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Abstract 

In this paper, we propose a new method of measuring the target velocity by estimating the scaling parameter of a 
chaos-generating system. First, we derive the relation between the target velocity and the scaling parameter of 
the chaos-generating system. Then a new method for scaling parameter estimation of the chaotic system is 
proposed by exploiting the chaotic synchronization property. Finally, numerical simulations show the 
effectiveness of the proposed method in target velocity measurement. 
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1. Introduction 
 

A chaotic signal, generated by nonlinear dynamical circuits and systems, has broadband 
spectra, noise-like property, good correlation and deterministic feature. These features of a 
chaotic signal have drawn considerable attention in the radar community [1-11].  

In [1], the authors present a processing scheme of chaotic radar signals by exploiting the 
generating mechanism of transmitted chaotic signals. They find a simple relation between the 
target parameters (range and velocity) and the system parameters of a special chaotic system, 
Chua’s circuits (Chaotic system is the system that presents the chaos features, such as initial 
condition sensitivity, parameter sensitivity, attractors. Chua’s system is one of the chaotic 
systems). With this relation, the measurement of the target parameters is transformed into 
estimation of Chua’s circuit parameters. But in [1], the authors focus on Chua’s circuit and 
they do not show the way how to estimate the parameters in a chaotic system accurately.  

In this paper we do further research based on [1] on chaotic radar. The source of chaotic 
radar is the signal generated by a nonlinear dynamical circuit. Firstly, we offer a relationship 
between the target parameters and the common chaotic system parameters. It is demonstrated 
by exploiting the relationship between Doppler shift and the scaling parameter of the chaotic 
system.  

Then, a more accurate method for parameter estimation of the chaotic system is given. 
Though there are many parameter estimation methods, most of them are focusing on using the 
optimization algorithm, such as in [12]; an extended word-lifting method is used, in [13,14] 
particle swarm optimization is applied in parameter estimation. Since chaos is very sensitive 
to the parameters, the estimation error of the traditional ways is not small enough for 
parameter estimation in target velocity measurement. The estimation method in this paper 
makes full use of the synchronization character of chaos. That is, the synchronization error of 
the chaotic systems is sensitive to the parameters. If there is a small error between the master 
system parameter and the slave system parameter, there is a distinct synchronization error 
between them. So an accurate estimation can be obtained by choosing the value which can 
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make the best synchronization performance.  
Finally, the parameter estimation method is applied in estimating the scaling parameter of 

the chaotic system, and the target velocity can be obtained by the relationship between the 
Doppler shift and the scaling parameter. 

This paper is organized as follows. In Section 2 the relation between the target velocity and 
the scaling parameter of the chaos-generating system is derived. In Section 3 a new parameter 
estimation method for a chaotic system is proposed. In section 4, numerical simulation is done 
to verify the effectiveness of the theory. A brief conclusion of this paper is drawn in 
Section 5. 
 
2. Relating the target velocity and the scaling parameter  

 
In [1], the authors focus on Chua’s chaotic system and they proposed the relation between 

the target velocity and the parameter of Chua’s chaos-generating system. In this section, we 
further develop the relationship between the target velocity and the parameter of a general 
chaos-generating system. In order to illustrate this, two theorems are given. 
Theorem 1 Consider two n- dimensional chaotic systems: 

 ( ) ( ( ))X t g X t=ɺ  (1) 

 ( ) ( ( )),X t g X tλ=ɺɶ ɶ  (2) 

where ( ), ( ) nX t X t R∈ɶ , λ is the scaling parameter. If we let X(t), ( )X tɶ denote the solution to 
Eq.(1) and Eq.(2) respectively, then we have 

 ( ) ( )X t X tλ=ɶ  (3)  

Proof: Assume ( ) ( )X X tτ λ= , (where τ = λt) according to Eq.(1): 

 
( )

( ) ( )

[ ( )] [ ] [ ( )]
( ) .

d
X X

dt
d X d d X

g X
d dt d

τ τ

τ τ τλ λ τ
τ τ

=

= = =

ɺ

 

(4) 

That is  

 ( )( ) ( )X t g X tλ λ λ=ɺ
  (5) 

Seen from Eq.(5) and Eq.(2), we have: 

 ( ) ( ).X t X tλ=ɶ  (6) 

Theorem 2 If the transmitted radar signal is generated by ( )X tɺ  defined by Eq.(1), then the 
returned signal from the moving point target could be simulated by the signal generated by 

( )X tɺɶ defined by Eq.(2). 

Proof: Assume that a point target is located at a distance 0r  far from the radar at time 0t , 

travelling with a linear velocity of v along the line of sight of the radar. Then the range to 
target at any time t is: 
 0 0( ) ( )r t r v t t= + − . (7) 

Without the loss of generality, we let the initial time 0 0t = . The delay corresponding to the 
two-way path will be  

 022 ( ) 2rr t vt

c c c
τ = = + , (8) 
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where c is the light velocity. Assume that the transmitted radar signal is generated by 

1( )x t which is one variable of X(t). (where [ ]1 2( ) ( ), ( ), , ( )nX t x t x t x t= ⋯ ).Then the returned 

signal 1( )x t′ form the moving target is  

 0
1 1 1

22
( ) ( ) 1 .

2

rv
x t x t x t

c c v
τ

    ′ = − = − −    −     
 (9) 

Let 

 ( )1 2 /v cλ = −  (10) 

 ( )02 / 2r c vτ = −ɶ , (11) 

1( )x t′ can be rewritten as: 

 ( )1 1( ) ( ) .x t x tλ τ′ = − ɶ
 

(12) 

According to Theorem 1 1( )x t′ is the solution of ( )X tɺɶ , thus the returned signal from the point 

moving target could be simulated by the signal generated by ( )X tɺɶ . 
Theorem 2 can be presented by a simple picture, Fig.1. In Fig.1, we can see that the 

returned signal from the point moving target could be simulated by another signal generated 
by a similar form chaotic system which multiplied by a scaling parameter.  

R a d ar   s i g n a l  s o u r ce 
generated by ( )g X

Moving 
target

1( )x t

1( )x t τ−Returned signal 

R a d a r   s i g n a l  s o u r c e 
generated by ( )g Xλ ɶ

1( )x t

1( )x t′

 
 

Fig.1 A simple illustration figure of Theorem 2 

 

Theorem 1 and theorem 2 indicate that the scaling parameter λ in fact is the Doppler shift, 
and if we could estimate the parameter λ in the chaotic system in Eq.(2), then we can get the 
target velocity by Eq.(13).  

 
(1 ).

2

c
v λ= −  (13) 

 
3. A New Method for Estimating the Scaling Parameter  

 
In this section, a new method for parameter estimation is given. It is based on chaotic 

synchronization character, but not using the optimization algorithm in the traditional way. 
Since the chaotic synchronization parameter is sensitive, the method in this paper is more 
accurate.  
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In section 2, we derived the relationship between the target velocity and the scaling 
parameter of the chaotic system. Seen from Eq.(13), in order to get the target velocity, the 
scaling parameter λ should be estimated accurately. If there is a 610− error in λ, the estimation 
error in target velocity could be 150m/s. Thus an accurate parameter estimation method is 
needed here. Though there are many parameter estimation methods in a chaotic system, such 
as [4, 5, 12-15], the estimation is not accurate enough. So in this section, a more accurate 
estimation method is proposed based on the parameter sensitivity of chaotic synchronization.  

The main idea of the proposed estimation method is as follows. A special interval of the 
scaling parameter should be computed firstly. This is easy to be accomplished, since in 
practice the target velocity is limited, so the estimated parameter is restricted in a small 
interval according to Eq.(10). Then uniform sampling is made through the special interval 
with a small sampling interval. Let the returned signal from the moving target be the master 
system and let the sampled value in the special interval be the scaling parameter of the slave 
system. Because of the parameter sensitivity of the chaotic system, only the master and the 
slave parameter are nearly matched, the synchronization performance is the best. So the value 
which can make the smallest synchronization error is chosen in the interval and let it be the 
estimated scaling parameter value.  

In order to illustrate the method, some notation should be given. The master chaotic 
system, which is simulated by the returned signal from the moving target, is shown as Eq.(2). 
The slave system is as Eq.(14). 

 
ˆ ˆ( ) ( ( )).X t f X tγ=ɺ

 (14) 

where γ is a constant and max max[1 (2 / ),1 (2 / )]T v c v cγ ∈ = − + , maxv is the top limit of the target 

velocity and 1 2
ˆ ˆ ˆ ˆ( ) [ ( ), ( ), ( )]nX t x t x t x t= ⋯ . ˆ ( )X t  is similar to ( )X tɶ which is defined by Eq.(2). 

The difference is that they have a different scaling parameter. The scaling parameter of X̂  is 
λ and the scaling parameter is γ. 
The step of the new method for estimation of  the parameter is as follows: 
1) Define the sampling interval l and sample iγ  (i=  1,2,…N) in the special interval T, where 

N is the total sampling number in the small interval. Let iγ γ= . 

2) Use one component of ̂( )X t , which is 1̂( )x t , as the driven signal to drive the system 

defined by Eq.(14). 
3) Compute the synchronization error and choose the value Tγ ∈ which can make the 

smallest synchronization error as the estimation value λ̂  by using Eq.(15). 

 
1 1

ˆ ˆarg inf ( ) ( ) ,
T

t t
γ

λ γ
∈

= = −x xɶ  (15) 

where inf(f(x)) denotes the infimum of f(x), and *( ) ( ), ( )t t t=x x x . 
 
4. Numerical Simulation  
 

In order to verify the effectiveness of the theory in this paper, simulations have been done 
in this section.  

Assume two leaving targets with the velocity 1v =30m/s , 2v =150m/s respectively. 
According to Eq.(13).  

7
1 11 (2 / ) 1 2 10v cλ −= − = − × , 6

2 21 (2 / ) 1 10 .v cλ −= − = −  
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According to the theory in section 2 we could use the signal generated by Eq.(2) to 
simulate the returned signal from the moving target when the transmitted signal is generated 
by Eq.(1). Here the typical Lorenz chaotic system is used for illustration and it is shown in 
Eq.(16). The radar signal is generated by1x component in the Lorenz chaotic system. The 

synchronization error is defined as Eq.(17). 

 

1 1 2

2 1 2 1 3

3 1 2 3,

x x x

x rx x x x

x x x bx

σ σ= − +
 = − −
 = −

ɺ

ɺ  (16) 

where σ =10, r =  28 and b=8/3. 

 1 1ˆ( ) ( ) ( )E t x t x t= −ɶ . (17) 

Next, the method proposed in section 3 is used to estimate the parameter ( 1,2)i iλ = . In this 

paper we focus on the target with the velocity in [0( / ) 600( / )]m s m s−  which is the interval 

which contains the velocity of most targets (cars, planes). Thus, we let max 600 /v m s= . So the 

small interval T = [1– 4 x 10-6, 1+ 4 x 10-6]. We let the sampling interval l = 10-8. Using the 
method in section 3 we get 7

1̂ 1 2.1 10λ −= − × , 6
2

ˆ 1 0.98 10λ −= − ×  and the synchronization error 

simulation is shown in Fig.2 and Fig.3. According to Eq. (10) we use ˆˆ (1 )
2

c
v λ= −  to get 

1̂ 31.5 /v m s= , 2ˆ 147 /v m s= . The estimation error is small.  
 

 
Fig.2 The synchronization error of the driven-response system; the driven system with parameter λ1 

and the 

response system with parameter ˆ .1λ
 

 

 
Fig.3 The synchronization Error of the driven-response system;  the driven system with parameter λ2 

and the 

response system with parameter 2λ̂ . 
 

For comparison, we also use other methods for estimating the scaling parameter. This is 
shown in Tab.1. From Tab.1, we can see that the estimation method in this paper is more 
accurate and suitable for getting the target velocity. The reason is that the estimated parameter 
is restricted in a special interval, thus, we can make full use of the chaotic synchronization 
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parameter sensitivity (when the parameters in the driven and response systems are not 
matched well, the synchronization error is large.) to get the estimated parameter in the special 
interval, while other methods are focusing on using the optimization algorithm to estimate the 
parameter.  

 
Table 1. The average error of the methods in the estimation scaling parameter and the target velocity; 20 

simulation experiments have been done in each method 
  

ESTIMATION METHODS AVERAGE ESTIMATION 
ERROR  

AVERAGE VELOCITY 
ESTIMATION ERROR 

The method in [ 4 ] 72.3 10−×  34.5m/s 
The method in [ 13 ] 63.6 10−×  540m/s 

The method in [ 14 ] 61.7 10−×  255m/s 

The method in this paper 81.3 10−×  1.95m/s 

 
5. Conclusions  
 

In this paper we derived the relation between the scaling parameter of a general chaotic 
system and the target velocity. What is more, a new method for parameter estimation of the 
chaotic system is proposed. We can get the target velocity by estimating the scaling parameter 
of the returned signal. Numerical simulation shows the effectiveness of the method proposed 
in this paper. Notice that in this paper the noise is not considered. Here we just offer a 
principle of velocity measurement and the noise can be reduced by other methods such as the 
way in [16]. How to obtain the target velocity in engineering will be discussed later.  
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