
 
Metrol. Meas. Syst., Vol. XXII (2015), No. 3, pp. 417–428. 

 

_____________________________________________________________________________________________________________________________________________________________________________________ 

Article history: received on Feb. 02, 2015; accepted on May 17, 2015; available online on Sep. 21, 2015; DOI: 10.1515/mms-2015-0033. 

 

 

METROLOGY AND MEASUREMENT SYSTEMS 

Index 330930, ISSN 0860-8229 
www.metrology.pg.gda.pl  

 

 

A STATISTICAL APPROACH TO PREDICTION OF THE CMM DRIFT 

BEHAVIOUR USING A CALIBRATED MECHANICAL ARTEFACT 

  

Eduardo Cuesta1), Braulio Alvarez1), Fernando Sanchez-Lasheras1),  

Daniel Gonzalez-Madruga2) 

1) University of Oviedo, Department of Construction & Manufacturing Engineering, Campus de Gijon, 33203 Gijon, Asturias, Spain 
    (� ecuesta@uniovi.es, +34 985 182 136, braulio@uniovi.es, sanchezfernando@uniovi.es) 
2) University of León, Department of Mechanical, Informatics and Aerospatiale Engineering, Campus of Vegazana, 24071 León, Spain 
    (danimadru@gmail.com) 
 

Abstract 

This paper presents a multivariate regression predictive model of drift on the Coordinate Measuring Machine 

(CMM) behaviour. Evaluation tests on a CMM with a multi-step gauge were carried out following an extended 

version of an ISO evaluation procedure with a periodicity of at least once a week and during more than five months. 

This test procedure consists in measuring the gauge for several range volumes, spatial locations, distances and 

repetitions. The procedure, environment conditions and even the gauge have been kept invariables, so a massive 

measurement dataset was collected over time under high repeatability conditions. A multivariate regression 

analysis has revealed the main parameters that could affect the CMM behaviour, and then detected a trend on the 

CMM performance drift. A performance model that considers both the size of the measured dimension and the 

elapsed time since the last CMM calibration has been developed. This model can predict the CMM performance 

and measurement reliability over time and also can estimate an optimized period between calibrations for a specific 

measurement length or accuracy level.  
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1. Introduction 

 
Coordinate Measuring Machines (CMMs) are one of the most common measuring 

instruments used to verify production quality with high precision. They are high cost machines 
which usually require controlled environments and require regular assessment and calibration 
processes with expensive means. In fact, interim performance verification tests following 

standards like ISO 10360-2:2009 [1] are periodically carried out in order to evaluate the overall 
volumetric performance of the CMM. Into this field, the concept of “maximum permissible 

error of indication” for a given L length measurement, and the “maximum permissible single 
stylus form error” are the main parameters that define the CMM performance, capability and 
even the necessity of recalibration. When a verification procedure is carried out, these 

parameters are obtained and compared with manufacturer specifications. However, for a given 
calibration process, these parameters must be compared with an uncertainty value. In both 

cases, determination of a correct verification − or calibration − period can save a huge amount 
of time and money. 

CMMs and their uncertainty have been extensively studied in the past and even nowadays. 

The common thread about CMM uncertainty consists in carrying out performance tests 
following International Standards [2] and experimental tests using calibrated objects [3, 4]. 

Basically, these tests involve measuring five lengths of a well-known master gauge in several 

positions within the working volume of the CMM. ISO standards propose an uncertainty budget 
that considers several contributions, such as the calibrated uncertainty of the master gauge, the 
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uncertainty of the coefficient of thermal Expansion of the master gauge, the uncertainty due to 

the input temperature of the master gauge, the uncertainty due to the misalignment of the master 
gauge, or the uncertainty due to the used fixture method. Afterwards, errors of indication for 
the five length sizes are plotted in function of the length size together with the measurement 

uncertainty and the maximum permissible error stated by the CMM manufacturer. This way, it 

can be deduced whether the CMM performance meets the specifications or not. 

Some authors develop their own methodologies supported by a master gauge. Among these 
master gauges different three-dimensional features can be found, like small cylinders and 
rectangular prisms [5], a combination of cylinders & cones [6], and other geometric 

characteristics [7, 8], Ball plates [9, 10], ring gauges [11] or Ball Bar devices [12]. 
It is also common to apply GUM principles to the uncertainty determination in these tests 

[7, 12−14]. Some authors develop analytical models to calculate uncertainty taking into account 

different tolerances in specific tasks [9, 15, 16]. From a different approach to the matter, others 
researchers start from the Virtual CMM concept [17] and propose models that attempt to predict 

the CMM uncertainty by modelling the CMM behaviour [18−20], using factorial design [12] 

or taking into account the effects of several contributions [21−23]. 
The evaluation of the CMM used in this paper looks for a drift model on a different level of 

performance than other researchers do. The main objective is to determine a suitable period 

between CMM calibrations, both economically as functionally. Another aim of this survey is 
to establish the “CMM Capability Chart” and how this chart evolves over time. This chart is 

used to determine which CMM specification (MPEE) is required in order to measure a distance 
or a diameter with a given tolerance. 

However, the measurement uncertainty of a specific measurement task (GD&T) or of a given 

geometric feature is not considered here. This kind of research requires a task-oriented and 
dedicated budget and demands very different processes and techniques than the one presented 

here. This is because the uncertainty evaluation task depends on the machine parameters, like 
the head probe’s speed [22], the probing points technique [23], the spatial distribution [16, 24], 
as well as on the differences of coordinates of probing points used to calculate a particular 

geometric characteristic [15, 25]. Moreover, the uncertainty of coordinate measurements also 
depends on the software for analytical evaluation [22, 24, 26].  

Given the complexity of the CMM measurement system and the quantity of factors involved, 
there are also many works that study the effects of these factors on the CMM performance at a 
time. Design of Experiments (DOE) and Analysis of Variance (ANOVA) techniques broaden 

this study by defining several levels for each factor and performing measurements 

corresponding to selected combinations of factors [12, 27−31].  
Even though CMM uncertainty sources have been extensively analysed in many ways, the 

CMM performance evolution over time (known here as a drift) has been relegated to the 
background. It is generally assumed that the CMM performance is progressively worse, but 

almost nobody knows how. For this reason, periodic CMM re-verification or interim tests are 

carried out as a means to know when the CMM needs to be calibrated. 

This work presents a study of the CMM measurement’s drift by measuring a step gauge 

artefact through more than twenty-seven weeks. The available information allowed the creation 
of a predictive model of the drift that can be used to avoid non-productive and time consuming 

re-verification tests. From the point of view of the authors the main interest of the present 
research is that it presents a novel and easy to implement methodology to control the CMM 

machine drift based on simple statistical techniques. This research is in line with others recently 
published that use machine learning and statistical techniques for modelling and prediction in 
manufacturing. Some of the most remarkable papers published in the last years are those that 

model the errors found in the machine tools in order to improve their productivity, taking into 
account possible error sources such as time [32], those that from a three dimensional statistical 
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approach are able to determine the tolerance for manufacturing [33] or even applications of 

artificial neural networks for predicting surface roughness in a milling process or a tool life in 
machining. 

 

2. The experimental set-up. Materials and methods 

 
The method is based on repeating an extended version of the ISO 10360-2 test for 

determining the error of length measurement during more than five months and in intervals 

between five and ten days. In the period between tests, the CMM was functioning constantly 

during an average working time of 2−3 hours daily. This CMM is designed for educative and 
research purposes and is not intended to be employed for intensive production use. 

So, at least one day a week, the step gauge (Fig. 1-left) was measured in seven different 
orientations (denoted as X, Y, Z, XY, XZ, YX and XYZ location) into the CMM measurement 

volume.  
For each orientation, seven length standards (with dimensions about 20, 60, 150, 240, 330, 

420 and 500 mm) were measured three times for each of  two opposite directions . Every length 

size was materialized between two points of a standalone step gauge. Once the spatial 
orientation was established, the gauge was first aligned manually and subsequently 

automatically following the well-known 3−2−1 procedure. Afterwards, the measurement points 
for evaluating each length error were chosen so that they were located along the neutral axis of 
the gauge. A typical setup for one of the seven gauge orientations is shown in Fig. 1a. Fig. 1b 

shows a screenshot of the PC-DMIS software program used to measure the gauge. Besides, a 
function for axis-linear thermal compensation (available in PC-DMIS for the CMM) was 

always activated to minimize the influence of temperature variations. 
 

   a)                                                                                 b) 

  
 

Fig. 1. a) The step gauge artefact with its seven standard lengths and the test setup for one of the 1st volume 

measuring orientation; b) a PCDMIS screen-capture for the off-line CAD programming. 
 
The step gauge and the multi-orientation fixture were specially designed and manufactured 

for this purpose. The gauge is made of stainless steel (Austenitic AISI 304) alloy with the total 
length of about 500 mm. It has a T-inverted section (50x50 mm), inscribed in an equilateral 

triangle, thus ensuring a low centre of gravity. The measurement surfaces of the crenels (60 mm 
length) were machined by milling and grinding, materializing the seven standard lengths (di in 
Fig. 1). Finally, a heat treatment, on a stress relief bake, was carried out in order to relieve 

residual stresses after machining. Regarding the measurement strategy, the seven measured 
distances (di) were materialized using always the same points. Such points are close to the 

neutral axis, located into the laterals of the crenels and with opposite normal vectors, so all the 
lengths consist of two probes in opposite directions. The fixture supports this master gauge with 
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the Bessel points (very close to the Airy points). The nominal values of the seven standard 

lengths were obtained from calibration carried out by an accredited external laboratory in order 
to maintain enough traceability during this procedure. The uncertainties of the nominal values 

were between 0.4 and 0.8 µm. 

Although the period during which the tests were performed is considered representative 
enough for evaluating evolution of the CMM drift, the own step gauge drift has not been 

considered as relevant in this study. The dimensions of the step gauges did not change during 
the test period, as the artefact was robustly designed, heat-treated before its first calibration and 

was always kept in controlled ambient conditions inside the metrology laboratory since the 
beginning of the study. 

The CMM used was a DEA Global Image model (Hexagon Metrology), with a PH10MQ 

indexed head and an SP25 probe (Renishaw). A stylus made of 25 mm long carbon fibre with 
a spherical tip made of synthetic ruby of 6 mm diameter was attached to the sensor. The 

environment temperature of the laboratory has been controlled to be within the range of 
20±1°C. The experiment began just after the CMM was recalibrated (Fig. 2 left) and was being 
adjusted throughout the full CMM performance test, thus verifying linear, squareness, 

volumetric accuracy and repeatability. These tests were carried out by the Hexagon Metrology 
laboratory (which is an ENAC certified laboratory; ENAC is the Spanish National 

Accreditation Body for ISO 17025) ensuring the maximum permissible error for a length 

measurement of MPEE = 2.2 + 3L/1000 µm, where L is in mm. 
 

     a)                                                                                  b) 

 
Fig. 2. a) The CMM during preliminary calibration (with KOBA® gauge) before the beginning  

  of the experiment; b) Some volumes and orientations considered for posterior interim tests. 

 
Although the overall length of the step gauge does not cover the whole range of the CMM 

(X900-Y1500-Z800 mm), the consideration of two volumes (Vol. 1 and Vol. 2) makes possible 
a global CMM evaluation. Fig. 2-Right shows the volumes and the nomenclature used for the 
tests. Every volume is defined in such a way that it covers the width and the height of the 

original CMM working volume and the length is roughly half of the original length. Due to the 
probe accessibility, approach distances and collision avoidance movements, those dimensions 
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must be reduced in size. Therefore, the length of these volumes (along the Y axis) is 

approximately 700 mm, and the two volumes overlap along 100 mm. 
 

Table 1. The description of the variables used in the experiment.  

Variable name Description 

Volume 
The volume of the machine in which the master gauge is placed and the 
measurement is taken. 

Length 
(Measurement identifier) 

The total of six measurements were performed in each test for each of the seven 
nominal measurements. Please note, that each measurement is the distance 
between two parallel planes, having opposite normal vectors.  

Days 
The elapsed time, expressed in number of days, since the date of the last CMM 
adjustment and calibration till the measurement date. 

Nominal 
The nominal value of each dimension (the range of values from 19.996 to 499.934 
mm according to the external gauge calibration test). 

Actual value The actual value of the measurement taken by the CMM machine. 

Deviation The difference between the nominal and the actual values. 

 

2.1. Collected data and variables 
 

The entire survey covers the total of 24 ISO-10360 tests, each one with 588 standard length 
measurements; thus: two CMM volumes per test, seven orientations per volume, seven lengths 

per orientation, three repetitions per length and two directions per repetition (different sequence 
in probing end points of each length). In order to elaborate a statistical model and taking into 
account the large amount of generated information, a particular nomenclature adopted during 

the research is listed in Table 1. The step gauge was placed in two volumes of the machine, 
materializing the total of fourteen different spatial positions (combining X, Y, Z, XY, XZ, YZ 

and XYZ axes with the aforementioned volumes Vol. 1 and Vol. 2), as shown in Fig. 2b. The 
X, Y and Z positions mean locating the gauge in parallel to the axes of the CMM, the 
orientations denoted with two letters, i.e., XY, XZ or YZ, mean the in-plane diagonals, while 

the XYZ orientation corresponds to the volumetric diagonal, the longest space diagonal. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Nominal [mm] 

Fig. 3. A boxplot of differences between the Nominal and Actual values  

of all the measurement results. 
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The measurements were taken on twenty-four different days, starting in December 2012 (on 

the date of the last CMM calibration) and finishing in April 2013, using always the same interim 
procedure.  

 

3. Statistical implementation  

 
All the data were analysed using R Statistical software. With this tool, several models were 

tested in order to find the best relation − seeking an equation − between the variables considered. 

The first model looks for the differences between the nominal and the measurement values. 
Although other variables, like the master gauge location (volumes Vol. 1 or Vol. 2) and 
orientation (X, Y, Z, XY, etc.) were taken into account, those variables were not found relevant 

or their relevance was negligible compared to Days and Length variables when the systematic 
error or standard deviation was computed. 

Figure 3 shows a boxplot of the differences between the Actual and the Nominal values of 
all the measurements taken in this survey, ordered according to the Nominal range value. The 
Shapiro-Wilk normality test (W = 0.8685, P-Value = 1.708 E-11) clearly indicates that the 

differences between the Nominal and Actual values of all the measurements did not follow a 
normal distribution. This lack of normality led us to employ the Kruskal-Wallis test in order to 

check whether the medians of the deviations were the same for all the nominal Lengths or not. 
According to the results, the null hypothesis can be rejected (p = 0.000), so it can be stated that 

medians are different depending on the nominal values.  
 

Table 2. The standard deviation of each one of the measurement deviations. 

Nominal  

value [mm] 
Std. dev. 

[mm] 

 

19.996 0.0011871 

59.988 0.0012664 

149.961 0.0015328 

239.964 0.0021498 

329.983 0.0027447 

419.979 0.0034409 

499.934 0.0040641 

 

Please also note, that for the Nominal values equal to or greater than 59.988 mm (Fig. 3), as 
the Nominal value increases, the absolute value of the median of the differences between the 

Nominal and Actual values also increases (please note, that in our case the median values are 
negative). In order to check the equality of variances, the Levene test was applied. The results 

(W = 684.01, p = 0.000) provided evidence to claim that the measurements have unequal 
variances, depending on the Length nominal value. According to the results obtained it can be 
also stated that the larger the nominal value, the greater the standard deviation, with a significant 

Pearson’s correlation coefficient of 0.990 (Table 2). 
For each calibrated length, the systematic error was calculated using the difference between 

the mean (average) value of all measured (Actual) values and the Nominal value. 
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3.1. Statistical model proposal 

In order to check the influence of the time and length of the nominal value on the systematic 

error, a linear model using both variables and their interaction was implemented firstly. The 
systematic error was calculated using the difference between the mean (average) value of all 

measured (Actual) values and the Nominal value. The results are presented in Table 3 which 

shows the results of the linear model for the systematic error using Days, Nominal value and 
the interaction of Days and Nominal values as input variables. According to the obtained p-

values, the term that represents the elapsed number of days since the last calibration is not 

significant (p = 0.9609), while the Nominal value of the measurements and the interaction of 
both Days and Nominal values are all of them significant, considering the statistical significance 

α level of 10% for the p-value. This adjusted R-squared value of the model is 0.7962. 
 

Table 3. The first linear model of the systematic error behaviour. 

 Estimate Std. error p-value 

Intercept −5.552·10−4 3.92·10−4 0.1584 

Days 2.463·10−7 5.016·10−6 0.9609 

Nominal 1.389·10−5 1.321·10−6 10−16 

Days:Nominal 3.196·10−8 1.691·10−8 0.0603 
 

According to the previous results, and in order to improve the performance of the model, it 

was repeated removing the Days variable, but maintaining the interaction between this variable 
and the measurement nominal values. Table 4 shows the results of this new linear model of the 
systematic error for given Nominal values and the interaction between the Nominal values of 

the measurements and the value of Days. The adjusted R-squared value of this model is 0.7973, 
and all the coefficients are significant. 

 

Table 4. The second linear model of the systematic error behaviour. 

 Estimate Std. error p-value 

Intercept −5.381·10−4 1.803·10−4 0.00324 

Nominal 1.384·10−5 8.979·10−7 10−16 

Days: Nominal 3.265·10−8 9.530·10−9 0.00076 

 

3.2. Safe modelling of the real systematic error 

Therefore, according to the results of Table 4, and considering the confidence interval of 
95%, the most unfavourable linear model of the Systematic error would be: 

 Systematic	Error = 	−1.823017 ∙ 10�� + 1.561597 ∙ 10�� ∙ � + 5.145359 ∙ 10�� ∙ � ∙ �,          (1) 

where L is the value of the length to be measured and D is the number of days since the last 
CMM adjustment and calibration. 

The coefficients employed in the (1) are those values that guarantee that − according to the 

results of Table 4 − in 95% of cases the systematic error value will be lower than the value 
predicted by the model. So, and in order to achieve this aim, the upper limit of the confidence 
interval 2.5% – 97.5% of coefficients Intercept, Nominal and Nominal: Days was chosen for 

the (1). Fig. 4 shows a Box-Behnken design of the variables Length and Days versus Systematic 
Error combining all the empirical data, without any extrapolation. 
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Fig. 4. A 3D surface plot of the variables Length and Days versus Systematic 

error for all the experimental values. 
 

3.3. Safe modelling of the total error 

 
In the case of the available CMM, and according to the results of the full calibration test 

performed before (when the present research began), the maximum permissible error (MPEE), 
given by external calibration and adjustment (2), allows for expressing, in millimetres, the 

systematic error among other random errors.  

 ����	≤	2.2 ∙ 10
�3

� 3 ∙ 10
�6

∙ 	.	       (2) 

In the worst possible case, the total error of the measurement could be considered as the sum 

of the aforementioned MPEE plus the above systematic error model, which leads us to the 
following equation: 

 Total	Error � 	2.117698 ∙ 10
��

� 1.861597 ∙ 10
��

∙ 	 � 5.145359 ∙ 10
��

∙ 	 ∙ �.       (3) 

The (3) expresses the Total Error of the CMM, i.e., the maximum possible combination of 

MPEE of measurement plus the equation that covers the systematic error. This equation adjusts 
statistically the total error of the measurement deviations according to the measurement nominal 

length and the elapsed time from the previous CMM adjustment. Fig. 5 presents the total error 
of measurements between 0 and 500 mm and for the period of one year since the last calibration. 
As it can be observed, the larger the measured length, the larger the total error and, for the same 

length, the total error increases as the “time since the previous calibration” increases. 
In the model presented in Fig. 5, the points of the first six curves to the left correspond to 

the empirical data perfectly fitted by the implemented statistical model, whereas the right lines 
are derived from an extrapolation for the period of up to one year since the last calibration. The 

boundary curve between the green and blue points represents the limit between measurements 
with the total maximum error below 0.010 mm and measurements with the total maximum error 
above that value. It can be estimated that, at an instant immediately after the calibration date, 

errors of measurements performed for lengths of up to 420 mm do not exceed that value. 
However, after one year since the calibration date, only the measurements of lengths below 210 

mm are affected for such low errors. 
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Fig. 5. A 3D Plot of the variables Length and Days versus the total error. The green area 

shows combinations of Days and Lengths corresponding to Total Errors below 0.010 mm. 
 
Consequently, a model for the total error has been obtained in function of the elapsed time 

since the last calibration date and the nominal value of the dimension to be measured. Thus, as 

it can be seen in Fig. 6, for a specific nominal value of the dimension to be measured, the 
increase of the total error can be predicted taking into account the elapsed time since the last 

calibration. Furthermore, for a given elapsed time since the calibration date, the increase of the 
total error can be also predicted based on the nominal value of the dimension to be measured, 
and therefore the need of CMM adjustment and subsequent recalibration can be evaluated. 

The model allows to adjust the period between calibrations and to decide if measurements 
are still valid after the period since the last calibration. For instance (Fig. 6), there is no need to 

calibrate the analysed CMM during the period of two years if the machine is limited to measure 
dimensions of up to 250 mm, the period being increased for dimensions of up to 200 mm, and 

so on. It is obvious that the extrapolation over time (beyond 2 or 3 years) would require 
repeating the measurements during a longer period, nevertheless this model is supposed to be a 

first step to describe the evolution of a CMM drift.  
In any case, the model also allows to establish a “safety zone” (Fig. 6) for a dimensional 

tolerance defined over a work piece. If the maximum tolerance specification of the work pieces 

to be measured is set to 0.012 mm, the region under the red dotted curve in Fig. 6 indicates the 
working zone where the work pieces can be measured meeting the specified requirements. 

The obtained data, both experimental and extrapolated ones, are referred to the real values 
measured with a CMM aimed at production inspection. The CMM is not a high precision 

machine dedicated to calibration tasks. As a matter of fact, the daily use of the CMM during 
the periods between tests consisted of diverse tasks, such as measurements performed in 
different volumes of the machine, on work pieces of different geometries and sizes, with 

different touch probes, stylus, etc. Nevertheless, although values of the total error around 0.004 
mm in the dimension of 500 mm could be considered acceptable, these error values force to 

calibrate and adjust the machine almost every year. 
As the final check, a few months after the end of the experiment, the full calibration was 

carried out by the same external laboratory (ENAC accreditation) that had performed the first 
calibration, finding that the machine was out of manufacturer specifications, providing the value 

of MPEE = 2.2 + 7.5·L/1000 µm (with L in mm). This calibration was performed using the same 
KOBA® step Gauge Bar 1020 mm long in a single volume, like the first calibration performed 

at the beginning of this survey. The agreement between the value of the maximum permissible 
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error obtained by the last calibration test and the value predicted by the developed model was 

very high. 
 

 
Fig. 6. A graphical 2D extrapolation for two years in measurement of distances over 500 mm.  

The red dashed line shows the security limit for the CMM total error < 0.012 mm. 
 

4. Conclusions 

 

This work has been focused on creating a statistical model that fits the measurement results 
corresponding to the measurement of the same artefact with the same CMM over an established 
period, allowing to find an equation that describes the evolution of the systematic error and the 

standard deviation of the measurement results over time. Several conclusions can be extracted, 
such as: the use of two volumes for our CMM re-verification has no significance in our study, 

the time and length variables have  a greater influence. Therefore, they define and govern the 
model. 

The model could also be used to estimate an appropriate value for the calibration or re-
verification period to adapt this period to the measured item size and to the tolerance range to 
verify (ensuring the reliability of measurements for a specific length to be measured or for a 

given tolerance range). 
It must be noted, that the presented model has been developed with the statistical analysis 

from an experimentation that guarantees repeatability and traceability of results. In this work 
the same test has been repeated under realistic conditions and controlling the magnitudes of 
influence. So, the variability is constrained to that corresponding to the normal working 

conditions of the CMM allowing to construct a model of behaviour of the CMM over time. 
The extrapolation of this model allows to predict the evolution of the CMM performance, 

which saves both time and cost, when the specifications are not very exigent (tolerance range 
in the order of tenths of millimetre) or when the volume of the work piece to be measured does 
not cover the entire volume of the CMM or an important part of the CMM longer axis. On the 

other hand, if the behaviour of our CMM indicates that measurements are out of the 
conformance zone for a given significance level, the developed model can be used to establish 

how much the calibration/re-verification period must be reduced in order to ensure 
measurements. 

It is evident that the period employed in performing this study is much shorter than that 

proposed for extrapolating the model results. These results will not be valid in the case of abrupt 
changes in the CMM performance tendency, which will be only detected by regularly 

monitoring the CMM by means of interim checks or re-verification tests. The CMM used for 
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developing this study is adjusted and calibrated each 2 years, so intermediate re-verification 

tests are performed regularly. The results of these tests provide an important feedback in order 
to improve the adjustment of the model and validate it.  

Finally, the developed statistical model is intended to be applied to the analysis of drift or 

behaviour of Articulated Arm Coordinate Measuring Machines (AACMMs or CMAs). In this 

case, the study is even more justified due to two main reasons. On one hand, the behaviour of 

this type of equipment over time is not being currently studied and, on the other hand, it is 
evident that a correlation cannot be established with regard to the Cartesian linear axes, because 
their structure includes rotary encoders. In fact, in order to implement this model for AACMMs, 

it must be taken into account that the influence of the length on the measurement uncertainty is 
not as strong as it is in the case of CMMs. Possibly the model should consider such variables 

as the relative position between the CMM and gauge, the quadrant of the working space where 
the measurement is carried out, the fixture method type or the geometrical features being 
measured, as well as the influence of the operator that handles the AACMM. 
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