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Abstract 

This paper presents a new test method able to infer – in periods of less than 7 seconds – the refrigeration capacity 
of a compressor used in thermal machines, which represents a time reduction of approximately 99.95% related to 
the standardized traditional methods.  The method was developed aiming at its application on compressor 
manufacture lines and on 100% of the units produced.  Artificial neural networks (ANNs) were used to establish 
a model able to infer the refrigeration capacity based on the data collected directly on the production line. The 
proposed method does not make use of refrigeration systems and also does not require using the compressor oil. 
 

Keywords: refrigeration compressor, artificial neural networks, performance test. 
 

© 2015 Polish Academy of Sciences. All rights reserved
 

 

1. Introduction 

 

The market for compressors to be used in refrigeration thermal machines imposes the 

development of new technologies to achieve increasingly high levels of the energy efficiency.  

This can be verified by the fact that the compressors currently produced by the global market 

leader in this sector consume half the energy in relation to those produced two decades ago.  

In this context, the compressor performance test has become an important activity in the 

development and improvement of these products, and to ensure that the efficiency parameters 

established through contracts are respected.   

The compressor performance parameters include the refrigeration capacity, which is one of 

the main variables in the refrigeration systems design. Thus, this is one of the parameters 

given most consideration by the clients of companies which manufacture compressors for 

thermal machines.    

Different methods can be used to obtain the refrigeration capacity of a compressor.  

Typically, the well-established methods used are described in the main standards, notably, 

ANSI/ASHRAE 23 [1], DIN EN 13771 [2] and ISO 917 [3].  All of the standards are very 

similar, often differentiated only by the allowable measurement uncertainty and operation 

limits. The ISO 917 standard requires measuring the refrigeration capacity under steady-state 

conditions in special refrigeration circuits.  This condition is characterized by the measured 

quantities being within established limits for a period of 1 hour [3].  However, the overall test 

time is much longer and on average is over 4 hours due to an unsteady state operation [4−6].  

Additionally to a long time required to run the tests, the compressor production volume at   

factories is high, reaching tens of thousands units per day in a single production plant. These 

two factors combined make using standardized tests as a quality control tool during the 
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production process impracticable, so the refrigeration capacity can only be determined for a 

small sample of each lot of compressors produced.   

In this context, this paper describes a new test method which does not make use of 

refrigeration systems and can be used to infer the refrigeration capacity of compressors during 

the production process.  In this test method a committee of artificial neural networks is used 

to infer the performance characteristics.   

 

2. A traditional test rig for the performance test 

 

The refrigeration capacity of a compressor (Qrf) is defined as the product of the mass flow 

rate of the refrigerant fluid through the compressor and the difference between the specific 

enthalpy of the refrigerant at inlet conditions and the specific enthalpy of the saturated liquid 

at the temperature corresponding to the discharge pressure of the compressor (1). In other 

words, the refrigeration capacity is a measure of the compressor capability to generate a mass 

flow of the refrigerant fluid when a pressure difference is imposed between its suction inlet 

and discharge outlet [7].  
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where qmf is the mass flow rate of the refrigerant, Vga is the specific volume of the refrigerant 

fluid entering the compressor during the test, Vgl is the specific volume of the refrigerant 

entering the compressor at standard test conditions, hg1 is the specific enthalpy of the 

refrigerant entering the compressor under basic conditions specified in the test and hf1 is the 

specific enthalpy of the liquid refrigerant at the pressure corresponding to the compressor 

discharge.  

Currently, the ISO 917 standard [3] describes nine methods for obtaining the refrigeration 

capacity of a compressor. The standard also determines that a test must be conducted 

simultaneously applying two different methods and that the results are considered acceptable 

when the deviation between the results is less than 4%, as detailed in (2). 
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where Qrfx is the result for the refrigeration capacity of the compressor obtained by a method 

X and Qrfy is the result for the refrigeration capacity of the compressor obtained by a method 

Y. 

Flesch and Normey-Rico [5] described a test rig model, shown in Fig. 1, to measure the 

refrigeration capacity of a compressor according to the ISO 917 standard. The main 

components and measurement points of interest for the determination of the refrigeration 

capacity are presented. Two methods are presented: one involving the measurement of the 

mass flow rate in the liquid phase and the other employing the calorimetry in the suction line.  

In both methods the enthalpies are obtained using temperature and pressure measurements at 

points specified by the standard, and the mass flow rate is obtained directly from the meter in 

the first method and estimated by (3) in the dry system refrigerant calorimetry method. 
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where qmf is the mass flow of the refrigerant fluid, Pi is the electrical power applied to the 

heater, Fl is the calorimeter heat leakage factor; Ta is the average ambient temperature, Tg is 

the average calorimeter surface temperature, hg2 is the specific enthalpy of evaporated 

refrigerant leaving the calorimeter, and hf2 is the enthalpy of the refrigerant in the liquid state 

entering the expansion valve.  

The test rig is comprised of refrigeration circuits, measuring instruments, controllers and 

data acquisition systems.  For the topology presented – with the application of advanced 

control methods and a high performance instrumentation – the level of measurement 

uncertainty for the capacity can reach values about ±1%. 

 

 

 

Fig. 1. A general scheme of the test rig for measuring the refrigeration capacity of a compressor.  

 

The standards describe the state-of-the-art test methods for the measurement of the 

refrigeration capacity.  All of them make use of the refrigeration fluid and have test durations 

of about 4 hours, requiring using the compressor oil according to the compressor design.  

These factors prohibit the application of the methods on the production line, given the high 

costs involved in recycling the refrigerant fluid and the extensive test duration considering the 

lead time, which can reach 7 seconds between two units produced consecutively. Also, due to 

contractual clauses, not all of the produced compressors can have a contact with the 

compressor oil. In this study, the standardized test rigs were used to obtain training and test 

data sets for developing the proposed artificial neural network method. 

 

3. Committees of artificial neural networks  

 

ANNs make direct use of data from the real world, allowing the network to learn from the 

data and provide an implicit model for the case under analysis.  Thus, for complex problems, 

where the traditional mathematical modelling of physical phenomena becomes unfeasible, the 

use of ANNs presents a practical solution when integrated with a consistent engineering 

approach [8].  This enables efficient modelling of complex problems with satisfactory results 

[9−13]. 
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The theory related to ANNs presents different types of networks and learning algorithms 

suitable for implementation. In this study, multilayer feedforward ANNs with back-

propagation learning are used.  This type of ANNs has one or more intermediate, or hidden, 

layers between its inputs and outputs.  These hidden layers allow the ANN to extract high-

order statistics, enabling its use in non-linear applications.   

Due to the randomness related to the learning process, even for topologies of networks 

which are the same and trained with subsets extracted from the same database, the results can 

differ significantly.  A strategy to minimize these deviations is to use such an ANN committee   

that the simple average of the ANN outputs is favourable as it gets closer to the expected 

value [14−17]. The idea behind a committee machine is the minimization of the random 

effects induced in the ANN due to the learning process [8, 18]. It is possible to make a direct 

analogy with the metrology where, in order to determine the value for a measurand with the 

presence of random effects in the measurement process, the average of several measurements 

represents a better result than a single individual measurement [19].  Therefore, the random 

errors of each one of the ANNs are partially compensated when the individual outputs are 

combined into a committee of ANNs [20]. 

In this paper, different ANNs were trained with sets of data extracted randomly from the 

same database – x as input quantities and y as output quantities. The networks that presented a 

proper behaviour were chosen to constitute a committee and their outputs (y1, y2…yk) were 

combined using the simple arithmetic mean in order to obtain the inferred value (y) for the 

refrigeration capacity, as in the model shown in Fig. 2. 

 

 

Fig. 2. A committee of ANNs with the output based on the simple arithmetic mean.  

 

4. A proposal for the test on the production line  

 

A proposal for a test procedure able to provide the value for the refrigeration capacity in an 

extremely reduced duration is based on the classical definition of an air compressor.  The 

compressor is turned on increasing the air pressure within a vessel of a known volume, as 

shown in Fig. 3.  The pressure is measured and its increasing rate is directly related to the 

refrigeration capacity of the compressor.  The main compressor parameter which is 

responsible for the determination of the refrigeration capacity is the mass flow. Thus, 

according to (1), assuming that the temperatures and pressures of the suction and discharge 

are constant, it can be assumed that the greater the capacity of the compressor to generate the 

mass flow, the greater is its refrigeration capacity.  On the other hand, for the pressure 

increase test, if the volume, pressure and temperature at the start and the end of the test are 

known, it is possible to determine the displacement of the air mass during the test period.  
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Therefore, this mass flow will be directly correlated with the refrigeration capacity of the 

compressor. 

 

 

Fig. 3. The test method carried out on the production line.  

 

4.1. A correlation between the refrigeration capacity and the pressure increase rate 

 

In order to verify a correlation between the quantities of interest, 61 compressors with 

different refrigeration capacity values were tested and respective results for the refrigeration 

capacity and the pressure increase rate were obtained. The measurements of the refrigeration 

capacity of  61 compressors took about 270 hours for all compressors and were run on   

traditional test rigs using the refrigerant fluid that the compressors were designed for; the 

measurements of the pressure increase rate for all 61 compressors took about 6 minutes and 

were run on a production line test rig using the dry air. The statistical analysis of the results 

revealed the Pearson correlation coefficient equal to 0.839 between the refrigeration capacity 

and the pressure increase rate, with a 95% confidence interval between 0.741 and 0.903. The 

correlation coefficient indicates a strong linear correlation between these quantities; this 

situation contributes to the establishment of a neural model able to infer values for the 

refrigeration capacity based on the pressure increase rate.   

 

4.2. A neural model for the inference 

 

The 61 compressors described above were used to establish a neural model able to infer the 

values for the refrigeration capacity based on the results obtained in the pressure increase 

tests. 49 compressors were chosen for the training set, whereas the remaining 12 compressors 

were allocated to the test set.  In the ANN learning process the results for the pressure 

increase test represented the input and the results for the refrigeration capacity represented the 

output of the ANN.  

The configuration of the selected network was a multilayer feed-forward one, as follows: 

the input layer containing 8 neurons with data originating from the pressure increase test and 

also from the compressor design parameters (the pressure increase rate, power consumption, 

shell temperature, power line voltage and frequency; additionally some relations between 

these quantities were stated as inputs), the first, second and third hidden layers containing 10 

neurons each, and the output layer containing 1 neuron indicating the refrigeration capacity. 

Several different configurations were evaluated and better results were reached using the 

architecture described above. The average absolute percentage error for the test set achieved 

by each ANN was chosen as a criterion for selecting the committee members; the chosen 
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ANNs should have the error lower than 10%. Despite this threshold value seems rather high, 

it was not possible to reach lower values for a sufficiently large amount of ANNs, considering 

different architectures and generalization issues. 

Several ANNs were trained using data extracted randomly from the training set in order to 

allow a diversity of ANNs [21−24]. 45 ANNs with the same configuration were trained 

allowing the analysis of committees with different quantities of ANNs.   

 

5. Experimental results  

 

The differences between the test results and the inferences presented by a committee 

comprised of 45 ANNs were within the range of the measurement uncertainty for the 

refrigeration capacity, as shown in Fig. 4 for 12 compressors of the test set. Fig. 4 also shows 

the ±3% measurement uncertainty limits for the refrigeration capacity. Considering that the 

uncertainty represents a doubt regarding the refrigeration capacity values, it can be concluded 

that the inferred values are acceptable.  Also supporting the validation of the method is the 

fact that the ISO 917 standard [3] indicates as acceptable a 4% deviation between the values 

obtained as the result of two distinct methods.  
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Fig. 4. The comparison of  the measured and inferred values. 

 

The use of committee machines was demonstrated to be a suitable solution for the 

minimization of errors originating from the learning process.  Fig. 5 shows the average 

absolute percentage error for the test set (12 compressors). One can see that the error reduces 

as networks are inserted into the committee, and a stable behaviour is established for about 30 

networks. 
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Fig. 5. The average absolute percentage error vs. the quantity of networks in the committee.  

 

As in the case of any model used for the inference, the linear correlation between the 

values obtained and the values expected should be as high as possible and ideally the Pearson 

coefficient should be equal to 1, indicating that the model provides the zero error in its 

inferences [25−27]. The correlation coefficient for the responses provided by the committee 

was 0.989, indicating that the results presented by the committee are acceptable.    

Since the proposal was shown to be suitable for the test set, a further analysis was carried 

out.  The inferences obtained for a lot of 2383 compressors of a specific model were 

compared to the refrigeration capacity obtained for a quality control sample of 5 compressors 

tested using the traditional standardized methods. The analysis was performed by comparing 

the averages and the standard deviations.  The average refrigeration capacity value of the 

quality control sample was 235.68 W with the standard deviation of 2.13 W. For the 2383 

compressors tested using the proposed inference method the average result when applying a 

committee of 10 ANNs was 236.16 W with the  standard deviation of 4.21 W. The 

comparison reveals a small percentage error in relation to the average results. However, the 

standard deviation was slightly higher for the inference results.  The average for a committee 

of 30 ANNs was 236.53 W with the standard deviation of 2.31 W. The latter analysis shows 

that the difference in the errors for 10 and 30 ANNs was very low. However, the standard 

deviation was considerably reduced when the number of ANNs in the committee was 

increased.  Fig. 6 shows more clearly the variation in the average absolute percentage error as 

the number of ANNs in the committee is increased.  It can be observed that the percentage 

error appears to stabilize with 10 ANNs in the committee. However, as shown in Fig. 7, the 

standard deviation continued to decrease until reaching 30 ANNs in the committee.   
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Fig. 6. The average absolute percentage error vs. the number of ANNs in the committee.   
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Fig. 7. The standard deviation vs. the number of ANNs in the committee. 

 

Another important analysis to be performed is related to the test duration.  The evaluation 

of the quality control sample comprised of 5 compressors took about 1350 minutes using the 

standardized test methods, while the total test duration for whole lot of 2383 compressors 

using the proposed inference method was equal to 278 minutes.  It can be noted that - 

regarding the test duration - the proposed approach can be used on the production lines.   

Other analyses carried out on 4 specific compressor models also provided acceptable 

results related to the average percentage error.  The results were compared to the quality 

control sample (5 compressors for each model) and are presented in Table 1.   

   
Table 1. Production lots results. 

Compressor 
Model 

Lot Size  

Refrigeration 
capacity (W) 

Quality 
Control 

Standard 
deviation (W) 

Quality 
Control 

Refrigeration 
capacity (W) 
Inference 

Standard 
deviation (W) 
Inference 

Error % 

A 5377 197.41 1.80 197.56 0.60 0.08 

B 243 197.64 1.3 197.65 0.43 0.01 

C 1230 198.98 3.42 199.26 0.74 0.15 

D 1031 202.10 2.60 198.46 0.63 -1.71 

 

6. Conclusions 

 

This paper focused on presenting a viable method for obtaining the refrigeration capacity 

of compressors used in thermal machines, which can be used on the production line.  Due to 

the high production volume of the manufacturers, the proposed method must be sufficiently 

fast in order to be coupled with the process.  To achieve this, a time reduction of 99.95% in 

relation to traditional methods needs to be reached.  In the proposed method artificial neural 

models are established to infer the refrigeration capacity. The paper demonstrated the viability 

of the proposed method through experimental results which verified that the errors were 

relatively low. The test duration was 7 seconds per compressor.   The proposed method does 

not require using refrigeration systems, which dispenses using the refrigerant fluid and the 

compressor oil.  It was also verified that the use of committees of ANNs was a suitable tool to 

minimize the random errors obtained during the ANN learning process.    
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