for each production cell
over one calendar year, we would be dealing with
474500 data points. By using this method to sum-
marize these data points (within a time frame of a
month) we can reduce the number of data points to
109200, which is more than a four-fold reduction in
the amount of data.

Hierarchical cluster analysis of time frames

The second step in this data mining model is to
conduct a hierarchical cluster analysis of the statisti-
cal distribution parameters of the input variables for
each time frame. The hierarchical clustering method
creates a nested sequence of clusters for one cluster to
N clusters for a data matrix with N data points. The
agglomerative hierarchical method starts with each
data point as a separate cluster and merges them
into successively larger clusters [6]. The results of hi-
erarchical clustering are usually presented in a large
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dendrogram. As we have stated, the similarity be-
tween the clusters is measured in terms of distance.
In obtaining the results of the analysis it is very im-
portant to select the right distance metrics. For our
type of data we chose correlation metrics. The math-
ematical formulation of our distance metrics for data
matrix X = {X ij} is formula (1).

dr(xjxk)=1−

n
∑

i=1

(xij−xj)(xik−xk)

√

n
∑

i=1

(xij−xj)2

√

n
∑

i=1

(xik−xk)2

. (1)

The second important setting of the hierarchical clus-
tering algorithm is the linkage criterion. The linkage
criterion determines the distance between sets of ob-
servations as a function of the pair wise distances
between observations [5]. We have chosen Ward’s
method. Ward’s method, also called Ward’s mini-
mum variance method, is a particular type of ob-
jective function method. Ward’s minimum variance
criterion minimizes the total within-cluster variance
[6]. In each step a pair of clusters with minimum clus-
ter distance is merged. The criterion for two clusters
Xj and Xk, is mathematically defined as (2).

∆(xj , xk) =
njnk

nj + nk
‖xj − xk‖ . (2)

Using the definition of Ward’s criterion we can say
that this will tend to create small clusters.

The allocation of individual production cells into
clusters is denoted in the dendrogram on the basis
of the estimated number of control groups and for
each time frame. The estimated number of control
groups can be obtained using input file analysis e.g.
the evaluation graph or L method. More information
on these methods can be found in [7]. Too many clus-
ters would cause high segmentation and so the next
step is to create control groups with a smaller number
of production cells. Hierarchical cluster analysis was
also selected since it provides a visual description of
similarity. The dendrogram shows information on the
similarity between the clusters and the production
cells within the clusters for the selected time frame.

Applying the second step to the process

The second step of the data mining model is to
perform a hierarchical cluster analysis of the statisti-
cal distribution parameters for each time frame. Giv-
en the number of production cells, it is only possible
to show the results as a preview. The dendrogram
preview for January 2011 using 226 electrolytic pots
is shown in figure 4. The number of control groups
was estimated to be 10 and the clusters were on the
dendrogram indicated using rectangles (Fig. 4). The
allocation of the electrolytic pots into the clusters
was subsequently extracted. This procedure was re-
peated each month. In Fig. 4 we can see three large
clusters. In the months that followed the dendrogram
was similar in terms of cluster sizes.

Fig. 4. Dendrogram for January using 226 electrolytic pots.
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Generating control groups of production cells

In analyzing the individual time frame dendro-
grams, it is always possible to find movement in the
production cells allocation into clusters. Where com-
plex and autocorrelated processes operate in a het-
erogeneous production environment this instability
in allocation is more visible. The instability in the
behavior of the production cell can be explained by
two factors. The first is the internal instability of the
production cell, which may be caused by failure or
incorrect controls etc. The second source of produc-
tion cell instability could be changes in the opera-
tional process parameters that affect all production
cells but because they have different construction
or technical parameters they react differently. These
changes may be result from changes to the chemical
composition of the input materials, changes to work
procedures or the weather (for example, the temper-
ature). When the process involves several production
cells and several monitored variables, some correlat-
ed or similar behavior may very easily be overlooked.
Therefore we need to summarize the cluster alloca-
tion and find control groups of production cells that
have been together in the same cluster from step two
of the data mining model. To do this we can use
another data mining method: association rules mi-
ning.

We have I = {I1...Im} items. They contain the
allocation of the individual production cell to the
time frame and cluster. X ⊆ I is the item set, D

is the transaction set of T where each transaction
T represents an item set, i.e. T ⊆ I. Set T in our
case represent one cluster from a time frame. Set D

represents the entire set of all clusters from all the
time frames. Individual items in set X should be or-
dered in a predefined way. Set X consist of items
from x1... to xk i.e. X = {x1..., xk}. For the set of
items X ⊆ I, support for set X in D is defined as
a proportion of the transactions in D that contain
X [8]. Therefore support for set X is the relative fre-
quency of transactions in which the same production
cells from set X were identified. An association rule
is an implication in the form of X ⇒ Y where X and
Y are two disjunctive item sets i.e. X ⊆ I, Y ⊆ I

and X ∩ Y = ∅ [9]. The strength of an association
rule is represented in its support X ⇒ Y in D. It
is the support of conjunction X ∪ Y , which means
that the relative frequency of joint occurrences of all
items in the association rule [9] parameter in the as-
sociation rules mining is confidence. Confidence in
the association rule X ⇒ Y in D is defined as a pro-
portion of transactions containing set Y in the set
of transactions from D that contains set X . From
this it follows that the association rule X ⇒ Y holds

with confidence if the level of confidence is expressed
as a percentage ratio of all clusters from D, which
contains both X and Y .
If the value for support is correctly selected, it

is possible to mine association rules that represent
groups of production cells with similar behavior, dur-
ing e.g. 8 months out of 12 or more. In this case,
looking at 12 months with 10 clusters each, we would
have a support value of 0.067 or more. A tendency
to only look for groups of production cells that al-
ways behave similarly usually leads to the creation of
small control groups or even failure. The value of the
second parameter, confidence, is not usually utilized
in this data mining model because of the nature of
the input data. The input in this step is the cluster
allocation for each time frame that implicates that
the value of confidence always reaches the same val-
ue. This value depends only on the number of time
frames in analyses where the production cell clusters
are expected to behave similarly. The only exception
occurs in situations where production cell composi-
tion changes between time frames.
Where there is a large number of mined associa-

tion rules, the production cell sets are found in mul-
tiple association rules. Therefore we need to extract
the production cells that have a maximum number
of members from this set of association rules. In or-
der to perform this extraction we again decided to
apply a hierarchical cluster analysis. This time, the
aim of the hierarchical cluster analysis is to cluster
the production cells from the association rules fol-
lowing the rule of the most frequent occurrence in
the association rules. In this case we used Euclid-
ean metrics (3) and single-link as the linkage crite-
ria. The single link criterion merges clusters following
the shortest distance between the data points of two
clusters.

d2(xi, xj) =

(

m
∑

k=1

(xik − xjk)2

)1/2

. (3)

Using hierarchical cluster analysis in this way gen-
erates the largest possible control groups of produc-
tion cells, taking into account the selected level of
support from the association rules mining phase.
Since it is a hierarchical method we can identi-
fy the level at which the production cell belongs
to the cluster and therefore to the control group
from the dendrogram analysis. The results of the
third step are clusters of production cells with min-
imal defined support, which means the number of
time frames in which the production cells were
in the same cluster. The order in which they ap-
pear in these clusters shows the level of similari-
ty.
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Applying association rules mining

to the process

After analyzing the second step output we ob-
served a high rate of inter time frame migration of
electrolytic pots among clusters. This was due to the
instability of this particular production process but
also to the different behavior exhibited by the pro-
duction cells in the heterogeneous production envi-
ronment. The first step of the third phase of the data
mining model is association rules mining. After dis-
cussions with the technicians we opted for mining
association rules indicating control groups of elec-
trolytic pots that had behaved similarly for 10 or
more months during one year. The computed sup-
port value was 0.084 or above. The level of confi-
dence was left unchanged at 0.1. The mined associa-
tion rules were thereafter analyzed using hierarchical
cluster analysis. The resulting dendrogram is shown
in Fig. 5. Of the original 226 electrolytic pots, 209
electrolytic pots achieved the selected level of sup-
port. This phenomenon was caused by the fact that
electrolytic pots were replaced during the time peri-
od under analysis. Thus, these electrolytic pots had
not been in operation for long enough (the minimum
was 10 months).

The analysis of data mining model results

The subsequent analysis of the data mining mod-
el results must focus on the reasons for segmentation.

These may be due to differences in the technical con-
struction of the production cells or to the use of dif-
ferent construction materials. Work procedures must
also be considered as possible reasons. The authors
recommend that discussions on segmentation should
be held with process technicians and operators who
may have additional information about the produc-
tion cells. Following the basic analysis of the dendro-
gram in Fig.5 three blocks of control groups can be
identified. The first block, indicated by a blue rectan-
gle, includes 8 control groups with 11 to 6 electrolyt-
ic pots in each control group. These control groups
represent production cells whose behavior in terms of
probability cannot be random. Analyzing the reasons
for this behavior may help ascertain how the control
process and work procedures may be modified so as
to achieve more effective and stable electrolytic pots
from this control group. The second block of control
groups is indicated by a green rectangle. The con-
trol groups from the second block have fewer mem-
bers, between 4 and 2. Having a high number of these
small control groups is undesirable and the analysis
can therefore be focused on the reasons why this is
the case and how they may be eliminated. The last
block in the dendrogram is the third block of control
groups indicated by a red rectangle.
These control groups contain just one member.

These production cells were in operation for at least
10 months, but could not be grouped with other pro-
duction cells from the analysis.

Fig. 5. Dendrogram for extracted electrolytic pots control groups.
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Analyzing the reasons for this behavior may help
improve the process so that the number of electrolyt-
ic pots in the third block of control groups can be
reduced.

Conclusions and future work

The aim of this paper was to introduce a new
data mining model for process control and process
improvement support for special types of production
processes. Analyzing behavior in complex production
processes with autocorrelated variables within a het-
erogeneous production environment often presents
difficulties in practice. With the help of our data
mining model the set of all production cells can be
segmented into control groups exhibiting similar be-
haviors. Analyzing the reasons for these similar be-
haviors can reveal the impact technical parameters or
different operational controls have on long-term be-
havior. This information can be used to improve se-
lection of the technical parameters of the production
cells or to improve the control and work procedures
for production cells in particular control groups. The
results of the analysis are also revealing in terms of
highlighting unstable behavior or atypical produc-
tion cells that are not desirable in the process. All
this new information can be used to improve the
quality and efficiency of the production process un-
der analysis. Repeated use of the data mining model
may indicate the impact new technical parameters
or changes to work procedures have on the behavior
of production cells in the long term.
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