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Abstract 

Spectrophotometry is an analytical technique of increasing importance for the food industry, applied i.a. in the 

quantitative assessment of the composition of mixtures. Since the absorbance data acquired by means of a 

spectrophotometer are highly correlated, the problem of calibration of a spectrophotometric analyzer is, as a rule, 

numerically ill-conditioned, and advanced data-processing methods must be frequently applied to attain an 

acceptable level of measurement uncertainty. This paper contains a description of four algorithms for calibration 

of spectrophotometric analyzers, based on the singular value decomposition (SVD) of matrices, as well as the 

results of their comparison – in terms of measurement uncertainty and computational complexity – with a 

reference algorithm based on the estimator of ordinary least squares. The comparison is carried out using an 

extensive collection of semi-synthetic data representative of trinary mixtures of edible oils. The results of that 

comparison show the superiority of an algorithm of calibration based on the truncated SVD combined with a 

signal-to-noise ratio used as a criterion for the selection of regularisation parameters – with respect to other 

SVD-based algorithms of calibration. 
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1. Introduction 

 

Spectrophotometry is an analytical technique based on reflection or transmission of light – 

or more precisely: ultraviolet (UV), visible (Vis) or infrared (IR) radiation – by analyzed 

substances [1]. Due to a significant technological progress in the domain                                        

of spectrophotometric instrumentation, achieved during the last few decades – in particular, 

the development of mini- and micro-spectrophotometers – its importance is increasing in 

numerous branches of industry, especially in food industry – see, for example, [2–28]. Further 

progress in this area is critically conditioned by the development of software dedicated to 

spectrophotometry, in particular – to calibration of spectrophotometric analyzers. In the 2013 

paper [29], the authors compared forty algorithms for calibration, here four more are included 

in the comparison following the same methodology. 

 

1.1.  Basic concepts of spectrophotometric analysis 

 

The intensity spectrum of light is usually understood as a function modeling the 

dependence of light intensity on wavelength. It is an adequate characteristic of a source                  

of light, but insufficient for characterizing absorption of light by analyzed substances; the 

concept of transmittance spectrum is more appropriate in this case. The latter is usually 

understood as a function representative of the ratio of two intensity spectra, viz. the intensity 

spectrum of light entering into a sample of the analyzed substance and the intensity spectrum 
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of light leaving it. The decimal logarithm of the first of them divided by the second one is 

called absorbance spectrum; as a rule, it has the form of a sequence of Gaussoid-like peaks, 

whose magnitudes and locations on the wavelength axis carry information on the chemical 

contents of the sample. Due to technical imperfections of spectrophotometric devices and 

instruments – in particular, their limited optical and digital resolution – the measurement data 

provided by them represent spectra in an approximate way. As a rule, those data are abundant 

and highly correlated. Therefore, the increased interest in spectrophotometric analysis in food 

industry is an important driving force for the development of advanced methods for data 

processing. Such methods can be oriented on the qualitative analysis of food                                

(e.g. classification of samples according to their geographical or temporal origin, based on 

pattern recognition methods), as well as on the quantitative analysis of food (e.g. estimation of 

concentrations of the compounds in a sample, based on regression-type methods).                          

A spectrophotometric device or instrument, designed for quantitative analysis of a pre-defined 

class of substances, will be called hereinafter a spectrophotometric analyzer, or briefly – the 

analyzer. 

Any spectrophotometric analyzer is composed of two principal parts: a block of data 

acquisition and a block of data processing. The first of them usually consists of a broadband 

light source, a sample holder, a dispersive element, an array of photodetectors, and an analog-

to-digital converter; the second – a digital signal processor or a personal computer.                       

The estimation of the measurand on the basis of raw spectrophotometric data, performed by 

the latter block, is based on some assumptions concerning the mathematical model of the first 

block – the model relating the data to the measurand (forward model) or vice versa (inverse 

model). That model is identified during the calibration of a spectrophotometric analyzer, 

using a set of reference data, viz. the data representative of some samples for which the values 

of the measurand are known. If the absorbance spectra of samples used for calibration are 

similar, the problem is numerically ill-conditioned, and quite sophisticated methods                        

of estimation are necessary for attaining an acceptable level of measurement uncertainty                 

(cf., for example, [30]). 

The forward-model-based approach of calibration consists in identification of the operator 

M  modelling the dependence of the data s~ , representative of the absorbance spectrum, on 

the measurand  T1 Jcc c : 

 

  MM pcs ;~  , (1) 

 

where Mp  is the vector of parameters to be estimated during calibration. The inverse-model-

based approach consists in identification of the operator R  modelling the dependence of the 

measurand c  on the data s~  representative of the absorbance spectrum: 

 

  RR psc ;~ , (2) 

 

where Rp  is the vector of parameters to be estimated during calibration. Both approaches are 

illustrated in Fig. 1, where ĉ  is an estimate of c , being an exact value of c ; Mp̂  is an 

estimate of the value of Mp , resulting from the forward-model-based calibration; and Rp̂  is 

an estimate of the value of Rp , resulting from the inverse-model-based calibration. 
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1.2. Research assumptions and objectives 

 

The study reported in this paper has been oriented on the comparison of several methods of 

calibration following the inverse-model-based approach. It has been assumed that the 

relationship sc ~  may be adequately modeled using a linear operator M  or R . This 

assumption is justified in many practically important applications, in particular – in many 

cases where the analysis is aimed at estimation of the concentrations of the components of 

mixtures. The forward model has then the form: 

 

 j

J

j

jc ss 



1

~ . (3) 

            

 
 

Fig. 1. Two approaches of calibration. 
 

where js  are N -dimensional vectors of data representative of the absorbance spectra of the 

components – the denoised data acquired by means of the analyzer to be calibrated. The 

inverse model can be in this case assumed to be linear as well: 

 

 sp ~T
jjc    for Jj ...,,1 . (4) 

 

For the sake of simplicity, a single equation of the above form will be considered hereinafter, 

viz. the one corresponding to a fixed value of j ; therefore, this index will be omitted in the 

next section where the compared algorithms are described. The calibration may be now 

redefined as a procedure aimed at estimation of the vector of parameters pp R  on the basis 

of a set of calibration (reference) data: 

 

  Mmc cal
m

cal
m ...,,1~, s , (5) 

 

where each pair cal
m

cal
mc s~,  contains a value of concentration and the corresponding spectral 

data acquired by means of the analyzer to be calibrated for M  calibration samples,                       

i.e. reference mixtures. For the sake of simplicity, the reference values of the concentration 
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cal
mc  will be organized in the M -dimensional vector c , and the reference spectral data in the 

NM  -dimensional matrix S
~

 whose each column corresponds to a single wavelength value, 

and each row – to a single mixture. The objective of calibration is, therefore, the solution of 

the system of linear algebraic approximate equations: 

 

 pSc
~

 , (6) 

 

with respect to p . Since the number of samples used for calibration is usually significantly 

smaller than the number of data in a single absorbance spectrum, NM  , the above system 

of equations is, as a rule, underdetermined, and has infinite, apparently equivalent, solutions. 

However, the estimates of the concentration, determined for an unknown sample using 

different vectors p  satisfying Eq.(6), may differ significantly in terms of accuracy. Thus, an 

important element of the procedure of calibration is the choice of a vector p  resulting in the 

best accuracy of measurand estimation. It should be noted that the values of the measurand in 

the calibration data are subject to errors, introduced in the procedure of preparation of the 

samples. Therefore, the vector c  contains, in fact, assumed values of the measurand, slightly 

different from the real ones. 

 

2. Compared algorithms of calibration 

 

The compared algorithms of calibration are structurally similar, and differ only in the 

methods used for estimation of the parameters p ; therefore, the names of those methods are 

used here as identifiers of the compared algorithms of calibration. 

 

2.1.  Ordinary Least Squares  

 

The algorithm of calibration labelled with the acronym OLS refers to the estimator of 

ordinary least squares which consists in solving the following problem of unconstrained 

optimisation: 

 

  
2

~
infargˆ cpSp p

OLS . (7) 

 

For NM  , when it has more than one solution, the minimum-norm solution is selected: 

 

  0~
infargˆ

22
 cpSpp p OLS . (8) 

 

This solution may be calculated using the Moore–Penrose pseudoinverse of the matrix S
~

 

[31]: 

 

 cUΣVcSp  T~~~~
ˆ  OLS , (9) 

 

where the matrices V
~

, Σ
~

 and U
~

 are components of the singular value decomposition of the 

matrix S
~

, i.e.: 

 

 
NNNMMMNM 

 T~~~~
VΣUS , (10) 
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where: 

 

 IUU 
~~ T , IVV 

~~ T , (11) 

 

  
 

 
MNMM 

 0Σ  ~,,~diag
~

1    with  0~~
1  M  , (12) 

 

and: 

 

 






























MMN

M

0

Σ  ~
1

,,~
1

diag~
1


. (13) 

 

It follows from the above equation that the errors present in the data matrix S
~

, propagated to 

the singular values m~  ( Mm ,,1 ), may be significantly amplified during the calculation 

of the pseudoinverse 


Σ
~

, especially for the smallest singular values. This negative 

phenomenon may be reduced by various methods of regularization (reduction of random 

errors at the cost of slight increase of systematic errors) described in the following 

subsections. 

 

2.2. Truncated Singular Value Decomposition 

 

The algorithm of calibration labelled with the acronym TSVD-SN refers to the estimator of 

the truncated singular-value decomposition which consists in zeroing a selected number of the 

smallest singular values: 0~...~
1  MM σσ  ( MM  ). The TSVD-SN solution to Eq.(6) 

takes on the form: 

 

     cUΣVp T~~~
ˆ MM TSVDTSVD  

, (14) 

 

where M   is a regularization parameter whose value has to be determined in a way as to 

reach a good trade-off between the reduction of the error amplification and the loss of 

information corresponding to the smallest singular values. In the reported study, this value has 

been selected using a criterion related to the signal-to-noise ratio, proposed by the authors in 

[32]. For each singular value m~  of the matrix S
~

, a ratio: 

 

 
M

v m
m

2~
~ 

   for Mm ,,1 , (15) 

 

has been calculated to characterize the "amount of variance" in the data to be lost if the 

singular value m~  is set to 0. The value of M   has been selected using the reverse 

accumulated variances: 

 

 



M

m

m va



~~   for Mm ,,1 , (16) 
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as the smallest integer m  satisfying the following inequality: 

 

 
SNR

a
am

1
~

~  , (17) 

 

where SNR  is the signal-to-noise ratio defined by the formula: 

 

 

 

 



 

 
N

n

M

m

nm

N

n

M

m

nm

s

s

SNR

1 1

,

1 1

2
,

~Var

~

, (18) 

 

with  nms ,
~Var  being the variances of nms ,

~ , derived from the a priori knowledge about the 

random errors corrupting the spectral data used for calibration. 

 

 

2.3. Ridge Least Squares with Discrepancy Principle 

 

The algorithms of calibration labelled with the acronym RiLS-DP and RiLS-GCV refer to 

the estimator of ridge least squares, defined by the following formula: 

 

  






 

2

2

22

2

~
infargˆ pcpSp p  

RiLS , (19) 

 

where   is a real-valued parameter of regularization. It can be expressed using the SVD in 

the following way [33]: 

 

     cUΣVp 
T~~~

ˆ   RiLSRiLS , (20) 

 

where  
RiLSΣ

~
 is obtained from 


OLSΣ

~
 by replacing each m

~1  with  22~~  mm . If a 

priori knowledge about the errors corrupting the calibration data is available, then the value of 

the regularization parameter   may be selected using the discrepancy principle [34], [35] 

usually formulated as the following problem of constrained optimisation: 

 

    






  22

22
ˆ

~
ˆinfarg cRiLSRiLSDP   pScp  , (21) 

 

where c  is an empirical measure of total disturbances due to both errors in the data and non-

adequacy of the mathematical model underlying the method of calibration. There are various 

methodologies for fixing the value of c . In the SVD-based algorithms of calibration 

considered here, a statistical approach – developed by the authors in [36, Chapter 8] – has 

been used: 

 

 





 
2

2

2 ˆ
~~E RiLSc pSc , (22) 
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where ][E   denotes the operator of expected value. The parameter 2
c  has been evaluated 

under an assumption that some estimates of the first two moments of the random errors 

corrupting the data c~  and S
~

are available.  

 

2.4. Ridge Least Squares with Generalised Cross Validation 

 

The algorithm of calibration labelled with the acronym RiLS-GCV refers to the estimator 

of ridge least squares combined with the generalized cross-validation strategy used for 

selection of the value of the parameter  . The latter consists in solving the following problem 

of unconstrained optimisation [37]: 

 

 
 

    


















2

2

2

tr

ˆ
infarg




 

H

cc

M
GCV


, (23) 

 

where: 

 

     RiLSpSc ˆ
~

ˆ  , (24) 

 

and  H  is the so-called hat matrix defined by the condition: 

 

    cHc  ˆ . (25) 

 

Since 

 

          cUΣΣUcUΣVVΣUc  TTT ~~~~~~~~~~
ˆ    RiLSRiLS , (26) 

 

the matrix  H  may be given the form: 

 

     T~~~~
UΣΣUH   RiLS . (27) 

 

If the optimization problem defined by Eq.(23) has multiple solutions, the largest value of   

is selected to avoid overfitting. 

 

2.5. Multi-parameter Ridge Least Squares 

 

The algorithm of calibration labelled with the acronym MRiLS-GCV refers to the 

estimator of ridge least squares with multiple parameters of regularization, defined by the 

following formula [38]: 

 

     cUαΣVαp T~~~
ˆ  MRiLSMRiLS , (28) 

 

where  T1 M α , and  αΣ


MRiLS

~
 is obtained from 


OLSΣ

~
 by replacing m

~1  with 

 mm  ~1  for Mm ,,1  ; 0m  for Mm ,,1 . The values of the parameters m  are 

chosen using the generalized cross-validation strategy, i.e. by solving the following problem 

of unconstrained optimization: 
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2

2

2

tr

ˆ
infarg

αH

αcc
α

M
GCV


 , (29) 

 

by means of an evolutionary procedure of global optimization. 

 

3. Methodology of comparison 

 

The algorithms of calibration, described in Section 2, have been compared using the same 

methodology as described in two papers already published by the authors: [29] and [32]. It is 

based on the use of semi synthetic data representative of the NIR absorbance spectra of trinary 

mixtures of edible oils (cf. Subsection 3.1) and three statistical criteria characterizing 

measurement uncertainty (cf. Subsection 3.2). 

 

3.1. Generation of semi-synthetic data 

 

Semi-synthetic data used for experimentation have been generated using the denoised 

absorbance data representative of the absorbance spectra of nut oil, corn oil and olive oil 

(Fig. 2), and pseudorandom numbers for simulation of measurement errors. The data were 

acquired in the near-infrared range of radiation, i.e. for the wavelength values from 1500 nm 

to 2500 nm, at the 2-nm intervals; so, the number of data representative of a single spectrum 

has been 501N . Since the concentrations of the components satisfy the equation: 

 

 1321  ccc , (30) 

 

only two variables are independent, e.g.: 1c  – the concentration of nut oil, and 2c  – the 

concentration of corn oil. The procedure of data synthesis has comprised four steps: 

generation of pairs of exact values of concentrations 21,cc   for each hypothetical mixture, 

introduction of random errors in the concentration data, generation of absorbance data based 

on the error-corrupted concentration data, and introduction of the errors modeling 

imperfections of the spectrophotometer. 
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Fig. 2. Data representative of the absorbance spectra of three edible oils. 
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The exact concentration of olive oil has been calculated for each mixture according to the 

formula: 

 

 213 1 ccc   . (31) 

 

Each vector of spectral data has been synthesized according to the methodology imitating the 

laboratory procedure applied for obtaining the real-world data; in particular, uncertainty 

resulting from imperfect measuring out of the volumes of oils has been taken into account. 

Those volumes are related to the concentrations in the following way: 

 

 
V

V
c

j

j


    for 3,2,1j , (32) 

 

where 321 VVVV   . The error-corrupted values of the volumes have been obtained using 

the equation: 

 

  jjj VVV
~

1
~

    for 3,2,1j , (33) 

 

where jV
~

  are pseudorandom numbers modeling relative errors of the volumes and following 

the zero-mean normal distribution with the standard deviation 3100.2 V , truncated 

outside of the interval  VV  3,3  . The corresponding error-corrupted values of the 

concentration data have been generated according to the formula: 

 

 
 

     332211321

~
1

~
1

~
1

~
1

~~~

~
~

VcVcVc

Vc

VVV

V
c

jjj

j















, (34) 

 

and the absorbance data – according to Eq.(3). The errors caused by imperfections of the 

analyzer have been taken into account using the formula: 

 

    T11
T

1
~'~~'~~~~

NNN ssssss  s , (35) 

 

where ns~  are independent pseudorandom numbers modeling absolute errors and following 

the zero-mean normal distribution with the standard deviation s , truncated outside of the 

 ss  3,3   interval. 

The truncation of the range of pseudorandom numbers, used for simulation of errors, has 

been done by replacing with 3  the numbers smaller than 3  and with 3  the 

numbers greater than 3  (where   denotes the assumed value of the standard deviation). 

 

3.2. Criteria of comparison 

 

The performance of the compared algorithms of calibration has been assessed using a 

calibration data set, generated according to the methodology described in Subsection 3.1 for:  

 

  10,,1,001.0, 21   kkcc calcal
, (36) 
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and a validation data set, generated according to the same methodology for: 

 

  20,,1,0005.0, 21   kkcc valval , (37) 

 

which means that 121calM  mixtures have been used for calibration and 441valM  for 

validation. The concentration values in the validation data set have not been corrupted with 

errors; they have been assumed to be known exactly since such errors would influence the 

results obtained by compared algorithms in the same way, thus – not change the result of 

comparison. 

Each set of calibration data and each set of validation data have been generated in 100R  

versions corresponding to different realisations of pseudorandom numbers modelling the 

errors. The calibration has been performed with the same algorithm for each of the R 

calibration data sets, and each calibration result has been tested using each of the R validation 

data sets, resulting in 42 10R  independent numerical experiments. The vector of absolute 

errors of estimation, performed during validation, has been determined according to the 

formula: 

 

        val
j

cal
j

valvalval
j

valcalval
j

valcal
j rrrrrr cpSccc   ˆ

~
,ˆ,ˆ , 

 for  Rrrj valcal ,,1,;2,1  . (38) 

 

For each element of this vector, corresponding to one mixture used for validation, the 

following indicators of uncertainty have been calculated: 

 the mean of the estimation errors: 

 

     
 


R

r

R

r

valcal
mjmj

cal val

rrc
R

cm
1 1

,2, ,ˆ
1

ˆˆ , (39) 

 

 the standard deviation of the estimation errors:  

 

       
2

1 1

,,2, ˆˆ,ˆ
1

1
ˆˆ  

 





R

r

R

r

mj
valcal

mjmj
cal val

cmrrc
R

cs , (40) 

 

 the worst-case estimation error: 

 

     Rrrrrcce valcalvalcal
mjmj ,,1,,ˆsupˆˆ ,,  , (41) 

 

4. Selected results of comparison 

 

The full program of the comparative study has included: 

 

    several levels of errors corrupting the spectrophotometric data; 

 three indicators of uncertainty (  mjcm ,ˆˆ  ,  mjcs ,ˆˆ   and  mjce ,ˆˆ  ) evaluated                                    

for both 1c  and 2c ; 

   several versions of the strategies for selection of regularization parameters. 
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The results of study, accomplished according to this programme, have been systematically 

presented in a Master's Thesis [39]. Here, due to the space limitation, only selected results are 

shown, viz. the values of an indicator SVD
OLSR  being the ratio of the worst-case error of 

estimation of 1c  obtained for the compared SVD-based algorithm and the reference OLS-

based algorithm, computed for the lowest ( 610s ) and the highest ( 310s ) level of 

errors, are presented in Fig. 3. In Fig. 4 the dependence of this indicator on s  is depicted. 

The average time of execution on a reference computer has turned out to be ca. 2 times 

greater for the algorithm TSVD-SN than for the algorithm OLS; the corresponding values of 

this indicator of computational complexity for other algorithms – as follows: ca. 7 for RiLS-

GCV, ca. 150 for RiLS-DP and ca. 1300 for MRiLS-GCV. 

 

5. Conclusions 
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Fig. 3. Dependence of the indicator SVD
OLSR  on 1c  for the extreme values of the variance                                                 

of instrumental errors s : (a) 610s , (b) 310s . 
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Fig. 4. Dependence of the indicator SVD
OLSR  on the variance of instrumental errors for 05.021  cc . 

 

Five algorithms for calibration of spectrophotometric analyzers, based on the singular 

value decomposition of matrices, have been compared using an example of the analysis of 

trinary mixtures of edible oils. The obtained results support the following conclusions: 

 The algorithm TSVD-SN seems to be the most promising and worth further investigation. 

It makes possible a significant reduction of estimation uncertainty, if compared to the 

algorithm OLS, at the cost of a very moderate increase in computational complexity. The 

superiority of the algorithm TSVD-SN is particularly pronounced if the instrumental 

errors corrupting the absorbance data are significantly less important than the errors 

corrupting the concentration data. 

 All tested strategies for selection of regularization parameters make possible the automatic 

adjustment of the algorithms to the level of errors in measurement data (without 

symptoms of under- or over-regularization), and therefore enable the use of those 

algorithms without the need of frequent visualisation and inspection of intermediate 

results. 

 The SN-based strategy for selection of regularization parameters seems to be the most 

reliable since it is providing repeatable and accurate results for all the tested levels of 

errors in the data. The GCV-based strategy is providing better results than the DP-based 

strategy for lower levels of errors corrupting the absorbance data. 
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