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ABSTRACT

In this paper, an Assembly Line Balancing Problem (ALBP) is presented in a real-world
automotive cables manufacturer company. This company found it necessary to balance its
line, since it needs to increase the production rate. In this ALBP, the number of stations
is known and the objective is to minimize cycle time where both precedence and zoning
constrains must be satisfied. This problem is formulated as a binary linear program (BLP).
Since this problem is NP-hard, an innovative Genetic Algorithm (GA) is implemented. The
full factorial design is used to obtain the better combination GA parameters and a simple
convergence experimental study is performed on the stopping criteria to reduce computa-
tional time. Comparison of the proposed GA results with CPLEX software shows that, in a
reasonable time, the GA generates consistent solutions that are very close to their optimal

ones. Therefore, the proposed GA approach is very effective and competitive.

KEYWORDS

assembly line balancing problem, genetic algorithm, cycle time, precedence and zoning

constrains.

Introduction

The classical Simple Assembly Line Balancing
Problem (SALBP) [1] has been widely enriched over
the past few years with many realistic approaches
and much effort has been made to reduce the dis-
tance between the academic theory and the industri-
al reality [2]. Each extension of SALBP is very use-
ful for solving real practical problems to deal with
many complicated constraints such as incompatibil-
ities among tasks [3], space constrained [4] and the
resource assignment [5] etc.

In this paper, the process of assembly line bal-

ancing of motor cables is studied in the multination-
al company LEONIT (http://www.leoni.com) to in-

59

crease the production rate. The company is a global
supplier of wires, optical fibers, cables and cable sys-
tems as well as related development services for many
applications in industries mainly in the automotive
business.

In this industry, an interesting extension of
SALBP is focused on, considering zoning constraints
between sets of tasks, so that the incompatible tasks
have to be assigned to different stations. For exam-
ple, some raw materials (file, tube etc.) can be so
similar to each other that quality consideration and
the processing conditions force certain pairs of tasks
to be assigned to different stations.

In this situation, the number of stations (m) is
known and the objective is to minimize cycle time



“'\'\'\’\;.(léhiS()l)IhlllEt.l)illl.E)l P
Y

% www journals.pan.pl

POLSKA AKADEMIA NAUK

Management and Production Engineering Review

where both precedence and zoning constrains be-
tween tasks must be satisfied. Since all versions of
SALBPs are NP-hard [6], this ALBP is also NP-hard.

Many applications have been made in the liter-
ature to solve the ALBP using exact methods, such
as linear programming [7], integer programming [8],
dynamic programming [9] and branch-and-bound ap-
proaches [10]. However, these methods have proven
to be effective only for small instances. Consequently,
numerous researchers have been oriented towards the
development of heuristics [11] and meta-heuristics
such as tabu search [12], simulated annealing [13] and
genetic algorithms [14]. The common characteristic
of all the heuristic search methodologies is the use
of problem-specific knowledge intelligently to reduce
the search efforts [15]. Among these metaheuristics,
genetic algorithms (GAs), which is received an in-
creasing attention from the researchers since it pro-
vides an alternative to traditional optimization tech-
niques by using directed random searches to locate
optimum solutions in complex landscapes [16]. GA is
a stochastic procedure which imitates the biological
evolutionary process of genetic inheritance and the
survival of the fittest. It is intelligent random search
mechanisms for solving manufacturing optimization
problems including scheduling problems, assembly
line balancing and aggregate production planning.
Those readers who are further interested in GA may
refer to [17, 18] and [19]. Aytug et al. [19] reviewed
over 110 papers using GAs to solve various types of
production and operations management problems in-
cluding control, facility layout design, line balancing,
supply chain etc.

The existing studies in the literature have shown
that GA method can be used as a very effective
search technique in solving the NP-hard problems
because it is able to move from one solution set to an-
other and flexible to incorporate the problem specific
characteristics. To reach these benefits, the standard
GA design should be properly modified and adapted
to the problem domain.

However, the majority of these previous studies
have validated their GA performances using problem
simulation, but little attention was paid to real case
studies data [20, 21]. Furthermore, many studies have
not integrated an optimization tool to choose their
AG parameters.

Due to these limitations, an innovative genetic al-
gorithm (GA) scheme is implemented in this paper.
The proposed GA is designed in three stages. In the
first stage, a new crossover operator is creed. In the
second stage, a full factorial design is used to select
the better GA parameters. In the third stage, a sim-
ple convergence experimental study is performed on
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the stopping criteria to reduce computational time.
The evaluation of the effectiveness of this GA is re-
alized through various sets of instances from a real
case study of an automotive cable manufacturer.

The outline of the rest of this paper is as follows:
Sec. 2 describes the problem and a proposed binary
linear program (BLP) to solve this ALBP. Section 3
presents the steps of the proposed GA. Section 4 il-
lustrates application case and the experimental re-
sults to select GA parameters. Section 5 shows com-
putational results. Finally, concluding remarks are
presented in Sec. 6.

Problem formulation

An instance (T, S, G) of the proposed ALBP
consists of three components which are:
o T'={1l..n}; a set of n tasks,
o S ={l..m}; a set of m stations,
e (; the precedence graph.
This ALB Problem (ALBP) has the following hy-
potheses and characteristics:
e The performance time of each operation is deter-
ministic.
e The task cannot be subdivided.
The precedence relationship among assembly
tasks is known and invariable.
A multiple product type is assembled on the line.
No buffer is considered between the stations.
A paced line with given number of stations (m).
The zoning constraints are included in task assign-
ment to stations.
e Every task is assigned to only one station.

The notation and decision variables considered in
the mathematical model are defined as follows:
e Index and Parameters
1,7: The assembly tasks, 7,7 =1,2,...,n
s: The stations, s =1,2,...,m
n: Total number of assembly tasks
m: Total number of stations
t;: Processing time of task ¢
pre(i): Set of direct predecessors of task i

e Decision variables

1
Tjs 0

IT: presents the set of incompatible pair tasks (i, j) €
T which are incompatible (with ¢ < 7).

If task j is assigned to station s
otherwise

The problem can be formulated in the following
way as a binary linear program (BLP) model:

Min C. (1)
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Subject to:
d wi=1 VieT, (2)
sES
Y swis <Y swy VijeT/iepre(j),  (3)
sES ses

itizis S C Vse S,

=1

Tis + 255 <1 V(i,j)eIT, seS,

xis €4{0,1} Vse S Viell.

The objective function (1) minimises the cycle time
C'. Constraints (2) guarantee that every task ¢ € T
be assigned to only one station s € S. Constraints
(3) guarantee the respect of precedence relationships
between the tasks. In case a task j € T' is assigned
to a station s € S, all tasks ¢ €pre(j) can only be
assigned to stations s’ € S with s’ < s. Constraints
(4) ensure that the sum of the processing times of
the tasks assigned to a station s € S do not ex-
ceed the cycle time C'. Inequalities (5) forbid the as-
signment of pair tasks of (IT) to the same station.
Finally, constrains (6) ensure that z;5 be a binary
variable.

The presence of many constraints and binary
variables makes mathematical resolution of large size
problem, which is difficult to achieve with exact
methods. Therefore, the proposed GA will be pre-
sented in detail the following sections.

The proposed Genetic Algorithm

Since the proposed problem is NP-hard, we chose
to apply the GA method because it is a powerful tool
used to found good solutions for NP hard problems.

Step 1: Chromosome coding

The encoding scheme is task-oriented and it is
similar to the scheme generated by [22]. The length
of the chromosome is equal to the number of tasks
and each gene of the chromosome represents a task.

Step 2: Random generation
of initial population

The initial population is randomly generated,
assuring the feasibility of the precedence relations.
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These constraints may lead to produce unfeasible so-
lutions. Elimination and replacement operations of
these unfeasible solutions require an important time.
In this paper, the method from [23] is applied to sat-
isfy the precedence relations. Firstly, the tasks are
registered based on their predecessors, and then a
random task from the ones that have no predeces-
sors (free tasks) is chosen to be assigned in the first
sequence position of chromosome. Secondly, the set
of free tasks is updated and the next task is selected
from the new set. This procedure is repeated until
the last task is assigned.

Step 3: Fitness evaluation

The fitness of a chromosome (individual) is de-
fined as the inverse of the cycle time of the solution
to be suitable with a minimisation problem. There-
fore, the lowest cycle time the solution has, the more
important its fitness is.

1
fG) = ol denote the fitness function value of

chromosome j; j =1, ..., J.

The fitness value evaluates the individual perfor-
mance in the search space.

The cycle time of the chromosome is determined
by the following steps:

Stepl: Determining the initial cycle time value
which is Lower Bound (LB) calculated as follow:
n

t;
i=1

(7)

LB = max | max {t;},
1<i<n

Step2: Identifying the number of stations by the
following procedure [24]: Tasks are assigned to sta-
tions according to the task sequence in the chromo-
some as long as the predetermined cycle time is not
overtaken. Once this cycle time is surpassed at least
for one model, or the zoning constraints of set IT are
not satisfied, a new station is opened for assignment
and the procedure is repeated until the last task is
assigned.

Step 3: If the obtained number of stations is equal
to a given m go to Step 4, otherwise the cycle time
C will be incremented by 1 and go to Step 2.

Step 4: Finishing the procedure and presenting
the cycle time of chromosome. Table 5 illustrates the
steps of assignment of tasks to stations for an illustra-
tive example of precedence graph G shown in Fig. 1
(m = 6 stations (S), n = 10 tasks, (4,5)€IT).
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Table 1
The assignment of tasks to stations of the illustrative
example.
Stepl | C=LB=8
Chromosome
associated to 1 2 314|15(6138 719110
G
Task
Step2 | time 8 8 41212618 2152
Station | S1 | S2 | S3 S4 S5 | S6 S7
Step3 | o_1B—g => m=7>6 C=C+1=9 g0 to step2
Task
Step2 | time 8 8 41212618 215]2
Station | S1 | S2 | S3 S4 S5 S6
Step3 | C=9 ——> m=6 =) The desired number of
stations
Step4 | End procedure: The cycle time of this chromosome is C=9

Fig. 1. Precedence graph G of the illustrative example.

Step 4: Reproduction: selection, crossover
and mutation operator

e Selection operator

According to the reproduction probability of each in-
dividual in the population, the parent chromosomes
are selected by the “Roulette Wheel strategy” pro-
posed by [25].

e Crossover Operator (CO)

— First Crossover Operator (Two crossover
points).

The First Crossover Operator (FCO) was intro-
duced by [26]. It works as follows:

*Two points randomly selected as indicated in
Fig. 2, divide the parent into three parts (0-1, 1-2,
2-3).

*All elements from the parts (0-1, 2-3) of the first
parent (P1) are copied to identical positions in the
offspringl (O1).

*All the elements within the part (1-2) of the first
parent are reorganized according to the order of their
appearance in the second parent vector (P2) to gen-
erate the remaining parts of offspring 1.

The other offspring (O2) is generated using the
same method, with the roles of its parents reversed.
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Fig. 2. The first crossover operator (FCO).

— Second  Crossover  Operator (Four
points)

The Second Crossover Operator (SCO) uses four
crossover points, it works as follows:

*Four points generated randomly, divide each
parent into five parts (0-1, 1-2, 2-3, 3-4, 4-5), as
shown in Fig. 3.

*All elements from parts (0-1, 2-3, 4-5) of the
first parent are copied to identical positions in the
offspring 1.

*All the elements within the parts (1-2, 3-4) of
the first parent are reorganized according to the or-
der of their appearance in the second parent vector

to generate the remaining parts of offspring 1.

L v v o R

crossover

P111|3.4|2l5|6 7|8|:9|1oi
p2 (14853 s‘ls 2I7'|10I
B U
0.1i1|3|:4|:»zi5|6I8|7r|:9|1ol
1 ] 1 : 1 1
02I1|4I8\9l3|5 2‘6|:T|10'

Fig. 3. The Second crossover operator (SCO).

e Mutation Operator: Scramble mutation
The procedure consists in randomly choosing one
position within the solution offstring as it is shown
in Fig. 4. This position cut the offspring into two
parts (fragments). Fragment 1 and fragment 2 are
presented as follows:
— Fragment 1: all elements are placed before the first
position.
— Fragment 2: all elements are placed after the first
position.
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NewO |1 |3 |4 |52 |68 79|10

Fig. 4. Mutation Operator: Scramble mutation.

Fragment 1 is projected on the new mutated off-
spring (New O) but fragment 2 undergoes a recon-
struction procedure [24].

Step 5: New population

A replacement strategy applied in [27] is used to
create the new population. This strategy takes into
account the fitness value of the individuals. The in-
dividuals of the new generation must have the best
fitness (higher fitness value= minimum cycle time)
of all individual forms:

i) the current population,
ii) off springs produced by crossover,
iii) off springs which underwent mutation.

The best solution of each generation is stored in
order to avoid its loss over generations.

Step 6: Stopping criteria

The number of iterations is the stop condition.
When this number is reached, the GA will be stopped
otherwise returned to step 3.

Application case and analysis

The proposed GA was implemented with MAT-
LAB 7.6. All experiments were run within Windows 7
Professional installed on a PC with Intel(R) Core
(TM) i3-2310MCPU, 2.10 GHz. In order to charac-
terize parameters and evaluate the performance of
the GA, we explored some instances of an assembly
line which produces many types of motor cable with-
in the company LEONI.

Step 5: Selection of GA parameters

The performances of GA for both quality of so-
lutions and compilation time are related to the dif-
ferent GA parameter values.

e Stopping criteria

The number of necessary iterations is not predefined.
We have varied the stop number of iterations in order
to minimise cycle time for some instances as indicat-
ed in Table 2.

Based on Table 2, the number of iterations should
be fixed at n x 1000 iterations for an initial popula-
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tion of 50 individuals. Indeed, it gives a minimum cy-
cle time with an acceptable compilation time. Then
the algorithm is stopped after n x 20 generations
< n x 1000

size of population

> and returns the best solution.

Table 2
Evaluation of the cycle time of 3 instances for four numbers
of iterations.

Number The maximum
of Instance The minimum compilation
; ; N° cycle time time
iterations v
(minutes)
1 70
100n 2 250 6
3 480
1 69
500n 2 240 15
3 470
1 68
1000n 2 230 30
3 475
1 68
2000n 2 230 50
3 475

e GA parameters

The parameters of algorithm include population
size (pop size), Crossover Operator (CO) and muta-
tion rate (Pm). In order to select the better para-
meters combination, a full factorial design is used.
For this reason, each parameter is divided with two
levels: population size: 50 and 100, crossover opera-
tor: FCO and SCO and mutation rate: 0.1 and 0.15.
There are three factors and two levels in the design
of this experiment, and the target is to obtain the
cycle time as minimum as possible. It follows that 8
(2%) experiments are necessary to select the better
configuration, as mentioned in Table 3.

Table 3
Tested GA parameters values.
Experiment pop size Crossover Operator Pm
E1 0 0 1
E2 0 0 0
E3 0 1 1
E4 0 1 0
E5 1 0 1
E6 1 0 0
E7 1 1 1
E8 1 1 0

The result for all instances determined by
Minitabl4 is a same as shown in Fig. 5. Based in
Fig. 5, the better combination of parameters consists
in selecting: population size = 100, crossover opera-
tor = SCO and mutation rate = 0.15.
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0: the first value mentioned of the parameter
1: the second value mentioned of the parameter

Main Effects Plot (data means) for C

pap size Pm

245.0

2425 \ \

240.0

237.5 \ \
& 2350 . .
5 0 _ 1 0 1
2 2450

2425

240.0

237.5 \_

235.0

1

Fig. 5. Major influence diagram of cycle time C' of in-
stance 2.

We have found out that compilation time of GA
is long. Consequently, we have modified once again
the stopping criteria to decrease computation time.
To determine the stopping criteria of GA, a simple
convergence study is performed.

The evolution of the solution, as indicated in
Fig. 6, is decomposed in two zones:

*Zonel: the quality of the solution improves
through the number of generations.

*Zone 2: the quality of the solution is constant
until the final generation (10n).

Then, in order to reduce computation time, the
GA will stop when one of the following conditions is
attained:

(i) The quality of solution is constant for 2n gen-
erations,

(ii) The total number of generations exceeds a
maximum number 10n.

- T
Cyde 1" Zonel Zonel | 10n
time !

an

| I I
= » w Ll L n L] » "

In Number of generations

Fig. 6. Evolution of cycle time solution, as function of
number of generations for instance 3 by the proposed

GA.
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The Fig. 7 records the reduction of the compila-
tion time.

35.00

20.00

25.00

20.00

15.00

10.00

0.00

14 21 44

Mew compilation time Compilation time

Fig. 7. Evolution of compilation time (CT), as function
of number of tasks.

Computational results

Tables 4 and 5 contain the better solutions ob-
tained by the CPLEX software (C*) and by the pro-
posed GA (Cobtainea) for these real instances.

Table 4
The obtained solutions.
Problem| n | IT |m| Cused | Cobtainea | C* | g o) 1 o
(in s) (in s) (in s)
1 14| 4.6 |3| 69 67 67 [0.00| 2.9
2 211 1.715| 220 220 220 [0.00| O
3 44(1.17| 6| 480 460 443 |3.83|4.17
Clused: Actual cycle time used in the line
Cobtained: Cycle time from the proposed GA
C*: Optimal cycle time using CPLEX software
Table 5
The obtained compilation time.
Problem (n? min) (n? min)
1 2 30
2 5 65
3 12 122

CT1: Compilation time obtained by the proposed GA
CT2: Compilation time obtained by CPLEX software

Improvement rate

I% — 100 x C4used - Cobtained )

(8)

Cused
Percentage difference
Cobtaiend -

E% =100 x o

(9)
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As can be seen in the Tables 4 and 5, the proposed
algorithm could make cycle time more efficient in all
instances. The first comparison between the results
given by the genetic approach with the actual cycle
times used exhibits the reduction of the cycle time
by 4% for a real assembly line. Then, the proposed
GA approach can make a significant improvement to
the performance of the company lines.

The second comparison of the results given by the
genetic approach with the optimal cycle times shows
the following points:

e The difference of two compilation times is very
remarkable for all instances. The running time
of CPLEX software is more important than the
proposed GA. Therefore, the compilation time
increases enormously depending on the problem
size. In fact, CPLEX software loses its computa-
tional efficiency for large size problems.

e The E% does not exceed a rate of 4%.

Then, the second comparison of the results given
by the genetic approach with the optimal cycle times
shows an accomplishment of this algorithm to gen-
erate solutions very close from the optimal ones in a
reasonable time (few minutes).

Conclusion

In this paper, an interesting extension of SALBP
was focused on within a company of an automo-
tive cables manufacturing. For this purpose, an in-
novative Genetic Algorithm (GA) was implemented.
The effectiveness of the proposed GA is evaluated
through various sets of instances collected from a re-
al case study of an automotive cable manufacturer.
The results of comparative studies with CPLEX soft-
ware exact solutions exhibit that the proposed GA
approach is very effective and competitive.

Discussions with industrial engineers and the re-
sults obtained in the practise case suggest some re-
search topics perspectives: (1) Taking the resource
assignment problem into account, many new criteria
(price, speed of resource, and so on) have to be con-
sidered. (2) Adding other objectives to the problem
such as costs of resources.
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