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Abstract 

This paper presents a Kalman filter based method for diagnosing both parametric and catastrophic faults in 

analog circuits. Two major innovations are presented, i.e., the Kalman filter based technique, which can 

significantly improve the efficiency of diagnosing a fault through an iterative structure, and the Shannon entropy 

to mitigate the influence of component tolerance. Both these concepts help to achieve higher performance and 

lower testing cost while maintaining the circuit’s functionality. Our simulations demonstrate that using the 

Kalman filter based technique leads to good results of fault detection and fault location of analog circuits. 

Meanwhile, the parasitics, as a result of enhancing accessibility by adding test points, are reduced to minimum, 

that is, the data used for diagnosis is directly obtained from the system primary output pins in our method. The 

simulations also show that decision boundaries among faulty circuits have small variations over a wide range of 

noise-immunity requirements. In addition, experimental results show that the proposed method is superior to the 

test method based on the subband decomposition combined with coherence function, arisen recently. 
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1. Introduction 

 

Testability of analog circuits has become more important recently due to the rapid 

development in analog VLSI chips, mixed-signal systems, and system-on-chip (SoC) products 

[1]-[3]. Since complete testing of an analog circuit specification can be costly, sometimes 

impossible, analyzing the output response of the circuit under test (CUT), which is called 

signature analysis, is the key to successful application of defected-oriented testing for high 

fault and yield coverage [4]. 

Signature analysis in analog circuits is complicated because the uncertainty comes from the 

poor input signal and tolerances in the component values of the analog circuit [4]. Further, the 

imprecise measurement of the analog circuit can also cause the response of the circuit to be 

different from the ideal response. These make it mandatory to compress the output response 

in order to produce a signature of the output for fault diagnosis. 

Unfortunately, the signature of the faulty response may correspond to a fault-free signature, 

which is usually called aliasing. The aliasing results in a failure of fault diagnosis. Further, 

aliasing may also happen if the signature of the faulty response is not robust. Our motivation 

for this research is to minimize the aliasing probability by incorporating noise information in 

generating the robust signature. 

 

2. Preliminaries and Contributions 

 

A significant amount of methods dealing with signature analysis in analog circuits has 

been proposed, and only some of them are reviewed here. First, several important schemes are 
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briefly reviewed, and then the noise-based signature extraction scheme, on which our 

technique is based, is discussed. 

 

2.1. Previous work 

 

Papakostas and Hatzopoulos [5] proposed a correlation-based comparison of the analog 

signatures scheme for improving the fault discrimination capacity, which introduced a new 

criterion by the use of a weighted factor. Faults in the CUT that lead to similar analog 

signatures can be detected and identified. This approach is appealing since the probability of 

aliasing is sharply reduced. Subband filtering testing using an integrator scheme for analog 

response signature compacting was proposed in [4]. In this scheme, a subband filter takes the 

test response, and then decomposes the signal for each frequency band. The decomposed 

signal for each frequency band is then fed into its respective integrator, which was used for 

signature compression. This scheme has good performance on parameter faults and 

catastrophic faults. 

Catelani and Fort [6] proposed an efficient scheme for analyzing signatures of analog 

circuits using a radial basis function network classifier. Their main idea is to use neural 

networks to perform fault diagnosis of analog circuits. The network is trained by means of a 

fault dictionary, which was previously constructed and contained examples of fault signatures. 

An index of the novelty of the fault is obtained as an output of the network, and this is used as 

an output of signature compression. It is assumed that the neural networks already exist as a 

part of the test overhead for the fault diagnosis. 

Coefficient-based testing employing the bounds of circuit transfer-function coefficients as 

the signature is proposed by Guo and Savir [7], [8]. In their scheme, the values of the transfer-

function coefficients of the good circuit are supposed to lie in their individual hypercubes. 

Whenever one or more of the CUT’s coefficient values slip outside their hypercube, a 

different transfer function that reflects the existence of a detectable fault is obtained. Since 

this scheme tries to get the corresponding transfer-function, significant computational 

overhead is needed. 

In [9], Yang et al. combined the slope-based model and the test-point selection algorithm 

for analog circuits test. In this scheme, the slope is used for signature compression. Although 

the slope signature can diagnose both parametric and catastrophic faults, it leads to a 

significant computational cost. Deng et al. [10] propose a new approach based on the subband 

decomposition combined with coherence functions. Their main idea is that the Volterra kernel 

is decomposed in subband, and the decomposed response signals are processed by a 

coherence function to extract the fault signature. Since this scheme requires computing the 

Volterra series and coherence function, the significant computational cost is also considerable. 

         

2.2. Work in this paper  

 

     From above illustrations of the previous work, it is easily seen that traditional methods for 

fault diagnosis of analog circuits are mainly focused on the fault location at the cost of 

augmenting the algorithm complexity or adding the test nodes for data acquisition. A robust 

method, which could explore the information contained in the measurement data of the CUT 

as much as possible without adding additional test nodes, is appealing. Meanwhile, the 

method should identify the new information from the new measured data without acquiring 

more complexity of the algorithm, with aid of this information, a robust and sensitive 

signature can be obtained so effectively that the fault location becomes more reliable and 

robust. 
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Thanks to the Kalman filter technique, the objective that we want to fulfil the above task 

can be easily achieved. To the best knowledge of the authors, the Kalman filter based method 

for fault diagnosis of analog circuits has not been reported. Especially, the noise-based 

diagnosis method presented here is also new.  

In this paper, the Kalman filter is used to acquire the variance of the Gaussian distribution, 

which is unique for a concrete fault. Based on the Gaussian distribution, the Shannon entropy 

is used as the signature parameter to identify the fault. 

     This paper focuses on locating the fault and minimizing the aliasing probability effectively 

when a parametric or catastrophic fault occurred in the analog circuit. Simulation and 

experimental results show the robustness of the proposed approach compared with the 

subband decomposition and coherence function based method [10]. The remainder of this 

paper is organized as follows: In section III, a fault model is established, the Kalman filter is 

reviewed, the Kalman filter based method for fault diagnosis of analog circuits is illustrated. 

Two simulations described in Section IV demonstrate the approach. Section V provides an 

experiment validation of the usefulness of the proposed method for fault diagnosis in an 

actual analog circuit. Conclusions are given in Section VI. 

 

3. Diagnosis method 

 

3.1. Diagnosis model 

 

In order to find the relation between fault-free and faulty output signals, a new fault model 

is proposed at first. 

Due to the inherent uncertainty coming from the measurement and system disturbance, the 

output of the analog circuit may vary within an acceptable range around its nominal value and 

this will not be treated as a fault. Therefore, it is reasonable to assume that the ideal fault-free 

output is constant, i.e., ideal fault-free output is used as the nominal value. The actual fault-

free response deviates from the ideal fault-free output peacefully. Otherwise, the circuit is 

supposed to be faulty. 

So, the measured output of the analog circuit can be considered as the realization of a 

random process, in which the ideal fault-free output can be viewed as its mean value or 

nominal value. 

With this in mind, the analog circuit testing can be viewed to address the problem of 

trying to extract the signature of the output signal nx RÎ of the CUT that is governed by the 

linear stochastic difference equation 

 

1 1k k kx x w- -= +                                                                                    (1) 

 

     With a measurement ny RÎ  that is 

 

                                        k k ky x v= +                                                                                         (2) 

 

     The random variable 1kw - and kv represent the process and measurement noise, 

respectively. They are assumed to be a normal probability 

distribution: 1 ~ (0, ), ~ (0, )k kw N Q v N R- , where Q  and R represent the process noise variance 

and measurement noise variance, respectively. The subscript k in (1) and (2) denotes the 

discrete time. 
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Remark 1: For analog circuits with a catastrophic fault, we are assuming that the 

measurement uncertainty kv is fixed, that is, the variance of kv  stays constant during the 

process of measurement. kx in (1), having a large deviation from the fault-free output, 

corresponds to 1kw - with a large variance. 

Remark 2: For a parametric fault, if it is supposed that the measurement uncertainty kv in 

(2) is fixed as explained in Remark 1, kx in (1) shows a small deviation from the fault-free 

output, which corresponds to 1kw - with a small variance. 

Remark3: There is no such thing as a perfect measurement. Measurement of the variable 

are influenced by a number of elemental error sources, such as errors caused by variations in 

ambient temperature, humidity, pressure, vibrations, electromagnetic influences; unsteadiness 

in the “steady-state” phenomenon being measured, and others. So, here, the measurement 

uncertainty is quantitatively described by kv , which indicates the uncertainty introduced by 

the imperfect measurement. 

 

3.2. Noise-enhanced testing scheme    

 

The method of using suitable noise to enhance performance has been proposed as a 

powerful signal processing scheme [15], [16], [17]. However, to the best of the authors’ 

knowledge, noise-aided fault diagnosis of analog circuits is rarely reported. A detailed 

discussion of the noise-enhanced fault diagnosis scheme will be given in this section, and the 

scheme proposed below is based on Kalman filtering. 

In our scheme, recalling (1), the fault-free response and the white noise with a certain 

mean and variance make the output of the faulty circuit. Furthermore, because of the unique 

role of each component in analog circuits, it is reasonable to assume that the white noise 

corresponds one-to-one with a concrete component fault in the circuits. So, it is natural to use 

the white noise as the objective of the fault signature analysis. 

The proposed scheme has a Kalman filter as the preprocessing block shown in Fig.1. The 

preprocessing block can be represented as the general Kalman filter with its filter 

characteristics depending on the application and specification of the CUT. The Kalman filter 

takes the response measured by the test equipment, then generates the result of noise 

estimation for the current state of the CUT. The noise is then fed into the signature generation 

blocks. The signature has its own fault-free value and unique error tolerance. At last, the 

classifier is used as a comparator to detect and locate faults in the CUT. 

 

Kalman

filter

(noise

estimation)

signature

generation

pass/failresponse
classifier

 
 

                                          Fig. 1. Signature analysis scheme using Kalman filtering. 
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3.3. Kalman filtering 

 

Since the Kalman filter is used as the main part of our proposed response compression 

scheme, an outlined discussion of the Kalman filter will be given in this section. 

In 1960, R. E. Kalman published his famous paper describing a recursive solution to the 

discrete-data linear filtering problem [11]. Since that time, due in large part to advances in 

digital computation, the Kalman filter has been the subject of extensive research and 

application, particularly in the area of autonomous or assisted navigation. Theoretically, the 

Kalman filter is an estimator for what is called the linear-quadratic problem, which is the 

problem of estimating the instantaneous “state” of a linear dynamic system perturbed by 

white noise by using  measurements linearly related to the state but corrupted by white noise. 

The resulting estimator is statistically optimal with respect to any quadratic function of 

estimation error. Practically, the Kalman filter provides a means for inferring the missing 

information from indirect and noisy measurement and is also used for predicting the likely 

future courses of dynamic systems that people are not likely to control [12]. 

The Kalman filter addresses the general problem of trying to estimate the state n
x RÎ  of a 

discrete-time controlled process that is governed by the linear stochastic difference equation 

 

1 1 1k k k k
x Ax Bu w- - -= + +                                                                  (3) 

 

with a measurement mz RÎ  that is 

 

k k k
z Hx v= +                                                                              (4) 

  

The random variables 1kw -  and kv represent the process and measurement noise, 

respectively. They are assumed to be independent of each other, white, and with normal 

probability distributions: 

 

1 (0, )~kw N Q-                                                                           (5) 

 

                                             (0, )~kv N R                                                                             (6) 

 

where Q  and R represent process noise covariance and measurement noise covariance, 

respectively. 

In practice, the process noise covariance Q  and measurement noise covariance R  

matrices might slightly change with each time step or measurement, however here we assume 

they are constant. The n n´  matrix A in the difference equation (3) relates the state at the 

previous time step 1k -  to the state at the current step k . The n l´  matrix B relates the 

optional control input l
u RÎ  to the state kx . The m n´  matrix H  in the measurement equation 

(4) relates the state to the measurement kz . 

We define ˆ n

kx R- Î  (note the “super minus”) to be a prior state estimation at step k  given 

knowledge of the process prior to step k , and ˆ n

kx RÎ  to be a posterior state estimate at step k  

given measurement kz . We then define a priori and a posteriori state estimate errors as 

 

ˆ
k k k

e x x- -= -                                                                          (7) 
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ˆ
k k k

e x x= -                                                                           (8) 

 

The a priori estimate error covariance is then  

 

[ ]T

k k kP E e e- - -=                                                                         (9) 

 

And the a posteriori estimate error covariance is 

 

[ ]T

k k kP E e e=                                                                        (10) 

 

The Kalman filter estimates a process by using a form of feedback control: the filter 

estimates the process state at some time and then obtains feedback in the form of (noise) 

measurement. As such, the equations for the Kalman filter fall into two groups: time update 

equations and measurement update equations. The time update equations are responsible for 

projecting forward (in time) the current state and error covariance estimates to obtain a priori 

estimates for the next time step. The measurement update equations are responsible for the 

feedback, i.e. for incorporating a new measurement into the a priori estimate to obtain an 

improved a posteriori estimate [13]. 

The specific equations for the time and measurement updates are presented below. 

Discrete Kalman filter time update equations are 

 

1 1
ˆ ˆ

k k kx Ax Bu- -
- -= +                                                                 (11) 

 

 

1

T

k kP AP A Q-
-= +                                                                 (12) 

 

Discrete Kalman filter measurement update equations are 

 
1( )T T

k k kK P H HP H R- - -= +                                                        (13) 

 

 

ˆ ˆ ˆ( )k k k k kx x K z Hx- -= + -                                                             (14) 

 

 

( )k k kP I K H P-= -                                                               (15) 

 

After each time and measurement update pair, the process is repeated with the previous a 

posteriori estimates used to project or practical implementations much more feasible than (for 

example) an implementation of a Wiener filter [14] which is designed to operate on all of the 

data directly for each estimate. 

 

3.4. Noise estimation based on Kalman filtering 

 

Step 1: Monte Carlo procedure for noise estimation of ideal good circuit 

Due to the tolerance of analog components, the fault-free output voltage is not exactly 

equal to the response derived from the transfer function of the CUT. So, in order to get the 
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actual response of the CUT, it is indispensable to apply the Monte Carlo simulation to 

estimation of the mean and variance of the output signal, respectively. 

Step 2: The Kalman filter procedure for noise estimation of an  actual good circuit 

Owing to the environmental noise impact, the current distribution is not equal to the 

density distribution calculated in Step 1. Thus, it is reasonable to use the ideal fault-free 

response as 1kx - in eq.(1) and the output coming from the actual circuit as ky of eq.(2). Using 

the Kalman filter method, we adjust the variance of 1kw - to make the Euclidean distance 

between the ideal fault-free response and actual fault-free response minimal, at that moment, 

the variance of 1kw - is supposed to be the variance of the distribution of the actual fault-free 

response. 

Step 3: The Kalman filter procedure for noise estimation of a  faulty circuit 

Because each fault corresponds to one concrete Gaussian distribution, the fault can be 

located if the distribution is identified. The concrete implementation is as follows. 

a) The mean and variance are set to zero and a small positive real number 0s , 

respectively. Then one specific Gaussian is obtained. 

b) Using the Kalman filter to estimate the current state kx , where 1kx -  is the actual fault-

free output in eq.(1), and the faulty output is viewed as the measured signal of 

current state ky in eq.(2). 

c) Calculate the Euclidean distance between kx and the measured faulty output ky . If the 

Euclidean distance meets the certain minimum requirement, stop the process and 

the corresponding variance in eq.(1) is what we want. Else increase is to 1is + and 

set 1is +  as the new variance of Gaussian distribution, and then go to step b). 

The Euclidean distance is defined as 

 
1/2

2

1

( , ) ( )
n

j j

j

d x y x h
=

é ù
= -ê ú
ë û
å                                                     (16) 

 

where 1 2, 1, 2,( , ..., ), ( ..., )n nx yx x x h h h= =  represent data sequence. 

 

3.5. Entropy analysis for signature extraction 

 

Thanks to the Kalman filter based method in Section 3.4, the distribution corresponding to 

a concrete fault is obtained. Then we use Shannon’s entropy to get the fault signature  

Given ( 1,..., )ip i n=  represents the probability of event i happening, Shannon’s entropy is 

defined: 

 

1 2 2

1

1
( , , ) log

n

n i

i i

H p p p p
p=

=å1 2 21 2 2n i1 2 21 2 21 2 21 2 21 2 2, ), ), )1 2 21 2 21 2 21 2 21 2 21 2 2ån in i1 2 21 2 21 2 21 2 2å1 2 21 2 21 2 2                                                       (17) 

 

Here, we use the base 2 for the logarithm function in Shannon’s entropy. The continuous 

version of Shannon’s entropy is  

 

2

1
( ) ( ) log

( )
H p p x dx

p x

+¥

-¥

= ò                                                             (18) 
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where ( )p x  denotes the probability distribution of the system. Here, based on our assumption, 

( )p x is the Gaussian distribution, that is, ( )p x has the form: 

 
2

2

1
( ) exp( )

22

x
p x

sps
= -                                                              (19) 

 

where s represents the variance of Gaussian distribution 

 

10 20 30 40
Sigma

1

1

2

3

4

H

 
 

Fig. 2. Signature extraction using Shannon’s entropy. X-axis denotes the variance of Gaussian distribution,   

Y-axis denotes Shannon’s entropy 

 

From Fig.2, it is easily seen that the Shannon entropy is a monotone function related to the 

variance of Gaussian distribution. So Shannon’s entropy is unique for a definite Gaussian 

distribution with a fixed variance. 

Therefore, Shannon’s entropy could be used as a tool for signature compression, that is to 

say, if the variance of Gaussian distribution is different, the Shannon entropy is also different. 

Because different faults result in different variance of Gaussian distribution, the Shannon 

entropy can be used as the unique signature for a concrete fault of CUT. 

In fact, the physical explanation of Shannon’s entropy is the information used to be 

captured from imprecise knowledge that the noise contains. The higher the Shannon entropy, 

the worse the system quality is. 

 

3.6. Classifier 

 

We use the minimum variance principle as the criteria to match the fault(s), that is, we 

calculate the Euclidean distance between the predefined fault signature and the one obtained 

from the proposed method based on the measured output of the CUT. Once the minimum is 

found, the corresponding fault is regarded as the fault which had happened in the actual 

analog circuit. 

 

3.7. Algorithm of the signature extraction of the proposed diagnosis scheme 

 

     To make the above description of the noise estimation and signature extraction more clear, 

the flow diagram is used to help arrive at our purpose, that is, Fig.3 and Fig.4, which are 

employed to exhibit the process of producing the fault-free signature and the faulty signature 

of the analog circuit under test (CUT) via Kalman filtering and Shannon’s entropy techniques, 

respectively.  
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It is noted that the generation of the signature of the fault-free analog circuit needs Monte 

Carlo simulation before using the Kalman filtering technique, that is because for actual testing 

scenario, the actual fault-free noise and its signature are also needed to estimate effectively 

when there is no effective reference response for calculation. 

It is also worth noting that the initial value of the variance is (or js ) can be a rather big 

number, and decrease with a fixed step until the norm requirement is satisfied, in fact, the 

initial value of the variance can also be set to be a small number and increase with a fixed step 

until the corresponding norm condition is fulfilled. In our practice, we set the initial value of 

is (or js ) as 0.01 deviated from its nominal value of variance and the increased scheme is 

employed to execute the iterative process. 

 
Vary each circuit components within

its tolerance limit and apply Monte

Carlo simulation for fault-free CUT to

obtain response denoted 1{ }n

i is =

Sample the response of the actual

fault-free CUT denoted
1{ }n

i is =

Set in Eq.(5)

and (6)
0Q R s= =

Let , apply Kalman filter

described in Section 3.2 to get the

estimated response of the actual fault-

free CUT denoted

1k ix s- =

1
ˆ{ }n

i is =

Use defined in Eqn.(16) to

calculate

( , )d x y
ˆ( , )i id s s

ˆ( , )i id s s e< Set in Eq.(5) and (6)
jQ R s= =

No

Yes

is the desired variance and via

Eq.(19), the Gaussian density is

obtained

1js -

( )p x

Substitute into Eq.(18), the

Shannon entropy is obtained

( )p x

Sample the response of the actual fault-

free CUT to obtain response denoted

1{ }n

i is =

Sample the response of the actual

faulty CUT denoted
1{ }f n

i is =

Set in Eq.(5)

and (6)
0Q R s= =

Let , apply Kalman filter

described in Section 3.2 to get the

estimated response of the actual faulty

CUT denoted

1 { }k ix s- =

1
ˆ{ }n

i is =

Use defined in Eqn.(16) to

calculate

( , )d x y

ˆ( , )f

i id s s

ˆ( , )f

i id s s e< Set in Eq.(5) and (6)
jQ R s= =

No

Yes

is the desired faulty variance and

via Eq.(19), the Gaussian density

is obtained

1js -

( )p x

Substitute into Eq.(18), the

Shannon entropy associated with fault

is obtained

( )p x

 
 

Fig. 3. Algorithm for fault-free signature extraction.                 Fig. 4. Algorithm for fault signature extraction. 

 

 

4. Simulations 

 

 Here, simulations will be carried out to illustrate the idea of this paper. All simulation 

work is finished in a personal computer with a 3-GHz processor and 1-GB random access 

memory. The programs used in the simulations are developed by the authors in MATLAB. 
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4.1. Simulation  1- Leapfrog filter circuit 

 

Results of applying the proposed method to a benchmark circuit are explained in this 

section. The leapfrog filter circuit in Fig.5 is from [18]. All the resistors are 10 kW , and 

capacitor 1C and 4C are 0.01 Fm , and capacitors 2C and 3C are 0.02 Fm . The leapfrog filter is 

a kind of low pass filter, which is based on MITEL semiconductor’s complementary metal-

oxide-semiconductor (CMOS) technology. 

Several faults are inserted into the leapfrog filter, and the filter is simulated with a 

sinusoidal input of 1 kHz frequency and 1.5V± amplitude. The simulation is done using 

PSPICE. The sampling frequency is 200 kHz and a total of 2048 samples were gathered in 

10ms. The simulation results are given in Table I. In the table, “% error” means the error 

between a faulty circuit and the fault-free circuit in percentage and is the biggest by 

calculation. ŝ denotes estimated variance of the Gaussian distribution. 
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Fig. 5. Leapfrog filter. 

 
TABLE I 

RESULTS OF SIGNATURE ANALYSIS USING   KALMAN FILTER METHOD FOR FAULT LOCATION IN THE LEAPFROG FILTER 

Fault 

No. 
Fault 

Faulty  

value 
ŝ  value         (%error) 

Shannon 

entropy 

value H  

1 Node 10&4 short 100W  1.0018+0.02       (2.0) 2.078  

2 Node 20&4 short  100W  1.0018+1.20       (119.8) 3.186  

3 Node 20&10 short 100W  1.0018+0.60       (59.9) 2.727  

4 Node 5&2 short 
100W  1.0018+0.80       (79.9) 2.897  

5 

6 

7 

8 

Node 19&10 short 

Node 16&13 short 

Node 16&17 short 

Node 19&13 short 

100W  

100W  

100W  

100W  

1.0018+0.04       (3.0) 

1.0018+0.01        (1.0) 

1.0018+0.70        (72.2) 

1.0018+0.03        (3.1) 

2.106  

2.064  

2.814  

2.092  

9 R2 open 1MW  1.0018+0.45        (46.4) 2.585  

10 

11 

12 

13 

R3 open 

R5 open 

R9 open 

R10 open 

1MW  

1MW  

1MW  

1MW  

1.0018+0.29        (29.9) 

1.0018+0.15        (15.5) 

1.0018+0.35        (36.1) 

1.0018+0.41        (42.3) 

2.415  

2.251  

2.482  

2.545  

14 R2 variation (10k->8k) 8kW  1.0018+0.05       (5.1) 2.120  

15 R3 variation (10k->8k) 8kW  1.0018+0.07       (7.1) 2.147  

16 R7 variation (10k->7.5k) 7.5kW  1.0018+0.18       (18.3) 2.288  

17 R12 variation (10k->8k) 8kW  1.0018+0.16       (16.2) 2.263  

18 C3 variation (0.02u->0.03u) 0.03u  1.0018+0.47       (47.7) 2.605  

0 Actual fault-free *   1.0018                   (0) 2.050  
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For a catastrophic fault, the proposed method gives good results for fault location. 

Because of the length limitation and the emphasis of this paper, only the randomly selected 

four catastrophic faults are analyzed. 

In Table I, for example, for cases 1-4, all the values of Shannon’s entropy are different 

from the fault-free case, clearly a 100% detectable rate. 

It is also noted that the Shannon entropy in case 1, case 2, case 3, case 4 are 2.078, 3.186, 

2.727, 2.897, respectively, and 2.050 for fault-free circuit, which is unique for different faults. 

So the different fault cases can be separated easily using Shannon’s  entropy as the signature. 

The parametric faults are more complicated since variations of faulty elements are smaller 

than those of the catastrophic faults. The proposed method can also give good results for 

locating the parametric fault. For example, the Shannon entropy for case 14 in Table I is 

2.120, whereas the value of case 15 is 2.147.  The signatures for case 14 and case 15 are 

different, so these two faults can be separated definitely. The same conclusion can also be 

drawn for other fault cases in Table I. 

 
TABLE II 

ROBUSTNESS COMPARISON BETWEEN COHERENCE FUNCTION RESULTS AND SHANNON’S ENTROPY RESULTS 

FOR FAULTS 14 AND 15 IN TABLE 1 

Data 

Bank 

No. 

Fault 
Coherence Function 

(subband No.) 
Shannon’s  entropy value H  

1 R2 variation (10k->8k) 3.21(5) 2.1197 

2 R2 variation (10k->8k) -1.82(5) 2.1201 

3 R2 variation (10k->8k) 1.57(5) 2.1197 

4 

5 

6 

R2 variation (10k->8k) 

R2 variation (10k->8k) 

R2 variation (10k->8k) 

3.23(5) 

                        1.97(5) 

 1.68(5) 

2.1198 

2.1202 

2.1211 

1 

2 

3 

4 

5 

6 

R3 variation (10k->8k) 

R3 variation (10k->8k) 

R3 variation (10k->8k) 

R3 variation (10k->8k) 

R3 variation (10k->8k) 

R3 variation (10k->8k) 

                        -0.011(7) 

-0.005(7) 

 -0.015(7) 

-0.009(7) 

-0.014(7) 

-0.018(7) 

2.1469 

2.1467 

2.1473 

2.1473 

2.1474 

2.1474 

 

Because a robust fault signature can dramatically reduce the probability of aliasing, here 

an analysis will be given to illustrate the robustness of the signature produced by the proposed 

approach. The method presented in [10] is employed for comparison. The parametric faults 

for analysis are fault cases 14 and 15 in Table I. The results of comparison are shown in Table 

II. 

From Table II, we see that the method proposed in [10] gives good discrimination for 

different parametric faults, but its signature, that is, the value of coherence function is not 

robust. For example, the maximal value of the coherence function of case 14 is 3.21, and the 

minimal value is 1.57 (for a negative value, we take its absolute value). The biggest relative 

error is 104.5% for the signature used in the method [10]. Whereas the biggest relative error is 

only 0.06% when the Shannon entropy is used as the signature based on the Kalman filter 

method. For fault case 15, the same conclusion can also easily be drawn from Table II. 

Since signature with the property of big variation is prone to aliasing, which makes the 

fault location impossible eventually, a robust signature could greatly reduce the aliasing 

probability and make the fault detection and location more easily. Thus, the signature 

produced by using the proposed method is much more efficient than that of using the method 

in [10] for fault diagnosis of analog circuits. 

Fig.6 shows the original fault response and the fault-free output. The fault response 

estimated by using the proposed method is depicted in Fig.7 
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Fig. 6. Leapfrog filter: Fault-free response (blue dotted line) and R2 parameter fault response (red solid line). 

X-axis denotes the time (s), Y-axis denotes the amplitude (v). 
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Fig. 7. Leapfrog Filter: The Kalman filter based method for realization of the R2 parametric fault 

response (red dotted line) by using the fault-free response plus Gaussian white noise with a proper variance  

(blue solid line). X-axis denotes the time (s), Y-axis denotes the amplitude (v). 

 

4.2. Simulation 2  -  State variable filter circuit 

 

The state variable filter [18] in Fig.8 is used as the second benchmark circuit for the 

simulation. All the capacitors are 0.02 Fm and all the resistors are 10 kW except 2R , 2R =3 kW . 

The input to system is a 1- kHz sinusoidal signal and the output of the system is measured at 

the band pass output pin. The sampling frequency is 25 kHz and samples are gathered for 

10.24ms. 
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Fig. 8. State variable filter. 

 

Fifteen fault cases including six catastrophic faults and nine parametric faults are 

considered. All of the fault cases are randomly given. The testing results are shown in Table 

III, where “% error” means the error between a faulty circuit and the fault-free circuit in 

percentage and is the biggest by calculation. ŝ  denotes the estimated variance of Gaussian 

distribution. 

From Table III it is easily seen that the proposed method can locate catastrophic faults 

effectively, as is the parametric faults. That is, there is a one-to-one mapping between the 

fault and the Shannon entropy, which is used for signature in our scheme. For example, the 

Shannon entropy of fault case 1 is 1.81 and that of case 3 is 1.95, they are all different from 

the Shannon entropy of the fault-free case, and since they are not equal, these two fault cases 

can be discriminated easily. The same conclusion can also been drawn for any other fault 

cases in Table III. Further, because of the robustness of the Shannon entropy, the signature we 

derived here is nearly a constant, so the declaration of the fault for the CUT is more reliable. 

 
TABLE III 

RESULTS OF SIGNATURE ANALYSIS USING KALMAN FILTER METHOD FOR FAULTS LOCATION IN THE STATE VARIABLE FILTER 

Fault 

No. 
Fault 

Faulty  

value 
ŝ  value         (%error) 

Shannon entropy 

value H  

1 Node 1&3 short 100W  0.68631+0.16      (23.31) 1.8063  

2 Node 3&4 short  100W  0.68631+0.02       (2.91) 1.5455  

3 Node 1&4 short 100W  0.68631+0.25      (36.43) 1.9522  

4 

5 

6 

Node 1&3 open 

Node 1&4 open 

Node 4&3 open 

1MW  

1MW  

1MW  

0.68631+0.015       (2.19) 

0.68631+0.011    (1.60) 

0.68631+0.009    (1.31) 

1.5352  

1.5270  

1.5228  

7 R2 variation (3k->2.4k) 2.4kW  0.68631+0.1       (14.57) 1.7003  

8 R3 variation (10k->8k) 8kW  0.68631+0.14       (20.40) 1.7719 

9 R1 variation (10k->7.5k) 7.5kW  0.68631+0.18       (26.23) 1.8401 

10 

11 

12 

13 

R4 variation (10k->8k) 

R5 variation (10k->8k) 

R6 variation (10k->8k) 

R7 variation (10k->8k) 

8kW  

8kW  

8kW  

8kW  

0.68631+0.036       (5.25) 

0.68631+0.038     (5.54) 

0.68631+0.048    (6.99) 

0.68631+0.005    (0.73) 

1.5778 

1.5812 

1.6016 

1.5145 

14 

15 

C1 variation (0.02u->0.03u) 

C2 variation (0.02u->0.03u) 

0.03u  

0.03u  

0.68631+0.013       (1.89) 

0.68631+0.023      (3.35) 

1.5311  

1.5516  

0 Actual fault-free *   0.68631                   (0) 1.5040 

 

 

5. The Experiment 

 

Other than the simulations, an experiment is carried out on the actual circuit to verify the 

proposed method. 
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The circuit under test is Tow-Thomas filter circuit. The structure and parameters of this 

circuit [18] are illustrated in Figure 9, that is, 1 2 3 4 16R R R R k= = = = W , 5 6 10R R k= = W , 

1 2 1C C nF= = . The actual circuit is shown in Figure 10, and the amplifiers in the circuit are 

TL084 produced by TI. The circuit is stimulated by a 1V, 10 kHz sinusoidal signal, and the 

output of the fault-free and faulty circuit are measured by an oscilloscope produced by 

Tektronix. The sample rate of the oscilloscope is 1GS/s and its band width is 100M. Eight 

fault cases are randomly chosen, and the test results are listed in Table IV. 
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                          Fig. 9. Tow-Thomas filter. 

 

 
 

Fig. 10. The actual Tow-Thomas filter. 

 

In Table IV, fault 1 and fault 2 represent two types of parametric faults of one component, 

that is, for fault 1, the value of component C1 is smaller than its nominal value, whereas for 

fault 2, the value is bigger than the nominal value of C1. The same is the case with fault 3 and 

fault 4, fault 5 and fault 6, respectively. Fault 7 is a multiple parametric fault caused by the 

variations of the C1 and R6 and R2 together. Fault 6 is the same case as fault 7. 

Table IV is also an illustration of the good discrimination effects for different parametric 

faults in an analog circuit by using the proposed method. All the results show that the faults 

can be precisely located without aliasing. For example, for fault case 1, the Shannon entropy 

is -0.8253, whereas its value is -0.8466 for fault case 2. They are different values and all of 

them are not equal to the value of the fault-free circuit, so fault case 1 and fault case 2 can 

easily be separated. The same conclusion can be drawn for any other cases as well. 

 
TABLE IV 

RESULTS OF SIGNATURE ANALYSIS USING KALMAN FILTER METHOD FOR FAULT LOCATION IN THE TOW-THOMAS FILTER 

Fault 

No. 
Fault 

Faulty  

value 
ŝ  value         (%error) 

Shannon entropy 

value H  

1 C1 Variation (1nF->0.82nF) 0.82nF  0.13156+0.0050      (3.80) -0.8253  

2 C1 variation (1nF->1.2nF) 1.2nF  0.13156+0.0030       (2.28) -0.8466  

3 R6 variation (10k->9.1k) 9.1kW  0.13156+0.0060      (4.56) -0.8147  

4 

5 

6 

7 

8 

R6 variation (10k->11k) 

R2 variation (16k->14.7k) 

R2 variation (16k->16.9k) 

Fault 1 + Fault 3 + Fault 5 

Fault 2 + Fault 4 + Fault 6 

11kW  

14.7kW  

16.9kW  

0.82 9.1 14.7nF k k+ +  

1.2 11 16.9nF k k+ +  

0.13156+0.0040       (3.04) 

0.13156+0.0035      (2.66) 

0.13156+0.0067      (5.09) 

0.13156+0.0070      (5.32) 

0.13156+0.0005       (0.38) 

-0.8359 

-0.8412  

-0.8074  

-0.8043 

-0.8736 

0 Fault free * 0.13156 (0) -0.8791 
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TABLE V 

ROBUSTNESS OF SIGNATURE BY USING KALMAN FILTER BASED METHOD FOR DIAGNOSIS IN THE TOW-THOMAS FILTER 

No. Fault 
Faulty  

value 
ŝ  value          

Shannon entropy 

value H  

1 C1 Variation (1nF->0.82nF) 0.82nF  0.13156+0.00501 -0.8252  

2 C1 Variation (1nF->0.82nF) 0.82nF  0.13156+0.00502  -0.8251  

3 C1 Variation (1nF->0.82nF) 0.82nF  0.13156+0.00501 -0.8252  

4 

5 

6 

7 

8 

9 

C1 Variation (1nF->0.82nF) 

C1 Variation (1nF->0.82nF) 

C1 Variation (1nF->0.82nF) 

C1 Variation (1nF->0.82nF) 

C1 Variation (1nF->0.82nF) 

C1 Variation (1nF->0.82nF) 

0.82nF  

0.82nF  

0.82nF  

0.82nF  

0.82nF  

0.82nF  

0.13156+0.00503  

0.13156+0.00501 

0.13156+0.00502 

0.13156+0.00501 

0.13156+0.00501 

0.13156+0.00501 

-0.8250 

-0.8252 

-0.8251  

-0.8252 

-0.8252 

-0.8252 

10 

11 

12 

C1 Variation (1nF->0.82nF) 

C1 Variation (1nF->0.82nF) 

C1 Variation (1nF->0.82nF) 

0.82nF  

0.82nF  

0.82nF  

0.13156+0.00501 

0.13156+0.00502 

0.13156+0.00501 

-0.8252 

-0.8251 

-0.8252 

 

Furthermore, the multiple parametric faults can also be located by using the proposed 

method. For example, for fault 7, its signature - the Shannon entropy is -0.8043, while for 

fault 8, its signature value is -0.8736, which is different from the value of fault case 7, thus 

these two multiple parametric faults can both be located. 

Especially, the signature obtained by using the proposed method also shows strong 

robustness for an  actual circuit. For example, shown in Table V, the fault case 1 in Table IV 

is considered, that is, the 1C down drift parametric fault, the difference between its maximal 

signature value and minimal value is only 0.0001. So, the probability of aliasing is greatly 

reduced by using the proposed method for the fault diagnosis of actual analog circuits. 

 

6. Conclusions 

 

A signature with robust discrimination capacity is crucial for fault location in analog 

circuits. The noise-aid scheme provides a way to produce the robust signatures. When faults 

occur, one special noise corresponding to the faults arises. To use the information contained 

in the noise for signature extraction, a new fault model and a noise estimation method for 

fault location in analog circuits have been proposed in this paper. The approach combines 

Kalman filtering with Shannon’s entropy to analyze the signature in analog circuits. 

Simulations and experimental results show that the approach provides a robust signature both 

for catastrophic faults and parametric faults. Based on these signatures, the parametric faults 

and the catastrophic faults in analog circuits can be located effectively and reliably. 

Compared with the existing method (the subband method employing coherence function 

[10]), the approach is this paper can produce a more stable signature in locating parametric 

components in analog circuits. So the proposed method improves the discrimination capacity 

strongly. The simulation examples and experimental results show the advantages. 

Further, the proposed method only requires the measurement of the output signal from the 

system primary output pins so that both the parasitics and the testing cost are reduced. 

Since the Kalman filter can be built with a small hardware cost, the proposed approach in 

this paper can be used for the on-line testing scenario. Unfortunately, the proposed method 

can only be applied to the diagnosis of linear analog circuits due to the limitation introduced 

by the Kalman filter. However, with the help of nonlinear Kalman filter methods, such as the 

extended Kalman filter (EKF), the approach in this paper can also be extended to diagnose the 

fault in nonlinear analog circuits, and this will be our future work. The reader is invited to 

attack this problem. 
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