
 
Metrol. Meas. Syst., Vol. XXII (2015), No. 2, pp. 289–302. 

_____________________________________________________________________________________________________________________________________________________________________________________ 

Article history: received on Dec. 08, 2014; accepted on Apr. 03, 2015; available online on May 29, 2015; DOI: 10.1515/mms-2015-0016. 

 

 

METROLOGY AND MEASUREMENT SYSTEMS 

Index 330930, ISSN 0860-8229 

www.metrology.pg.gda.pl  

 

 

SEPARATION OF NON-PERIODIC AND PERIODIC 2D PROFILE FEATURES 

USING B-SPLINE FUNCTIONS 

 

Dariusz Janecki, Leszek Cedro, Jarosław Zwierzchowski 

Kielce University of Technology, Faculty of Mechatronics and Machinery Design, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland 
(� djanecki@tu.kielce.pl, +48 41 342 4444, lcedro@tu.kielce.pl, j.zwierzchowski@tu.kielce.pl) 
 

Abstract 

The form, waviness and roughness components of a measured profile are separated by means of digital filters. The 

aim of analysis was to develop an algorithm for one-dimensional filtering of profiles using approximation by 

means of B-splines. The theory of B-spline functions introduced by Schoenberg and extended by Unser et al. was 

used. Unlike the spline filter proposed by Krystek, which is described in ISO standards, the algorithm does not 

take into account the bending energy of a filtered profile in the functional whose minimization is the principle of 

the filter. Appropriate smoothness of a filtered profile is achieved by selecting an appropriate distance between 

nodes of the spline function. In this paper, we determine the Fourier transforms of the filter impulse response at 

different impulse positions, with respect to the nodes. We show that the filter cutoff length is equal to half of the 

node-to-node distance. The inclination of the filter frequency characteristic in the transition band can be adjusted

by selecting an appropriate degree of the B-spline function. The paper includes examples of separation of 2D 

roughness, as well as separation of form and waviness of roundness profiles. 
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1. Introduction 

 
Smoothing and low-pass filtration of measurement data are performed in many areas of 

science and technology. In surface metrology, filtration is used to separate form, waviness and 
roughness components. Today, the most common are digital filters, because of application of 

computer-based measurement methods. The problem of filtration can be easily solved in the 
analysis of periodic profiles registered at a constant sampling interval. In this case, the most 
convenient is first to determine a discrete Fourier transform of a profile, and then filter it in the 

frequency domain according to the required filter frequency characteristic. Filtering non-
periodic profiles is definitely more difficult. The major problem is to determine the filtered 

profile at the end points of the profile. This is due to the fact that the value of the filtered profile 
at a given point is obtained through averaging of the measured profile in a certain neighborhood 

of this point. However, at the ends of the profile, the values of the profile lying outside the area 
measured are not known. In the literature, this problem is called the end problem. 

The simplest method to solve the problem is to register a sufficiently long fragment of a 

profile and use additional end fragments for determining the filtered profile in its central part. 
Many methods have been developed to determine a filtered profile, also at the profile ends 

[1−10]. Many of them have good theoretical background. In [1, 2], a variational approach was 
used. It assumes that the filtered profile minimizes a certain functional made up of two parts. 
One part is responsible for approximation of the primary profile by the filtered profile, whereas 

the other, called the bending energy, is meant to ensure appropriate smoothness of the filtered 
profile. In [3], the variational approach has been extended to the two-dimensional case. In [4, 
5], a filtered profile is determined by means of local approximation of the primary profile with 
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a polynomial of degree 1 or higher. In the literature, such filters are called spline and regression 
filters, respectively, and they are described in ISO standardization documents [6, 7]. In [8], the 

Gaussian regression filter is compared with the spline filter. It was shown that, in certain cases, 
the performance of the regression filter was better than that of the spline filter. 

There also exist other methods, more heuristic in nature. For instance, it is possible to adjust 
the profile inclination, so that the values at its both ends are equal, and then to treat the profile 
as a periodic one [9]. In [10], a profile was extrapolated by means of central symmetry with 

centers at the end points of the profile. The heuristic methods sometimes provide expected 
results, and sometimes fail. This implies the occurrence of the end effect, which manifests in a 

considerable deviation of the filtered profile from the expected values at profile ends. 
Data smoothing can also be achieved by approximating the profile by a linear combination 

of certain basis functions ,

k
ϕ  i.e., by means of the sum 

1

0
( )

K

k kk
a t

−

=

ϕ∑ , where t  is a spatial 

variable. Typically, the approximation is performed using a partial sum of the Fourier series. 

This method is used mainly for periodic profiles. In this paper, we assumed that the basis 
functions were appropriately shifted B-spline functions (B-splines). We used the theory of B-
spline functions developed by Schoenberg [11] and extended by Unser et al. [12]. We 

formulated the problem of approximation of measuring data by means of periodic and non-
periodic B-spline functions and discussed the properties of the resulting low-pass filter. We 

included examples of application of the filter to separate 2D roughness and to separate form 
and waviness of roundness profile. 

It should be emphasized that, unlike spline filters described in the standard, the algorithm 

does not take into account the bending energy of the filtered profile in the functional whose 
minimization is the principle of the filter. The approximating function is smoothed by selecting 

an appropriate distance between nodes of the spline function.  
 

2. Approximation of non-periodic function by means of B-spline functions 

 

2.1. B-spline functions 

 

Consider an interval [0, ]fT=P  of a variable t . Assume that the interval is divided into K

subintervals having the same length T . Then, the n -th degree spline function determined over 

the interval t∈P  is a function ( )s t  with the following properties: 

− the function ( )s t  is a function of class 1
,

n

C
−  i.e., it has a continuous derivative of order 

1;n −   

− in the subintervals [ , ( 1) ], 0,1, , 1t kT k T k K∈ + = −K , the function ( )s t  is a polynomial of a 

degree not higher than n . 

The points , 1,2, , 1kT k K= −K  are called nodes of the spline function, whereas the 

parameter T is the distance between the nodes. Let us further assume that 

( ), 1, 2,
m m
x x t m M= = K  is a sequence of values of a certain function ( )x t  determined over the 

interval P . In surface metrology, the function ( )x t  can be regarded as a profile of a certain 

object, while the set of pairs ( , )
m m
t x  is the set of measuring points. The set of coordinates 

m
t  

can be distributed, uniformly or non-uniformly, over the interval P . In the first case, we say 

that the values of the function ( )x t  were obtained by applying a constant sampling interval. 

The problem of approximation of the set of points ( , )
m m
t x  by means of a spline function 

can be formulated as follows: determine the spline function ( )s t  that minimizes the functional: 
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 2

1

( ( ))
M

m m

m

J x s t

=

= −∑ . (1) 

Note, that the functional (1) depends on the parameters of the spline functions. The number 

of these parameters is equal to ( 1)n K+ , where, recall, 1n+  is the number of coefficients of 

the n -th degree polynomial, while K  is the number of subintervals of the interval P . Since 

( )s t  is a function of class 1n

C
− , in each of the 1K −  nodes within the interval P , we can 

formulate n  equations for the derivatives from order 0 to order 1n−  for the polynomials 

adjacent to a given node. Thus, by eliminating the variables, the functional (1) can be made 

dependent on K n+  independent parameters. 

A very convenient and elegant method for constructing spline functions is to apply B-spline 
functions (B-splines, for short) [11, 12]. B-splines can be defined in a few ways. The definition 

provided below is a recursive definition using the concept of convolution. Let 
0

ˆ ( )tβ  be a 

characteristic function of the interval [ 1 / 2,1 / 2]− , that is: 

 
0

1 for 1/ 2,ˆ ( )
0 otherwise,

t
t

 ≤
β = 


 (2) 

and assume that: 

 
1 0

ˆ ˆ ˆ( ) ( ) * ( ) for 1, 2,
n n
t t t n

−

β = β β = …  (3) 

For example, a cubic B-spline function, which is commonly applied, is described with the 
following relationship: 

 

3 2

3 2

3 2

3

3 2

6 12 8 for 2 1,

3 6 4 for 1 0,
1ˆ ( ) 3 6 4 for 0 1,
6

6 12 8 for 1 2,

0 otherwise.

t t t t

t t t

t t t t

t t t t

 + + + − ≤ ≤ −

− − + − ≤ ≤

β = − + ≤ ≤
− + − + ≤ ≤


 (4) 

A B-spline function have many interesting properties. For instance, it is an even function, 

i.e., ˆ ˆ( ) ( )
n n
t tβ = β − , and is equal to zero for ( 1) / 2t n≥ + . Moreover, from the definition (3), it 

follows that: 

 
0 0 0

ˆ ˆ ˆ ˆ( ) ( )* ( )* * ( )
n

n

t t t tβ = β β βK

144424443

. (5) 

Thus, from the central limit theorem it is clear that for high values of  n, the B-spline function 
resembles a Gaussian function: 

 

26

(1 )6ˆ ( )
( 1)

t

n

n
t e

n

−

+β ≅
π +

. (6) 

Figure 1 shows a plot of the B-spline functions for several initial values of n. 
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Fig. 1. B-spline functions for 0,1,2,3,4,5n = . 

 

It is easy to check that the B-spline function ˆ ( )
n
tβ  is a spline function of degree n, with the 

node-to-node distance 1T =  . The node coordinates are equal to , 2, 1, 0,1, 2,− −K K  for odd n, 

and , 3 / 2, 1 / 2,1 / 2,3 / 2,− −K K  for even n . Therefore, the function ˆ ( )
n
tβ  is also called a 

normalized B-spline function. The B-spline function with an arbitrary node-to-node distance T  
is a function in the form: 

 
,

1 ˆ( ) ( / )
n T n

t t T
T

β = β . (7) 

Each n -th degree spline function determined over the interval [0, ]fT=P  with its nodes at 

the points , 1, 2, , 1kT k K= −K  can be written as: 

 

( 1)/2

,

( 1)/2

/2 1

,

/2

( ) for odd ,

( )

( / 2) for even .

K n

k n T

k n

K n

k n T

k n

a t kT n

s t

a t kT T n

+ −

=− −

+ −

=−


β −


= 
 β − −

∑

∑

 (8) 

The summation range in the (8) was selected in such a way that the shifted basis functions 

in the. (8) had non-zero values in the interval P . Thus, for instance, for 3n = , the functional 

(1) can be written as: 

 2
T T

J B d= − +a a c a , (9) 

where d  is a scalar, independent of the coefficients 
k

a , and: 

 
1 0 1

[ ]
T

K
a a a
− +

=a K , (10) 

 
3, 3, 3,

( ) [ ( ) ( ) ( ( 1) )]T
T T T

t t T t t K T= β + β β − +β K , (11) 

 
1

( ) ( )
M

T

m m

m

t t

=

=∑B β β ,      
1

( ) ( )
M

m m

m

t x t

=

=∑c β . (12) 

Finally, the parameters of the spline function which ensures the best approximation of the 

measuring points ( , )
m m
t x  in the sense of a minimum of (1) are as follows: 

 1−
=a B c . (13) 
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Now, it is essential to determine how to select the distance between nodes of the spline 

function, T . It is understandable that the greater the distance between nodes, the smoother the 
spline curve. Probably, the smoothness of the curve is also dependent on the degree n. The 

representation ( , ) ( )
m m
t x s t→  can be treated as a low-pass filter. Another important objective 

is to answer the question what the cutoff frequency of the defined filter is. 

 

2.2. Properties of the filter using B-spline approximation 
 

The properties of the filter were analyzed using a Fourier transform. For this purpose, let us 
consider the interval over which the spline function is defined. We assume that the 

approximated function is defined on the whole set of real numbers, i.e., .= RP . Moreover, the 

sampling period is constant and much smaller than the distance between nodes of the spline 

function, T . Now, we can assume that the approximated function ( )x t  is continuous. 

Accordingly, the approximation can be performed by first finding a minimum of the functional: 

 2( ( ) ( ))J x t s t dt

∞

−∞

= −∫  (14) 

with respect to the parameters of the spline function: 

 
,

( ) ( )
k n T

k

s t a t kT

∞

=−∞

= β −∑ . (15) 

The mapping ( ) ( )x t s t→  defined by the minimum of the functional (14) is a spatially-

varying linear system. It can be described with an integral equation: 

 ( ) ( ) ( )s t x h t d
∞

∆
−∞

= ∆ −∆ ∆∫ , (16) 

where ( )h t
∆

− ∆  is the system response to a shifted Dirac impulse function ( )tδ − ∆ . (In other 

words, the function ( )h t
∆

 is a response of a system in which nodes of the spline function are 

shifted by )−∆ . 

 

Proposition: The function ( )h t
∆

 has the following properties: 

1) the functions ( )h t
∆

 and 
/2
( )

T
h t  are even functions; 

2) the function ( )h t
∆

 is a periodic function with respect to the variable ∆  with a period T; 

3) the Fourier transform of the function ( )h t
∆

 as a function of the variable t is: 

 

( 1)/2

( )

( 1)/2

2 1

ˆ ( / )

ˆ( ) ( )
ˆ ( )

n

i Tj

n

j n

n n
i Tj

n

j n

j T e

H T

j e

+  
− ω −∆

=− +  
∆

− ω
+

=−

β −∆

ω = Β ω

β

∑

∑

, (17) 

where the symbol ⋅    denotes the integer part of the real number and 
ˆ ( )
n

Β ω  is the Fourier  

transform of the function ˆ ( )
n
tβ  equal to: 

 
1

1

sin( / 2)ˆ ( )
( / 2)

n

n n

+

+

ω
Β ω =

ω
, (18) 

and where ω  is a spatial frequency associated with the variable t; 
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4)  
0 /2
( ) ( ) ( )

T
H H H

∆
ω ≤ ω ≤ ω , (19) 

5) for large values of the degree n  we have: 

 

2

2

(1 ) /6

3

(1 ) /3

3

( ( (1 ) /12), )
( )

( (1 ) / 6, )

n

n

i n T e
H

i n T e

− + π

∆
− + π

ϑ π −∆ + + ω
ω ≅

ϑ π + ω

, (20) 

 where 
2

2

3
( , ) n ni z

j
z q q e

∞

=−∞

ϑ =∑  is the elliptic Jacobi theta function; 

6) 
1 for / ,

lim ( )
0 for / ,n

T
H

T
∆

→∞

ω < π
ω = 

ω > π
 (21) 

7) 
0

lim ( / ) 1
n

H T
→∞

π = , (22) 

 
/2
( / ) 0

T
H Tπ = . (23) 

The proof of the Proposition is given in the Appendix. 

Figure 2 shows plots of families of amplitude characteristics ( )H
∆
ω  for different values of 

the degree n of the spline curve. We can see that the characteristics resemble a low-pass filter 

characteristic with the cutoff frequency / ,
c

Tω = π  and thus with the length 2 .
c
Tλ =  

 

 

 
 

Fig. 2. Families of the filter amplitude characteristics for different filter orders. 

 

Therefore, for the predetermined cutoff length ,

c
λ the distance between nodes of the spline 

function should be / 2.
c

λ  Note, that the higher the degree n , the better the approximation of 
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the ideal filter response. Obviously, one should realize that the higher the degree of the spline 
functions, the more numerically complex the filter becomes. 

These properties seem surprising at first, because the higher the degree n of the B-spline 
function, the smoother the function. Accordingly, it appears that the cutoff frequency of the 

transfer function ( )H
∆
ω  should decrease with increasing n. However, it is not the case here. 

This can be explained by simple reasoning. Consider a function: 

 
,

( ) ( 1) ( )
k

n T

k

f t t kT
∞

=−∞

= − β −∑ . (24) 

We can see that an increase in n  causes that the function becomes more and more similar to 

a cosine function with the frequency /Tω = π . Hence, we obtain (22). However, since 
,

( )
n T

tβ  

is an even function, it is clear that B-spline functions cannot be used to well approximate the 

sine function sin( / )t Tπ , which is an odd function and has zero values at the nodes. Hence, we 

have (23). 

 
2.3. Remarks on the numerical properties of the algorithm 

 
To implement the algorithm, it is necessary to repeatedly determine the values of the shifted 

spline functions at the points with coordinates .

m
t  The amount of calculations one needs to 

perform can be reduced if the profile sampling interval t∆  is constant and the distance between 

nodes of the spline function is a multiple of t∆ . In this case, it is sufficient to tabulate the values 

of the B-spline basis function at the points with coordinates being the multiple of t∆ . It is also 

important that, in order to make the matrix B  non-singular, the number of profile samples 
should not be smaller than the number of the parameters of approximation (8). 

 

2.4. Comparing the spline filter with the filter based on B-spline function approximation 

 

Both the classical spline filter and the filter described in Subsection 2.1 of this paper use the 
concept of minimization of the residual error (1). In the spline filter, an appropriate cutoff 

frequency is achieved by adding a certain penalty function to the functional (1), with the penalty 
function representing the bending energy of the filtered profile. As a result, the spline filter 
minimizes the functional: 

 

2

2

1 0

( )
( ( ))

fT pM

m m p
m

d s t
J x s t dt

dt
=

 
= − +η  

 
∑ ∫ . (25) 

The value of the coefficient η is selected in such a way, so as to achieve the desired cutoff 

wavelength. If the sampling period of the signal ( )x t  is small enough, we can assume that [3]: 

 2( / 2 ) p

c
η = λ π . (26) 

The parameter p  affects the slope of the filter amplitude characteristic in the filter transition 

band; the higher the value of p , the steeper the characteristic curve amplitude and the narrower 

the transition bandwidth. 
In the paper by Krystek [1] and the respective standard [6] (with both considering the case 

of 2p = ), the variational problem 
( )

min
s t

J  is solved by approximating the continuous function 

( )s t  with the discrete sequence 
m
s , and then replacing the square integral of the derivative of 

the  function ( )s t  with the sum of squares of the properly defined difference quotient. On the 
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other hand, in [3], the function ( )s t  is approximated by a linear combination of  the shifted B-

spline functions of the form (8). In this case, the distance between nodes of the B-spline function 

should be at least approximately six times smaller than the cutoff length 
c

λ  in order to ensure 

sufficient accuracy of approximation of the function ( ).s t  Moreover, if continuity of the 

derivative ( )
( )

p
s t  is to be achieved, the degree of the B-spline functions should not be lower 

than 1p + . Obviously, it is possible to use some other methods of approximation of the function 

( )s t , e.g. approximation by a linear combination of Legendre polynomials scaled in such a 

way, that they are orthogonal in the interval P . 

The filter described in Subsection 2.1 does not use the penalty function. Yet, the appropriate 

smoothness of the function ( )s t  is achieved only by selecting a sufficiently high value of the 

distance T . From Property 6 of the Proposition it is clear that a filter with the cutoff wavelength 

c
λ  can be obtained by assuming that / 2

c
T = λ . It should be emphasized that the method of 

approximation of the function ( )s t  based on B-spline functions described by (8) is really crucial 

here, because the proof of property (20), which results in (21), significantly exploits the fact 

that the base function ˆ ( )
n
tβ  used for the approximation resembles the Gaussian function, as 

shown in (6). The filter described in Subsection 2.1 is much simpler than the spline filter. There 
is no need to take into account the bending energy, and the number of parameters describing 

the filtered function is much smaller. This features are particularly important in two-
dimensional filtering of surfaces. 

One of the reasons for development of spline filters is to eliminate the end effect. In the 

problem of profile feature separation, the end effect occurs when the form component of the 
primary profile is much larger than the roughness component. Below, the two filters are 

compared in terms of end effect elimination using a simulation method. Let us consider a signal 
in the form: 

 ( ) cos 2 / 3
c

x t t= π λ . (27) 

 

 

        Fig. 3. The primary cosine signal and the signals                Fig. 4. The primary cosine signal and the signals 
              filtered by the spline filter p = 2,3,4.                         filtered by the filter using the B-spline function 

                                                                                             approximation for n = 2,3. 

 

The signal consists of one wave with the length of 3 ,
c

λ  which is significantly greater than 

the filter cutoff wavelength. Let us note that the highest value of the second derivative of the 

function (27) occurs along the edge for 0t = . Thus, the expected end effect should be the most 

visible. Fig. 3 shows, in the initial range of the variable t, the primary signal and the signals 
filtered with the spline filter for different values of the parameter p. It is clear that for p = 2 the 
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end effect is considerable and that the difference (0) (0)s x−  reaches 10% of the amplitude of 

the signal (27). This value is smaller than 1% only when 4.p =  For this reason, the filter 

implementation described in [3] required using the B-spline function of the 5n =  degree. For 

comparison, Fig. 3 shows the effect of the operation of the filter using B-spline function 

approximation for 2n =  and 3.n =  As can be seen, the filtered signals actually coincide with 

the primary signal. It turns out that as early as for 2n =  (quadratic splines) the difference 

( ) ( )s t x t−  does not exceed 1% in the whole interval of variation .t  

 
2.5. An example of approximation of a 2D profile 

 
To illustrate the performance of the approximation algorithm, let us determine, for example, 

a 2D roughness profile of the inner ring race of the 608 series ball bearing. Nominally, the race 

cross-section has the shape of a circle with the radius 2.05r = . Here, the spatial variable is 

denoted by x  and the values of the profile by y . In Fig. 5, we can see the measured item. The 

surface topography was measured using a contact profile-meter with an adjustable table, which 

enables measurements of 2D and 3D profiles. 
 

 
 

Fig. 5. The measured object. 

 

 
 

Fig. 6. Cross-section of the bearing race and limits of its central part. 

 

 
 

Fig. 7. The 2D roughness profile. 
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Figure 6 shows the measured profile of a cross-section of the bearing race. The profile was 

measured using the sampling interval 1 µmx∆ = . Our objective was to determine the roughness 

of the central part of the profile, with the filter cutoff length being 0.25
c

λ = mm, and the profile 

length 8 .
c

λ  The profile was approximated using cubic spline functions with the node-to-node 

distance / 2.
c

T = λ  Fig. 7 presents the roughness profile obtained by subtracting the measured 

profile from the approximated profile representing the mean line. We can see that the roughness 
profile was determined correctly; there was no end effect, despite the fact that the amplitude of 

the form component of the measured profile was a thousand times higher than the amplitude of 
the roughness component. 

 

3. Approximation of periodic profiles 

 
Periodic profiles appear in problems related to the measurement of roundness of rotary 

machine parts. Typically, it is assumed that a measured profile consists of a form profile, whose 
wave numbers range from 2 to 15, and a waviness profile with wave numbers in the range 

15−500. The form and waviness are generally separated using Gaussian filters, and the filtration 
is performed usually in the domain of profile Fourier components. In the literature, other 
approaches are also met. In [2], for example, profiles are filtered by applying a variational 

approach, which leads to the so-called discrete spline filter for periodic profiles. In [13, 14] the 
filtration is based on a wavelet transform. This section presents a method that involves 
approximating profiles by means of periodic B-spline functions. 

Periodic functions can be approximated and smoothed using periodic B-spline functions. We 
assume that, in periodic spline functions, their nodes are uniformly distributed over an interval 

[0,2 ]π , thus 2 /T K= π  for a certain positive integer K . The function: 

 
, ,

( ) ( 2 )
n K n T

j

t t j
∞

=−∞

γ = β − π∑  (28) 

is a periodic B-spline function with the period 2π  and the node-to-node distance 2 /T K= π . 

Note that, in practical applications, the condition 1n K+ <  is generally satisfied, thus: 

 
, ,2 /
( ) ( ) for [ , ]

n K n K
t t t

π
γ = β ∈ −π π . (29) 

A periodic spline function can be represented as a linear combination of periodic B-spline 
functions in the form: 

 
1

,

0

( ) ( 2 / ) ( )
K

T

k n K

k

s t a t k K t

−

=

= γ − π =∑ a γ , (30) 

where: 

 
0 1 1

[ ]
T

K
a a a

−

=a K , (31) 

 
, , ,

( ) [ ( ) ( 2 / ) ( 2 ( 1) / )]T
n K n K n K

t t t K t K K= γ γ − π γ − π −γ K . (32) 

Periodic B-spline functions have properties similar to properties 1)−4) described in the 

previous section. The spatial frequency ω  should only be replaced by the index of the 

component of the expansion of the function ( )s t  into an exponential Fourier series κ  (we use 

the following form of Fourier series: i1
( ) ( )

2

t

x t X e

∞

κ

κ=−∞

= κ

π
∑ ). Thus, for example, the following 

formula is equivalent with that of the (17): 
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γ

∑

∑
 (33) 

On the other hand, properties 5) and 6) do not occur, because the function ( )
n
tγ  does not 

converge to the Gaussian function, when n→∞ . 

 

                                 
               

                       Fig. 8. The measured object.                       Fig. 9. The profile measured in a selected cross-section. 

 
Let us discuss an example of the application of the algorithm to approximate a roundness 

profile. The measurement was performed using a modernized Taylor Hobson Talycenta, which 
is an instrument with a rotary table for measuring roundness and cylindricity profiles. The 

measured object was a hollow cylinder with the outer radius 140R = mm, shown in Fig. 8. In 
the instrument, the profile sampling is synchronized with the encoder of the measuring table, 

which gives 4096 samples per revolution. In Fig. 9, we can see a profile of the cylinder cross-

section. Now, the spatial variable is an angular variable denoted by ,φ  and the profile height is 

denoted by r. The form profile is determined by approximating the profile using periodic cubic 

B-splines. It was assumed that the index of the cutoff wave is 15,
c

κ =  which gives 30K =  B-

splines. 

 

                                                     
 

  Fig. 10. The form of the measured roundness 

 profile.                                        

 

  Fig. 11. The waviness of the measured roundness 

profile. 
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                Fig. 12. The amplitudes of the harmonics                        Fig. 13. The amplitudes of the harmonics 

                              of the form component.                                                    of the waviness component. 

 
Figures 10 and 11 show the separated form and waviness of the measured roundness profile. 

In Figs. 12 and 13 we can see the respective amplitudes of  their harmonics. In the form 

component, waves with the number of undulations per rotation (upr) smaller than 15 are 
predominant. In the waviness component, on the other hand, there are mainly waves with the 

number of upr greater than 15. Waves with upr close to 15 occur in both components. 
Obviously, if a filter with a higher degree of the B-spline function is used, the separation  of the 
two components will be better. 

 

4. Conclusion 

 
The study aimed at developing a method for approximation of the measurement data for non-

periodic and periodic 2D  profiles using B-spline functions. Acceptable smoothness of lines and 
surfaces was achieved by selecting an appropriate distance between nodes of the spline 
function. It was shown that the node-to-node distance of the spline should be equal to half of 
the desired cutoff length of the filter. Moreover, it is possible to obtain an arbitrarily large 
inclination of the frequency characteristic in the transition band if a sufficiently high degree of 

the spline function is selected.  
The paper includes examples of separation of 2D roughness by means of the developed 

approximation method using B-spline functions. The experiments show that a roughness profile 
can be determined correctly, without any end effect, even if the amplitude of the form 
component of a measured profile is very much higher than the amplitude of the roughness 

component. The paper also includes examples of  separation of form and waviness of roundness 
profiles. 

A certain shortcoming of the filter based on approximation of spline functions is the fact that 
it is spatially-varying. Furthermore, the frequency characteristic of a two-dimensional filter is 
not circularly invariant, which might be essential when isotropic surfaces are analyzed. These 

two drawbacks can be eliminated by extending the functional defining the filter parameters with 
an appropriate bending energy of a spline line or surface. However, the distance between nodes 

of the spline function needs to be smaller then. The filter can be approximately spatially-
invariant and circularly invariant when the node-to-node distance is about five to six times 
smaller than the desired cutoff lengths [3, 15]. This results in greater complexity of the filter. 

In this sense, the developed algorithm is simple – it ensures appropriate smoothness of the lines 
and surfaces at a small number of B-spline basis functions. 
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Appendix 

 

The properties 1 and 2 are obvious. Let us prove the property 3. The Fourier transform of 

the spline function ( )s t  is: 

 
,

ˆ ˆ( ) [ ( )] ( ) ( ) ( )
i kT

k n T k n n

k k

S a t kT a T e T A T

∞ ∞

− ω

=−∞ =−∞

ω = β − = Β ω = Β ω ω∑ ∑F , (34) 

where ( )A Tω  is a discrete Fourier transform of the sequence { }
k

a . Setting the partial derivative 

of the functional J  with respect to the coefficient 
k

a  to zero, we obtain: 
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 (35) 

(Here we used the property 
2 1, , ,

( ) ( )* ( )
n T n T n T

t t t
+

β = β β  and the fact that 
2 1,

( ) 0
n T

t
+

β =  for 

t nT≥ ). Assume that ( ) ( )x t t= δ −∆ . Then, from the above equation, it follows: 

 
2 1, 2 1,

(( ) ) ( ), , 1,0,1,
n

j n T n T

j n

a j k T kT k
+ +

=−

β − = β ∆ − = −∑ K K  (36) 

Determining the discrete Fourier transform of both sides of the (36) treated as sequences 
with respect to index k, we obtain: 

 
( 1)/2

2 1, ,

( 1)/2

( ) ( ) ( ) .

nn
i Tj i Tj

n T n T

j n j n

jT e A T jT e
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− ω − ω

+
=− =− +  

β ω = β −∆∑ ∑  (37) 

The Fourier transform of the impulse ( ) ( )x t t= δ −∆  is equal to .

i
e
− ω∆  Hence, and from the 

(34) and (37), we obtain (17). The property 4 can be easily proven for particular values of n. 

For example, when 3n = , the derivative of square root of the absolute value of the numerator 

of the fraction in (17) with respect to ∆  is: 

 ( )2 2

8

8
( )( 2 ) ( )(1 cos ) sin .

3
T T T T T T

T
− ∆ −∆ − ∆ + ∆ −∆ − ω ω  (38) 

It is easy to prove that if / 2T∆ < , then the above expression is negative. Thus, the 

expression ( )H
∆
ω  decreases with respect to ∆  for 0 / 2T< ∆ < . The property 5 results from 

(6). The author does not know a proof of the properties 6 and 7. They have been checked only 

numerically (Fig. 2). For instance, when 10n = , we obtain: 

 
0 11

 1389257839119150
( / )  0.999994

4722116521
H Tπ = =

π

. (39) 
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