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EFFECT OF NATURAL CONVECTION ON DIRECTIONAL SOLIDIFICATION OF PURE METAL

WPŁYW KONWEKCJI SWOBODNEJ NA KRZEPNIĘCIE KIERUNKOWE CZYSTEGO METALU

The paper is focused on the modeling of the directional solidification process of pure metal. During the process the
solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D.
The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the
values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which
occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical
point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys,
etc.

The influence of natural convection on the temperature distribution and the solid-liquid interface motion during solid-
ification of pure copper is studied. The mathematical model of the process is based on the differential equations of heat
transfer with convection, Navier-Stokes equation and the motion of the interface. This system of equations is supplemented
by the appropriate initial and boundary conditions. In addition the continuity conditions at the solidification interface must be
properly formulated. The solution involves the determination of the temporary temperature and velocity fields and the position
of the interface. Typically, it is impossible to obtain the exact solution of such problem. The numerical model of solidification
of pure copper in a closed cavity is presented, the influence of the natural convection on the phase change is investigated.
Mathematical formulation of the problem is based on the Stefan problem with moving internal boundaries. The equations are
spatially discretized with the use of fixed grid by means of the Finite Element Method (FEM). Front advancing technique
uses the Level Set Method (LSM). Chorin’s projection method is used to solve Navier-Stokes equation. Such approach makes
possible to uncouple velocities and pressure. The Petrov-Galerkin formulation is employed to stabilize numerical solutions of
the equations. The results of numerical simulations in the 2D region are discussed and compared to the results obtained from
the simulation where movement of the liquid phase was neglected.
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Praca porusza problematykę modelowania kierunkowego krzepnięcia czystego metalu. Podczas tego procesu obserwuje
się formowanie ostrego frontu krzepnięcia w postaci powierzchni separującej ciecz i ciało stałe w przypadku trójwymiarowym
lub krzywej w przypadku płaskim. Położenie oraz kształt interfejsu krzepnięcia zmieniają się w czasie a wartości prędkości
lokalnych zależą od różnicy intensywności strumieni ciepła po stronie ciała stałego i cieczy. Krzepnięcie z ostrym frontem
należy do grupy procesów z przemianami fazowymi, które warunkowane są zmianami temperatury, ciśnienia, itp. Przejście
fazowe z jednego stanu w drugi ma z matematycznego punktu widzenia charakter nieciągły. Procesy tego typu można zidenty-
fikować podczas zamarzania wody, parowania, topnienia i krzepnięcia metali i stopów, itp. W pracy zbadano wpływ zjawiska
konwekcji swobodnej na chwilowy rozkład temperatury oraz ruch granicy narastania fazy stałej podczas krzepnięcia czystej
miedzi w obszarze płaskim. Model matematyczny sformułowano na bazie równań różniczkowych transportu ciepła z konwekcją,
Naviera-Stokesa i ruchu frontu krzepnięcia. Układ równań uzupełniono odpowiednimi warunkami początkowymi i brzegowymi
oraz warunkami ciągłości na froncie. Rozwiązanie obejmuje chwilowe rozkłady temperatury, prędkości oraz położenie granicy
międzyfazowej. Sformułowanie matematyczne zagadnienia bazuje na modelu z ruchomymi granicami wewnętrznymi, czyli
tzw. modelu Stefana. Równania zostały zdyskretyzowane przestrzennie z wykorzystaniem metody elementów skończonych.
W modelu numerycznym wykorzystano siatkę niezmienną w czasie. Do propagacji frontu użyto metody poziomic. Do wy-
znaczenia prędkości w cieczy wykorzystano metodę rzutowania, która poprzez eliminację ciśnienia z równania pędu pozwala
na rozprzężenie prędkości i ciśnień. Równania rozwiązano z wykorzystaniem sformułowania Petrova-Galerkina. Omówiono
wyniki analizy numerycznej oraz porównano je z wynikami otrzymanymi z symulacji, w której pominięto ruch cieczy.
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1. Introduction

In the case of alloy solidification front is usually unsta-
ble. This phenomenon is caused by the segregation of the
alloy components at the front and is called solutal undercool-
ing [1-3]. It leads to the formation of a region filled with
the solid-liquid mixture called mushy zone. If the explicit ef-
fect of component segregation is neglected one can consider
it indirectly using one of the models involving solidification
between the solidus and liquidus temperatures. They are wide-
ly used to model various technological processes containing
solidification such as continuous casting or welding [4-10].

Morphology of the solid-liquid interface during solidifi-
cation process of pure metals depends on the direction of heat
flow [2]. In equiaxed solidification front is morphologically
unstable because the grains grow into an undercooled liquid.
Perturbation which forms on the edge of the grain has favor-
able thermal conditions to grow. During directional solidifica-
tion the direction of solid phase growth is opposite to that of
heat flow. When a perturbation appears at a smooth interface
it melts back and the planar interface remains smooth. As a re-
sult, the solid-liquid interface during directional solidification
of a pure substance is always stable.

The main problem in modeling directional solidification
process of a pure material is the appropriate mathematical and
numerical descriptions of the motion of the interface. Both
heat diffusion, caused by heat transfer between the atoms and
convection, caused by the movement of the liquid phase have
an influence on the shape and temporary position of the solid-
ification front. If the fluid flow is driven by the differences in
the fluid density due to the vertical temperature gradient then
it is called the natural convection. Forced convection occurs
when the motion is induced by external influences, such as
pumps, fans, etc. Despite its importance in many industrial
applications, melting or solidification of metals with natural
convection in the liquid phase has received only little research
attention. Experiments with lead in 1970 [11], mercury in
1974 [12], gallium in 1986 [13], and tin in 1987 [14] have
demonstrated, however, that natural convection can signifi-
cantly affect the shape of solidification interface. This has also
been confirmed by numerical studies of melting of pure metals
in 1986 [15] and 1987 [14]. Numerical investigations of the
pure metal solidification with convection were also carried out
in 90’s [16, 17] and in the recent years [18, 19].

Mathematical description of the motion of the solidifica-
tion interface in the case of pure metal is based on the Stefan
conditions on the moving internal boundary. These conditions
make possible to estimate the local velocity of the interface.
The velocity can be used in the appropriate differential equa-
tion to track the interface according to time. Interface track-
ing algorithms are usually based on the phase-field method
[20-22], cellular automata [23] or the Level Set Method
[24-28]. The main idea of the phase-field method is to in-
troduce a phase-field variable that varies smoothly from zero
to unity between the solid and liquid phases over the region,
which is narrow but it has numerically resolvable thickness.
LSM is an alternative method to track the sharp interface di-
rectly. It is widely used in various applications such as so-
lidification of pure substances, dendritic growth, two-phase
flows, crack propagation, image processing. In this method,

interfacial geometric quantities such as curvature and outward
normal can be estimated with the use of level set field ϕ. The
method was first applied to Stefan problems in [29].

Computer simulations of the sharp front solidification
processes is a challenge for developers of specialized soft-
ware especially in the case of complex geometries and
non-connected, curved interfaces. Important requirement of
the software is to obtain very good accuracy of the temper-
ature distribution on both sides of the moving front which
can be arbitrarily located between the nodes of the finite ele-
ment mesh. It leads to considerable difficulties in determining
the temperature in its vicinity. There are various methods to
resolve this problem which can be divided into three groups:
• methods using modifications of approximation functions

in the finite elements containing solidification interface.
In this case the finite element mesh does not change ac-
cording to time [30];

• methods using mesh adaptation where the edges of the
finite elements are systematically adjusted to the shape of
the front [31];

• methods based on the diffused front where solidification
at a constant temperature is replaced by the process within
a narrow temperature range [32, 33].

2. Mathematical model

Process of directional solidification of pure metal with
natural convection of the liquid phase is taken into account.
Scheme of the process is shown in Fig. 1. Solid ΩL and liquid
ΩS regions are separated by the solidification front ΓLS which
changes its position according to time. Heat is transported in
the direction of the solid. It has stabilizing impact on the shape
of ΓLS. The rate of growth of the solid has a direct influence
on the position of ΓLS. Differences in temperature field in the
vertical direction cause the movement of the liquid metal due
to density changes. Zero contour line of the level set field ϕ
denotes temporary position of the interface ΓLS.

Fig. 1. Scheme of the directional solidification of pure metal with
natural convection

The mathematical model of analyzed process contains
following differential equations:
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Heat diffusion-convection equation:
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where T is the temperature [K], λ – coefficient of thermal
conductivity [J s−1 m−1 K−1], c – specific heat [J kg−1 K−1], ρ
– density [kg m−3], ux, uy – components of the velocity vector
[m s−1], t – time [s], x, y – Cartesian coordinates [m].

Navier-Stokes equations in the case of non-isothermal,
incompressible flow of a Newtonian fluid:
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where µ is dynamical viscosity [kg m−1 s−1], p – pressure
[Pa], β – volumetric coefficient of thermal expansion [K−1],
Tre f – reference temperature [K], gx, gy – components of grav-
itational acceleration vector [m s−2].

Continuity equation under the assumption of incompress-
ibility:

∂ux
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= 0 (3)

Level set equation:
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y
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= 0 (4)

where ϕ is the function measuring distance to the interface
ΓLS [m], uΓLS

x , uΓLS
y – components of the velocity of ΓLS .

The above set of differential equations (1-4) is supple-
mented by the appropriate boundary and initial conditions.

Boundary conditions:

T |Γext1
= Tb, −λ ∂T
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Γext2

= q (5)
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where Tb is the given boundary temperature [K], Γext1 –
left external boundary, Γext2 – right, top and bottom exter-
nal boundaries, q – heat flux normal to the external boundary
Γext2 [J s−1 m−2], n – direction of the vector pointing outwards
Γext2.

Initial conditions:

T |t=0 = T0, φ|t=0 = φ0, ux |t=0 = uy

∣∣∣
t=0 = 0 (7)

where T0 is the initial temperature [K] and initial position of
the ΓLS is indicated by condition ϕ0 =0.

Continuity conditions at the solidification interface must
be also fulfilled:
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where ns is the direction of the vector pointing outwards ΓLS ,
TM – melting (solidification) temperature [K], uLS – velocity
of the solidification front, L – latent heat of solidification [J
kg−1 K−1], s, l – means solid or liquid.

3. Numerical model

According to the weighted residuals method, equation (1)
is multiplied by a weight function w = w(x,y) and then inte-
grated over the region Ω = ΩS ∪ΩL.
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Above equation can be written as a sum of following integral
terms:
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Green’s theorem is used to reduce the order of the diffusion
term in above equation:
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where nx, ny are the components of the vector normal to Γext2
.

This operation leads to the following weak form of (9):
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Matrix form of equation (12) is derived according to FEM
and Petrov-Galerkin formulation, where the weight functions
w(x, y) differ from the shape functions N(x, y). The whole
region is spatially discretized with the use of triangular mesh.
Temperature T , its spatial and time derivatives and velocity
components ux, uy, are approximated in the finite element with
the use of shape functions:

T =

3∑

i=1

NiTi = [N] {T } , ∂T
∂t

=

3∑

i=1

Ni
∂Ti

∂t
= [N]

{
∂T
∂t

}

(13)

ux =

3∑

i=1

Niuix = [N] {ux} , uy =

3∑

i=1

Niuiy = [N]
{
uy

}

(14)

∂T
∂x

=

3∑

i=1

∂Ni

∂x
Ti = [DNx] {T } , ∂T

∂y
=

3∑

i=1

∂Ni

∂y
Ti =

[
DNy

]
{T }

(15)



838

q =
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where Ñi are the shape functions assigned to the edge of finite
element. Matrices used in (13-16) are defined as follows:
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The mathematical form of i-th weight function in the finite el-
ement according to Petrov-Galerkin formulation is as follows:
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where h is the dimension of the finite element in the direction
of velocity vector u and χ is the parameter calculated in the
following way:

χ = ctgh (Pe) − 1
Pe

(21)

where Pe is the Peclet number calculated with the use of ap-
propriate material properties:

Pe =
cρ |u| h

2λ
(22)

Weight functions (20) and its spatial derivatives can be stored
in the following vectors
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Relations (13-19) and (23) are used in (12) leading to the
following equations for a single finite element:
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Ñ
]
ds {q}

(24)
There are matrices in the above equation that can be written
as
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where K(e)
T is the thermal conductivity matrix, A(e)

T – heat
convection matrix, M(e)

T – heat capacity matrix, B(e)
T – vector

associated with the boundary conditions.
Substituting (25-29) into (24) leads to the following equa-

tion (
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Time discretization procedure is based on the forward Euler
method. Time derivative of T in the range ∆t = t f +1 − t f is
approximated using the scheme as showed
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Above scheme is substituted into (30) to obtain the following
global FEM equation
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Main problem in numerical solution of Navier-Stokes equation
is the pressure gradient term which makes global coefficient
matrix singular in the case of incompressibility. One of the
most popular methods used to obtain numerical solution of
N-S equation is the method developed by Chorin in 1968 [34].
According to the projection method the components of the
auxiliary velocity u∗ =
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are explicitly computed using

equations (2) without the pressure gradient term:
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where f denotes f -th time level. Further operations will be
performed on the equations in the vector form. In the projec-
tion step one can obtain

u f +1 − u∗

∆t
= −1

ρ
∇p f +1 (34)

By rewriting (34) for the u f +1 the following equation is ob-
tained

u f +1 = u∗ − ∆t
ρ
∇p f +1 (35)



839

By taking the divergence of (35) one can obtain

∇ · u f +1 = ∇ · u∗ − ∆t
ρ
∇2p f +1 (36)

By requiring that ∇ · u f +1 = 0 (continuity condition) equation
(36) takes the following form

∇2p f +1 =
ρ

∆t
∇ · u∗ (37)

In conclusion, Chorin’s projection method consists of the three
steps. Firstly, equations (33) are solved explicitly with the use
of Petrov-Galerkin formulation to obtain the auxiliary velocity
field u∗ =
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]
. This process is analogous to that presented

in the case of equation (1). The local matrices are shown
below:
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Aggregation process leads to the global FEM equations:
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(
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In the second step Poisson’s equation (37) is solved using
standard Galerkin formulation to obtain pressure field p f +1. In
the third step the solution of the equation (35) gives the real
velocity field u f +1.

The numerical treatment of the equation (4) was dis-
cussed in details in [35, 36]. The reinitialization of the level
set function as well as the calculation of the heat fluxes on
the solid and liquid sides of ΓLS were the same as in [36].

4. Examples of calculation

The calculations were performed to show the effect of
natural convection of the liquid copper on the temporary po-
sition and shape of solidification front. They were carried out
in the simple, rectangular geometry with the boundary and
initial conditions showed in Fig. 2. Finite element mesh was
composed of 95106 triangles with 47952 nodes. At the time
t =0 s the initial temperature of the entire region was high-
er than the melting point of copper and equal to 1500 K.
At the left wall Dirichlet boundary condition was used with

Tb =300 K. At the other boundaries thermal insulation was
employed. Liquid material was motionless at the initial time
of the process.

Fig. 2. Geometry of the solidifying region with boundary and initial
conditions

Two numerical simulations were performed, the first
where the effect of natural convection was included and the
second neglecting this phenomenon. The material properties
used in both simulations are compiled in Table 1. The main
purpose of such approach was to show the differences in nu-
merical results caused by the motion of liquid metal. The time
step was equal to 0.00025 s during both simulations.

TABLE 1
Material properties of pure copper [37, 38]

Material property Solid Liquid

ρ [kg m−3] 8920.0 8300.0

λ [J s−1 m−1 K−1] 330.0 250.0

c [J kg−1 K−1] 420.0 544.0

µ [kg m−1 s−1] - 0.0035

β [K−1] - 0.0001

L [J kg−1] 204000.0

TM [K] 1357.0

The results of numerical simulations included temporary
distributions of the temperature as well as the velocity fields
in the case of natural convection. Temperature and velocity
distribution at t =5, 10, 20, 40 s are shown in Fig. 3. Position
of the melting point isotherm TM =1357 K is marked by the
dashed curve. Steep temperature gradient appearing on the sol-
id side of the front is clearly noticeable at the very early stage
of the process causing the high speed of solid phase growth.
Highest velocity rates are noticed after 5 s then they gradually
decrease to 0.01 m s−1 after 40 s. Velocity vectors form few
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closed structures called ”convection cells” especially in the
middle of the simulation. Solidification process ended after
55 s. Heat transport in the liquid region taking into account
the convection is more efficient than in the case neglecting
this factor.

Fig. 3. Temperature and velocity fields after t =5, 10, 20, 40 s

Comparison of the cooling curves at selected nodes is
shown in Fig. 4. Temperature in these points decreases more
rapidly when they are in the liquid state in the case of natural
convection. Differences grow as the distance from the cold
wall increases. Melting point is reached a bit earlier than in
the case of pure heat diffusion so the duration of the solidifi-
cation process is a bit shorter if the motion of the liquid phase
is included in the model.

Fig. 4. Comparison of the cooling curves at selected nodes

Temporary positions of the solidification interface ob-
tained from the both cases of simulation are shown in Fig.
5. The comparison was done at selected moments t =2, 5,
10, 20, 30, 40, 50 s. It shows that the differences between
locations of the front at the very early stage of the processes
are negligible due to very high temperature gradient in the
solid region. They are more noticeable as the distance of the
solidification front from the cold wall increases. Interface has
a shape of a vertical line if the motion of the liquid is neglected

but it deforms slightly when the convection is included. This
is clearly noticeable as the process evolves.

Fig. 5. Comparison of the temporary front positions

The velocity of the solidification front decreases rapidly
according to time. The process ended after 55 s in the case
of convection and a few seconds later in the case of pure
heat diffusion. This shows that the impact of the motion of
the liquid on the duration of the solidification in the analyzed
case is rather slight.

5. Conclusions

The presented mathematical and numerical models of di-
rectional solidification process of pure metal makes possible
to take into account the continuity conditions at the sharp
solidification interface as well as the natural convection phe-
nomenon. Numerical formulation, based on the finite element
method provides a solid base to build the in-home computer
program. The comparison of the results obtained with the use
of 2D solver shows quite similar final effect of solidification
process. The most significant differences are observed dur-
ing analysis of cooling curves built for selected points. These
differences were caused by the more intense rate of heat trans-
fer in the liquid region in the presence of the movement of
molten metal. The comparison of the temporary front position
shows very subtle differences, especially in a later stage of the
process.
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