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Abstract 

The work presented in the paper concerns a very important problem of searching for string alignments. The 

authors show that the problem of a genome pattern alignment could be interpreted and defined as a measuring 

task, where the distance between two (or more) patterns is investigated. The problem originates from modern 

computation biology. Hardware-based implementations have been driving out software solutions in the field 

recently. The complex programmable devices have become very commonly applied. The paper introduces a new, 

optimized approach based on the Smith-Waterman dynamic programming algorithm. The original algorithm is 

modified in order to simplify data-path processing and take advantage of the properties offered by FPGA 

devices. The results obtained with the proposed methodology allow to reduce the size of the functional block and 

radically speed up the processing time. This approach is very competitive compared with other related works. 
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1. Introduction 

 

The expansion of microbiology, molecular biology and computational biology, observed 

for last decades, has been delivering a huge amount of data. The National Center for 

Biotechnology Information (NCBI) as a part of the International Nucleotide Sequence 

Database Collaboration (INSDC) has established GenBank [1] as the open-access database. 

GenBank collects genome sequences produced in laboratories throughout the world from 

more than 100,000 distinct organisms and continues to grow at an exponential rate, doubling 

every 18 months (there are 126,551,501,141 bases in 135,440,924 sequence records in the 

traditional GenBank divisions as of April 2011). Today, researchers can collect information 

coming from DNA structures and it is very important to find effective and accurate techniques 

which allow identifying and recognizing this data, describing and understanding genome 

mechanisms and functions. The searching techniques based on software solutions have proved 

their correctness, but also showed their ineffectiveness when the amount of data reaches 

Gigabytes. So, it is necessary to look for other hardware-dedicated and effective solutions. 

The approach, which is the continuation of the previous researches of the authors [2, 3], 

described within the paper allows to reduce radically hardware resources and improve overall 

system performance.  

 

2. Problem description and motivation 

 

The limitations of serial (sequential) computers and constraints of data processing cause 

that only software-based approaches to genome searching are not sufficient and satisfying. 

We can distinguish many approaches in the field [4], but the most important – the milestone 
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which decided about the development of the DNA sequences searching – was the algorithm 

S-W of Smith and Waterman [5]. The S-W algorithm presents a heuristic search technique 

based on the idea of dynamic programming. Since the  first introduction of the S-W method, 

some modifications of that approach have been proposed, but still the original S-W technique 

is the base for software implementations. Unfortunately, this algorithm, as every exhaustive 

search technique, has its natural limitations, so the problem of shortening the processing time 

is still very important and many researchers work on it. Some works based on hardware 

structures have been proposed [2, 6-8], but rapid development of FPGA devices allows 

improving the performance and speeding up the data processing [9]. The variety of different 

functional blocks and flexibility of their configuration makes these devices very useful in 

measuring applications [10, 11]. The presented approach proves that data alignment in fact is 

yet another field of the application of modern FPGA devices for measurement purposes. 

 

a c t c g a t c a a t g a t c c

query sequence

a a t c g a t c a c t g a t c c t c a c a g t c a a t c a t g c

distance d1

alignment region r1

distance dk alignment region rk

reference   sequence  

Fig. 1. Sequence alignment viewed as a distance measurement task. 

 

2.1. Smith-Waterman algorithm 
 

The original task [5] could be formulated in the following way: find the best alignments 

between some query sequences within very long reference (DNA) chains. As in [2], there are 

two sequences, i.e. the reference sequence and the query sequence by vectors of symbols 

Ref = {R1,…, Rn} and Qry = {Q1,…, Qm} respectively. The problem of sequence alignment is 

in fact a problem of distance measurement between two (or even more) sequences. This 

distance is expressed by a special penalty function, where some modifications (insertion, 

deletion) between chains are allowed (Fig. 1). The Smith-Waterman algorithm [5] defines the 

methodology of the penalty function evaluation. This approach is based on the idea of 

dynamic programming [4], where the penalty values to subsequent elements of the matrix are 

iteratively calculated basing on the results of the alignments between elements of the 

reference and the query sequences (match or mismatch), i.e. : 

  

   
   

   















deletionQjiP

insertionRjiP

mismatchmatchRQjiP

MINjiP

i

i

ji

_,,1

_,1,

/,1,1

, . (1) 

Where: 

  









)(

)(0
,

penaltymismatchotherwiseM

matchRQwhen
RQ

ji

ji . (2) 

According to the equation (1) and the presented schemes (Fig. 2), the value of a given 

coefficient P[i, j] depends just on values of three adjacent cells. Basing on this fact, we can 

arrange the calculation process of the current cell and reserve the storing resources. Only the 

current and the last value of calculation have to be remembered (stored) for each row of the P 

array. It appears (from the calculation scheme) that the entire query sequence could be 



 

Metrol. Meas. Syst., Vol. XIX (2012), No. 1, pp. 49-62. 

  

calculated simultaneously, provided that all coefficients necessary for the current calculation 

cycle are available.  
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Fig. 2. Schemes of the Smith-Waterman-based optimal path search (a) and its pipeline processing (b). 
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Fig. 3. The main loop of the Smith-Waterman algorithm (the evaluation of three adjacent diagonals: current, 

previous and before previous). 

 

3. Direct software implementation of the algorithm 

 

The software coded S-W algorithm could be represented by the block diagram given in 

Fig. 3. It brings out the main calculation loop consuming the most CPU time. To make the 

implementation more effective and closer to hardware, the entire algorithm was investigated 

with a special attention to the parallel processing, to obtain the most concurrent possible 
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structure. To evaluate a penalty value for a given cell P[i, j] of the matrix, the scores of the 

adjacent cells should be given (Fig. 2). In programming languages this kind of operation 

usually corresponds to a loop statement, which assures obtaining a flexible code that is able to 

handle query sequences of different length. Flattening a loop into a parallel operation and 

applying the pipeline approach allow using all benefits offered by a hardware implementation. 

This implementation resembles the approach presented in [12], however it is more optimal. If 

a single cell complexity is moderate, the pipeline structure can hold the entire query sequence 

that can be processed at once. A single calculation cycle (usually executed in one clock cycle) 

is required to determine contents of penalty values for all query symbols. In fact, 3 adjacent 

diagonals: current (current), previous (previous) and before previous (before) are processed. 

Thanks to this fact the computational complexity is reduced to O(m+n-1). 

Verilog HDL language [13] is similar to the C language and combines elements 

characteristic for hardware descriptions with typical software constructs. However, synthesis 

tools limit the allowed description styles and the set of synthesizable constructions. Generally, 

in any HDL (especially in Verilog), it is possible to express non-synthesizable components 

using a synthesizable set of constructions. The proposed Verilog model defines the 

hierarchical structure with high regularity, the basic cell that is handling a single symbol 

comparison is replicated. A detailed analysis of the block diagram (Fig. 3) shows that only 

two basic arithmetic operations: addition and comparison (greater or less then) could be used. 

The latter in the sense of high-level languages is considered as a logical operation. The 

magnitude comparison is completed by subtracting two values. The difference is neglected, 

and ‘a borrow’ and ‘a zero’ conditions are considered as required results. Both of these 

arithmetic operations are well supported within special components usually present in modern 

FPGA platforms. One of the decision blocks realizes the equality check operation that can be 

implemented as a non-iterative logical function (based on XOR operation). These 

considerations lead to the first directly translated hardware implementation, which is oriented 

to be as close to the original algorithm computation path as possible (Fig. 4). However, this 

solution requires the introduction of additional identification mechanisms of regions of a good 

alignment, i.e. the very exact fragment of the reference sequence with a low value of the 

penalty function (below the cut-off level) [5, 6, 8, 14]. In many dynamic programming-based 

approaches [4, 7, 15-18] the backtracking search is required to restore the best path. Here, in 

the pipeline approach, where the contents of the matrix constantly change, it is impossible. 

Because of that fact ‘the best scorers’ are remembered in a special memory (FIFO registers). 

To localize the best alignment position, after the investigation of the entire reference chain we 

can use two trace back mechanisms addressed in section 5.  
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Fig. 4. Direct hardware implementation of S-W calculation units. 
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Fig. 5. Implementation of the main loop of the algorithm. 

 

When the description of the computation path is ready, we can proceed to the indexed 

addressing that retrieves reference and query symbols. The overall system performance 

strongly depends on several factors, like the way of loop processing and data dependencies 

between subsequent iterations. If the impact of the second factor is strong, i.e. if the results of 

subsequent steps of the calculation are tightly bound, the parallel implementation (execution) 

is very difficult or even impossible to perform. The number of symbols in a query determines 

the range of the loop iterations. A current penalty value is calculated from the result obtained 

in two previous steps (cells with indexes j and j-1). Those variables are named Prev 

(abbreviation for a previous step) and Bef (abbreviation for a before previous step) on the 

block diagram and the query symbols are accessed by the loop index directly. The reference 

symbol is accessed by indexes, and each loop evaluation takes the symbol from the current 

point i toward the beginning of the sequence move up to j indexes Ref[i-j]. In other words the 

reference symbols are observed in the window whose length is equal to a query sequence. All 

the query symbols can be processed concurrently in independent processing units against 

respective reference symbols, so the proposed version of the dynamic programming algorithm 

does not depend on calculation performed in a current loop run. 

The proposed architecture of the entire system exposes regular geometry. The main loop of 

the algorithm (Fig. 5) can be carried out as a pipeline consisting of computational blocks 

together with appropriate registers. The set of registers in each stage is responsible for: 

storage of the last and the last but one calculation result (Prev and Bef variables), 

remembering query symbols that are supposed to be initialized before the procedure starts, the 

reference symbols shift register that is fed from the data source. The length of a query 

sequence can be easily modified by combining the appropriate number of slices. 

The above considerations do not take into account a numerical calculation problem. Unlike 

general purpose computers with processing words of constant length, programmable logic 

devices offer a flexible length of arguments. So, one of the most important properties of the 

hardware implementation is that it allows precise tailoring hardware resources to given data 

processing algorithm requirements. The determination of the required length of variables 

should be preceded by the detailed worst-case analysis of data processing units. After this 

analysis we have found that for our algorithm the maximal possible value of the penalty score 

can be evaluated from the following expression: 

      DelInsLENLENp MAX ,min1  . (3) 

Where: LEN – length of query sequence; p[LEN]MAX – maximal value of penalty at LEN 

position; Ins – penalty for symbol insertion and Del – penalty for symbol deletion. 

The maximal length of registers can be estimated also from the above expression (3), but it 

should be mentioned that a register’s length changes and it depends on the position in the 

iterative chain of the algorithm. Partial results are accumulated from one to another stage 

while data is processed in the pipeline structure. For relatively short sequences it is more 
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convenient to use a constant length of variables. On the other hand, the maximal clock 

frequency of the circuit operation is determined by the longest combinatorial path. 
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Fig. 6. Optimized Smith-Waterman algorithm cell implementation. 

 

Fig. 6 shows a flexible implementation of the basic cell with parameterized width of the 

data path and registers as well as insertion, deletion and mismatch values. The proposed 

implementation does not contain full comparators, which in fact are not necessary for the 

inequality checks. Realization of a typical comparator is not optimal in terms of resources and 

propagation delay. Instead, the subtractors with borrow outputs are considered as the results 

of the comparisons have been applied. The presented approach improves circuit fitting and 

uses enhanced properties of FPGA devices. Such an optimized model of the circuit was 

extensively tested and verified against the C program prototype.  
 

4. SW – further optimization of the initial algorithm 

 

Further considerations on the original software S–W algorithm [5] and additional 

assumptions allow optimizing the hardware structure and reducing the size of the circuitry. 

These modifications cover such problems as: integer coded and positive values of penalties, 

modular architecture with regular basic building blocks (processing elements) etc. Detailed 

discussion of these issues has been presented partially in [2] and fully in [3]. The direct 

implementation of the S–W algorithm very quickly has reached the limits – let us say the 

saturation level. Then, the numerical algorithm has been investigated and main efforts have 

been put into replacement of complex computational units with elementary digital elements 

and reduction of the sequential logic, i.e. increasing the percentage of the asynchronous 

processing elements. Lipton and Lopresti [15] proposed the S-W algorithm with smallest 

values of penalties, namely: (Qi, Rj) = 2 (mismatch) and (_, Rj) = (Qi,_) = 1 

(insertion/deletion) that produces a matrix with some interesting properties summarized in 

theorems (see below). 

 

4.1. Mathematical background of S-W algorithm optimization 
 

Theorem 1 (Property 1) 

Assuming that penalties meet the above (smallest integer) values and the initial rows and 

columns of the matrix are filled with: 

     00
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The elements of array P exhibit the following properties: 

 

 



 

Metrol. Meas. Syst., Vol. XIX (2012), No. 1, pp. 49-62. 

  

 

 

 

The proof by contradiction is elementary and will be skipped here. 

The following conclusions are direct consequences of Theorem 1. 

Theorem 2 (Conclusion) 

For the matrices described in Theorem 1 the following propositions are true: 
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Theorem 1 presents tight dependencies between the numerical values of P array and the 

correlation between query and reference patterns. Theorem 2 formulates conclusions that 

spring directly from Theorem 1: the differences between adjacent cells of the matrix in the 

horizontal and/or vertical direction do not exceed value ±1. This observation is very important 

and brings to mind that it is possible to use a very simple incrementing/decrementing block to 

implement the system functionality. Moreover, for these penalties we found that values of the 

matrix P elements have an upper bound, which corresponds to the row location: 

Theorem 3 (Conclusion) 
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Fig. 7. Diagrams of the growth trends (a, b) in the S-W matrix and corresponding function tables (c, d). 

 

4.2. Practical consequences 
 

Basing on these theorems and observations, we can formulate the function for the next 

value of the matrix P[i, j] expressing the relationship between the row/column increase and 

the reference (current) element of the matrix P[i–1, j–1]. Diagrams presented in Fig. 7a-b 

show the variables (arguments) of two functions: x and y representing the increase of the 

cell value that can be used alternatively for calculation of the next cell (P[i, j]) of the matrix 

P. Variables dx and dy denote the growth trends in the horizontal and vertical direction, 

respectively. The third argument, which has an impact on the value of element P[i, j] is the 
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result of comparison between the current query symbol Q[i] and the reference symbol R[j]. 

Fig. 7c-d show the tables describing functions for x and y respectively. Both functions 

depend on three arguments: dx; dy and M (match/mismatch). As a matter of fact, the function 

tables are truth tables, because the symbols used within the tables have real logical meaning, 

i.e. they denote appropriate combinatorial functions. So, the symbols “+1”, “– 1” and “0” 

correspond to the increment (INC), the decrement (DEC) and no operation (NOP), 

respectively. 

Functions x and y are symmetrical with respect to the variables dx and dy; i.e.: 

 
   

   MxyfMyxfy

MxyfMyxfx
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. (8) 

Each half of one table (for M=0 and M=1 respectively) is the transpose of the appropriate 

half of the next table. This means that combinatorial functions describing growth trends in 

both directions are identical. The reverse transformation from growth coefficients to current 

penalty value can be obtained by summation of growth factors following a selected path: 
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The initial value for P[i,0] is determined by (7) (Theorem 3) under the assumption that the 

entire chain of reference symbols processed does not match the query (initial stable state). 
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Fig. 8. Block diagram of the pipelined structure of growth function x with basic unit structure (a). 

 

4.3. Implementation results 
 

As it was mentioned in the previous sub-section, we can consider two alternative 

implementations with the same complexity: in the horizontal or vertical direction of the 

matrix P, respectively. However, in the case of application to chain alignments, the more 

convenient implementation is the one located on the axis parallel to the reference sequence. 

The presented circuit executes the x function (the reference pattern is placed horizontally). 

The block diagram of a single unit (basic building item) of the horizontal growth function 

x is depicted in Fig. 8a. The length of the query sequence determines the number of basic 

cells that should be connected together. The high simplicity of the cell allows implementing 

extremely long query sequences. The final value of P is calculated in the Σ unit. The 

implementation could be considered as a reversible synchronous counter. This structure is 

able to process a single input symbol per clock cycle in pipelined fashion. 

Convergence of the algorithm allows eliminating complicated dataflow control for pipeline 

processing. The short combinatorial path (the depth does not exceed two Look-Up function 
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generators) guarantees a very short propagation time. The architecture resource requirements 

depend on LUT size (the FPGA target platform). We have made several experiments with the 

Xilinx devices family [9]. Some devices (from Virtex to Virtex-4 with Spartan derivatives) 

are based on 4-input LUTs, and some (Virtex-5 and newer) on 6-input LUTs. The 

implementation benefits from the possibility to convert LUTs to shift registers (SRL) that are 

utilized as programmable comparators. In general, the implementation of the basic cell 

requires: 2 slices, 8 flip-flops, one shift register and four 6-input LUTs or six 4-input LUTs. 

 

5. Trace back – final alignment localization 

 

5.1. First approach – HIPAS 
 

As it has been mentioned above, the original Smith-Waterman approach requires a 

backtracking search to reconstruct the optimal path (Fig. 1). Although there are some 

hardware techniques that propose remembering the entire path for the trace back, but such 

solutions seem to be rather expensive and requiring many additional ineffectively used 

resources. Our solution is different: we have to remember only few ‘candidates’ and their 

scores in a special memory, and analyze solutions after the entire genome search. It allows 

saving resources and only those regions are explored where the probability of the matching 

occurrence is the highest. Our HIPAS (Heuristic Identification for Patterns Alignment of 

Sequences) could be defined by the following three phases: 

 
Step 1: Initialization Phase: load the register R1 with ‘found candidate’ sequence; load the query register QR 

with a given query sequence and reset the register R2. 

Step 2: Branch Phase: determine one of the cases (modes) of calculations. 

Step 3: Execution phase: 

case 3a: if score = 0 (trivial case) then R1  R2 and terminate. 

case 3b: if score = 1 (semi-trivial case) compare registers R1 QR and when you meet the first 

difference on the  k-th position load QR as follows: 

  for i < k   R1(i)  QR(i); 

  for i > k   R1(i)  QR(i+1); 

  QR(k)  “gap symbol”  (_). 

terminate. 

case 3c: if score > 1 (heuristic trial and error method) compare registers R1 and QR moving towards 

the beginning of the sequence and  when you meet a difference try to replace it with a gap (QR(i)  

“gap symbol) or a mismatch (R1(i)  QR(i)). Remember that two gaps one by one are not allowed and 

the penalty of mismatch is given 2 points. Each step updates the current score. When you reach the end 

of the sequence and the current score counter is equal zero,  terminate. 

 

Theoretically, the algorithm requires up to 3n (where: n is the number of query symbols) 

clock cycles per a single chain check (the worst case) and an additional memory, which is 

usually available on the FPGA board.  
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Fig. 9. An example of the HIPAS algorithm run. 

 

5.2. Second proposal – idea of marker registers 
 

The second more efficient mechanism uses special registers responsible for registration of 

the “moves” during the matrix evaluation process. This idea comes from the systolic array 

structure and requires additional resources attached to every cell of the structure. During the 

pipeline calculation process (Fig. 2) the contents of the cells are updated with a new (current) 

value of the penalty and the marker register is uploaded from the appropriate source (left, 

upper diagonal or upper cell). The contents of the register are supplemented by the current 

marker, i.e. the code of the last move. This code reflects the minimal value of the S-W 

algorithm (equation (1) and Fig. 2). Each marker is coded on two bits, and the combination 

“00” is unused  (“no move”). This mechanism, for a given cell P[i, j] is illustrated in Fig. 10a. 

In other words, when a given pipeline stream reaches the end (the final comparison of 

symbols is done), the location of the best alignment is already available (Fig. 10b).  

 

 

Fig. 10. The idea of marker registers (a) and the trace-back reconstructing the entire path (shaded cells). 
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Fig. 11. The concept block diagram of the tracing back through the entire matrix (a), the trace-back cell (b), 

the symbolic truth table (c) and schematic diagram of the trace-back unit cell (d). 

 

5.3. Trace back and finding the best alignments 
 

The proposed incremental S–W (ΔSW algorithm) implementation also facilitates the trace- 

back procedure. Fig. 11a shows the concept block diagram of the tracing back procedure 

through the entire unit. Finding the optimal sequence alignment does not require storing 

numerical values but rather remembering data necessary for restoring the path. As we 

mentioned above, only two bits are needed for this purpose. The direction of the trace back 

can be determined basing on the numerical values in the matrix. There are three possible 

return paths (Fig. 11b) marked with symbols: U, L and D for “up”, “left” and “diagonal”, 

respectively. The procedure is initiated by the comparator that detects the score falling under a 

given penalty threshold (THR block). The output of the comparator activates the trace back 

combinatorial chain. The first activated cell is located on the diagonal. This means that the 

preceding sequence got an exact match. The iterative circuit cell does not need to be aware of 

its location in the chain. The activation from the first cell is passed to other cells according to 

the determined trace-back path. In order to adjust the {L,U} argument pair, each cell is 

equipped with registers that holds the found L and U values for their location that responds to 

the appropriate symbol of the reference pattern. The matched sequence potentially can contain 

insertion and deletion. The number of cells that are located around the diagonal in the up and 

left directions restricts the number of insertions and/or deletions of symbols in the sequence, 

respectively. Finally the active cells are observed at the top row of the unit. The signal from 

an active cell is encoded to determine its location that corresponds to the beginning of the 

matched sequence. The basic cell concept of an iterative trace-back unit is shown in Fig. 11b. 

The cell is fed by the activation inputs that come from three neighboring cells marked as LI, 

DI, UI. If the cell is activated from any input it responds with an activation signal to successor 

cells according to the determined trace-back path. The growth trend can be mapped into return 

path determination (the symbolic truth table for return path in Fig. 11c). Clearly, the table 

shows that U and L are active only for mismatches between symbols corresponding to the 

reference and the query sequences (column and row coordinates). The signal U is active only 

if the vertical growth trend (dy) is negative (-1), while L is asserted for negative horizontal 

growth trend (dx). If there is no negative dominance of dx and dy, the return path goes through 

D. The code assignment for symbols L, U and D requires distinguishing only 4 different 

situations while D depends on L and U. L and U are mutually independent. Reducing the 

amount of information for the return path is crucial while those data must be stored and 

adjusted in time to properly feed the information to trace back the systolic combinatorial unit 

(Fig. 11d).  
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6. Final considerations and conclusions 

 

A new formula of the ΔSW algorithm has been developed that radically changes data 

representation and reduces the complexity of the cell. Excellent operation parameters like 

very low hardware resource consumption per cell, very long query sequences directly 

processed and extremely high operation frequencies show the usefulness of carried-out 

research work. Usually, when the resource consumption of a given general-purpose 

application mapped in a FPGA structure grows, the performance of the circuit rapidly goes 

down. It is mainly because of the propagation delays introduced by long-chained connections 

between multiple segments. Such connections traverse many routing matrices and automated 

“place & route” procedures have problems with routing signals. However, the application 

described in the paper is very regular and repeatable, and the entire structure is very compact. 

It allows packing search queries consisting of 32400 symbols. The basic blocks of SW and 

TB units consist of neighboring cells, which are close to one another and utilize short direct 

connections. So, the presented methodology and the developed synthesizable model, which 

considers the properties of FPGA structures, enable reducing the resource utilization, simplify 

data and control paths and increase the system throughput even with 90% resources utilization 

of the XC5VLX50T board. The basic cell performance is about 220 MHz/4.5 ns 

(Frequency/clock cycle) for Virtex/Spartan-2 and about 600 MHz/1.6 ns for Virtex-5.  
 

Table 1. Resource requirements for full Smith-Waterman implementation expressed in LUT6. 
 

Parameters Components complexity / LUTs distribution 

Total nr of 

LUTs 
Query length 

(nr of 

symbols) 

Max. Dist. 

(nr of 

symbols) 

∆SW (nr of 

LUTs) 
TB (nr of LUTs) 

SRL (nr of 

LUTs) 

512 15 4096 31504 7966 43566 

1024 15 8192 63248 31813 103253 

1024 31 8192 128032 31325 167549 

1536 18 12288 113322 71409 197019 

 

The unit consists of three basic items: the ∆SW pipe, SRL – the pipeline result adjust 

register and the trace-back systolic unit (TB). It is assumed that 85% – 90% of circuit 

resources can be assigned to the entire algorithm. Table 1 gathers the required resources 

divided into functional groups determined for Virtex 5 VLX families, which allows 

implementing the accelerator computing board thanks to PCIe embedded endpoints. As a 

reference, the LUT count is taken XC5VLX330T with the array 240x108 CLBs. The second 

column denoted by symbol “Max. Dist.” contains the maximal admitted region of fitting for 

the sequence. 
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Fig. 12. Comparison of the computation efficiency of different methodologies. 
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Actually, thanks to the regularity of the entire structure, we are able to evaluate almost any 

configuration of multiple queries at the same time, which gives the total number of 32400 

symbols, i.e. nm = 32400 (where: n is the number of queries and m stands for the query 

sequence length). Comparing to the multi-core implementations on Intel Xenon and Intel-

Itanium-2 applications reported in [12], the throughput of our system, expressed in GCUPS 

(giga cell-updates per second) is about 4000 times faster, i.e. taking into account the operating 

frequency 600 MHz and the query length consisting of 32400 symbols we can obtain the 

speed 200 GCUPS (versus 0.049 in multi-core implementation). Authors of [12] improved the 

Smith-Waterman algorithm and they managed to reach the performance level of 178.65 

GCUPS, so the methodology proposed here is comparable (even a little better). As to 

computation efficiency the entire reference chain (genome) can be analyzed in less than 8 

seconds. Fig. 12 compares the results obtained for two implementations for Spartan3 and 

Virtex5 with results reported in the literature for FASTA [19], BLAST [20] methodologies 

and applications on parallel graphical processors [21, 22]. 
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