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METHODOLOGY FOR THE CONSTRUCTION OF A RULE-BASED KNOWLEDGE BASE ENABLING THE SELECTION OF
APPROPRIATE BRONZE HEAT TREATMENT PARAMETERS USING ROUGH SETS

METODYKA BUDOWY REGUŁOWEJ BAZY WIEDZY UMOŻLIWIAJĄCEJ DOBÓR ODPOWIEDNICH PARAMETRÓW OBRÓBKI
CIEPLNEJ BRĄZÓW Z ZASTOSOWANIEM ZBIORÓW PRZYBLIŻONYCH

Decisions regarding appropriate methods for the heat treatment of bronzes affect the final properties obtained in these
materials. This study gives an example of the construction of a knowledge base with application of the rough set theory. Using
relevant inference mechanisms, knowledge stored in the rule-based database allows the selection of appropriate heat treatment
parameters to achieve the required properties of bronze. The paper presents the methodology and the results of exploratory
research. It also discloses the methodology used in the creation of a knowledge base.
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Decyzje dotyczące odpowiedniej metody obróbki cieplnej brązów mają wpływ na uzyskanie końcowych własności tych
materiałów. W pracy przedstawiono przykład budowy bazy wiedzy z zastosowaniem teorii zbiorów przybliżonych. Wiedza
zgromadzona w bazie reguł umożliwia za pomocą mechanizmów wnioskowania dobór odpowiednich parametrów obróbki w
celu uzyskania pożądanych własności brązu.

1. Introduction

In determination of the properties of new materials, ex-
periment and materials research play the most important role.
On this basis, using samples, one can collect data on the mate-
rial properties. An obstacle here is usually the limited number
of samples as well as the limited budget expenditures for stud-
ies and research. Thus, in most cases, the researcher can take
only a few measurements, on the basis of which he is expect-
ed to draw conclusions about the properties of the material.
Extrapolation of the results to draw general conclusions for
new materials entails the use of statistical tools, which help
to avoid a methodological mistake.

In a situation when the researcher can use a larger number
of the measurements, such conclusions may also comprise the
methods of treatment prepared in several scenarios. Each new
parameter of the treatment considerably increases the possible
space of results, hence the number of measurements necessary
for statistical analysis increases exponentially.

Experimental studies for new types of bronze conducted
at the Foundry Research Institute in Cracow allowed collecting
82 samples from 7 melts undergoing different modification
[1]. The collected data were subjected to statistical analysis
and exploratory analysis. Based on the results of these analy-
ses, it was possible to create a knowledge base in the form

of rules of inference about the heat treatment scenarios ensur-
ing the expected mechanical properties. This paper presents
the methodology and the results of these studies as well as a
methodology serving the creation of a knowledge base.

2. Description and analysis of the experimental data

The analysed data were derived from studies of the effect
of heat treatment on the properties of CuAl10Fe3Mn2 alloy.
Altogether 84 samples were available. Two samples were re-
moved from the analysis. In one case, the reason was the lack
of measurements, in another case, the experimenter indicated
the measurements clearly deviating from other data included
in the group. Finally, the analysis consisted of 82 records.

The following designations were used: L- as-cast condi-
tion; P – quenching at 950◦C (using microjet and water as a
cooling medium); S1 – tempering at 350◦C for 6h and cooling
in air; S2 – tempering at 700◦C for 6h and cooling in air. The
data were systematised and collected in one table, a fragment
of which is shown in TABLE 1 below.

After the initial choice of features based on the knowledge
of researchers, it was decided to select the following variables:
Inoculant {L, M, N, P, S, T, R}, where L – unmodified alloy;
Quenching {absent, P}, where P: Quenching at 950◦C as above;
Tempering {absent, S1, S2}, where S1, S2 as above.
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TABLE 1
Fragment of a collective table showing the results of materials

testing

Sample
No. Inoculant Hardening Ageing Rm Rp0,2 A5

Heat
treatment

53 S P S 826 800 1 PS1

56 S P S2 719 411 7 PS2

57 S P S2 732 406 9 PS2

58 S P S2 758 480 10 PS2

62 T P absent 668 548 2 P

63 T P absent 757 550 2 P

64 T P absent 749 528 2 P

It was decided to create an auxiliary variable describing
the course of heat treatment: HT {L, P, PS1, PS2}, where L –
as-cast condition, P – sample subjected to quenching, PS1 –
sample subjected to quenching and tempering at 350◦C, PS2
– sample subjected to quenching and solutionising at 700◦C.

An exploratory analysis allowed discovering the correla-
tions that occur in a set of experimental data describing the
process of heat treatment to build a model enabling approxi-
mation of the unknown variables (tensile strength – Rm; yield
strength – Rp0.2 and elongation – A5, respectively) for the area
of results not included in the measurements. Previous studies
of the authors in this field enabled the creation of approxima-
tion models using fuzzy logic and decision trees [1-3].

Fig. 1. Categorised histograms for the variables Rm and A5

A relationship between the variables and individual heat
treatment scenarios was studied (Fig. 1). In this way it was
determined that quenching increases the tensile strength and
yield strength, but reduces elongation. The analysis has also
shown that tempering S1 reduces the elongation, while tem-
pering S2 causes an opposite effect – the elongation increases
compared to samples which are not undergoing this type of
treatment.

It is easy to note that in the case of melt T – alloy modi-
fied with mischmetal – the decrease has involved all three para-
meters, i.e. the tensile strength, yield strength and elongation.
These were not, however, statistically significant differences,
and therefore it was decided to disregard in further analysis
the inoculant as a variable.

It has been shown that treatments P (quenching) and PS1
are indistinguishable with respect to mechanical properties. In
other words, the samples that undergo tempering or quenching
with tempering at 350◦C achieve similar mechanical proper-
ties (Fig. 2). In subsequent steps of the studies, it was decided
to combine these classes into one class P, and therefore the
variable HT could assume further only the values of {L, P,
PS2}.

Fig. 2. Categorised box plot diagram for the variables Rm and A5

Using ANOVA analysis, cross tabulation was performed
for the variables Rm, Rp0.2 and A5, obtaining mean and stan-
dard deviations in the group of heat treatment scenarios (HT).
The results are presented in Table 2.

Fig. 3 shows distributions categorised for particular
groups of heat treatment according to each variable. One can
observe characteristic differences for the as-cast condition, for
quenching, and for quenching with tempering. Depending on
the priority established for selected mechanical properties, it
is also possible to determine on this basis the weight for each
criterion. In the presented results, the priority has not been
specified for any of the properties, each was treated with equal
importance.

Fig. 3. Distribution of classes for the variable HT used in the dis-
cretisation of variables

TABLE 2
Cross tabulation for the variable HT

Rm

Rm
standard
deviation

Rp0.2

Rp0.2
standard
deviation

A5
A5

standard
deviation

L 627.0952 92.25124 313.9048 30.7195 8.94000 2.933545

P 786.8864 76.83695 585.7568 166.8436 2.84054 2.956674

PS2 725.9412 31.55644 420.0588 32.1023 10.61765 2.834439

Total 733.3293 99.63775 472.0800 167.9378 6.27568 4.541794
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Using thus established groups, the places of cuts in the
extent of variables were determined. The cuts allow the dis-
cretisation to be performed in such a way as to make the vari-
ability gain the greatest discriminative strength. Discretisation
in this case becomes necessary due to the relatively small
number of measurements, not allowing for the construction of
a continuous model but only for the solution of classification
problem. In [4], the authors present the methodology for the
construction of fuzzy models that also allow specifying the
sets of strong discrimination to optimise the classification. In
this approach, it was decided to use an analytical technique,
allowing the results to be compared with the classification
using decision trees.

3. Application of rough set theory

The rough sets theory is based on the notion of approxi-
mate information system:

S≡ < XAVρ> (1)

where: X – object set, A – attribute set, V – set of attribute
values, ρρ – function defined on the Cartesian product:

ρ:X×A→P(V ) (2)

which assigns for couple (x, a), x ⊆ X, a ⊆ A a subrange P(V)
containing the unknown exact value of an attribute a. Also the
equivalent formula is being applied:

ρ (x,a)⊂Va (3)

where VaVa – set of values which can take an attribute a
describing the object x.

In our case, X is a set of samples (observations); A is a
set of attributes: tensile strength – Rm; yield strength – Rp0.2,
elongation – A5, and variant of heat treatment HT; V – is a
range of values described in former chapter and ρ is the sought
classification function.

As can be seen, defined model of an approximate infor-
mation system is adapted to the situation where the knowledge
of the individual sites is incomplete – defines the attributes
of the approximations (to the nearest interval). Rough sets
were a number of interesting applications (e.g. [7,8,9]), but in
the Foundry characterized by far-reaching specifics, existing
solutions [3,5,6], as well as presented in this study proposal,
have novel character.

The reduct in a rough sets theory means a minimal sub-
set of attributes which is sufficient to discern between objects
with different decision values. Based on the calculated reduct
it is possible to calculate decision rules. A rule generated by
a reduct is able to recognize at least one object. Application
of rough sets allows for the induction of 14 rules with RSES
program [9]. These rules are shown in Fig. 4. They repre-
sent logical implications allowing the inference about the heat
treatment. On the left side there are premises of the rule, while
on the right side there is a conclusion stating the choice of
the variable HT, that is, the heat treatment scenario, and also
the support number for each rule validating its reliability.

Fig. 4. Rough set rules

The quality of classification using the above rules is
shown in Fig. 5 along with the classification matrix. The read-
er can see, that system is able to predict all cases correctly
according to actual observations. Hence it follows that using
the specified 14 rules we are able to carry out an error-free
classification.

Fig. 5. Rough set rules confusion matrix

4. Summary

The disclosed methods of data mining supported by algo-
rithms of the induction of rules based on the theory of rough
sets or decision trees allow for the construction of a knowledge
base as a set of rules that enable inference about the possible
scenarios of the course of heat treatment. Based on the ob-
tained rules, an error-free classification of appropriate variant
of heat treatment parameters to achieve the required proper-
ties of bronze can be made. The problem of classification,
although known in the industrial issues [10,11], is sensitive to
the type, number and characteristics of the learning data. It
should be noted, however, that testing proceeded in the space
of results based on the stored measurement data. To ensure
higher reliability of the obtained results, the proposed method-
ology should be applied to a larger number of experiments.
The disclosed algorithm of induction of inference rules with
rough sets theory has, however, the advantage that they are
well scalable and provide the ability to automatically generate
rules.
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