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Abstract 

Quality of energy produced in renewable energy systems has to be at the high level specified by respective 

standards and directives. One of the most important factors affecting quality is the estimation accuracy of grid 

signal parameters. This paper presents a method of a very fast and accurate amplitude and phase grid signal 

estimation using the Fast Fourier Transform procedure and maximum decay side-lobes windows. The most 

important features of the method are elimination of the impact associated with the conjugate’s component on 

the results and its straightforward implementation. Moreover, the measurement time is very short ‒ even far less 

than one period of the grid signal. The influence of harmonics on the results is reduced by using a bandpass pre-

filter. Even using a 40 dB FIR pre-filter for the grid signal with THD ≈ 38%, SNR ≈ 53 dB and a 20‒30% slow 

decay exponential drift the maximum estimation errors in a real-time DSP system for 512 samples are

approximately 1% for the amplitude and approximately 8.5·10‒2 rad for the phase, respectively. The errors are 

smaller by several orders of magnitude with using more accurate pre-filters.  
 

Keywords: control of power, grid signal, amplitude and phase estimation, renewable energy, interpolated DFT, 

maximum decay side-lobes windows. 
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1. Introduction 

 
Renewable energy systems enabling production of electricity have become more and more 

popular in the U.S., China and EU countries in recent years [1, 2]. One of the most important 
advantages that increase popularity of such systems is the possibility of installing them by 

individual users. However, to run the system smoothly (i.e., lack of congestion, high power 
losses, etc.) and to produce high quality energy, compliance with some standards must be 
assured, e.g. IEC 61727 for photovoltaic systems [3] or IEC 61400 for wind energy systems 

[4]. 
One of the most popular renewable energy systems is the photovoltaic system. It consists of 

three basic components: solar panels, an inverter and a control unit. The inverter is used to 
convert the DC input signal from the solar panels to the AC output signal, so that it is a very 
important part of the system. The power control process is based on constantly monitored 

parameters (frequency, amplitude and phase) of the grid signal. Accuracy of the parameters’ 
estimation has a significant impact on the quality of produced energy and the system reaction 

time in the case of adverse events. The grid parameters determine the basis for the algorithm 
input of the inverter that controls switching of the internal transistors [5, 6]. Moreover, 
the frequency estimate is used e.g. in the FLL (Frequency Locked Loop) algorithm to 

synchronize the grid signal and the system output signal [7]; the amplitude estimate is used e.g. 
in FD (Fault Detection) algorithms [8] and in under/over voltage protection algorithms [1]; and 

the phase estimate is used e.g. in PLL (Phase Locked Loop) algorithms [9] and in generation of 
control signals in a controller [10]. 
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This paper presents development of the grid signal frequency estimation method described 

in [11] onto an amplitude and phase estimation method using the FFT procedure and maximum 
decay side-lobes windows. Many estimation methods of this type enable to obtain very accurate 
results but in a longer time (more than 1.5 grid signal period in the measurement window) 

[12, 13]. The method presented in [11] enables estimating the frequency in a short time (even 
far less than one period of the grid signal). The most important features of the method are: the 

possibility of a quick measurement, a high accuracy, straightforward implementation, minimal 
computational requirements, and a low cost. Moreover, this paper presents analysis of the 
impact of harmonics on parameter estimation errors and implementation of methods in a real-

time DSP system. 
An overview of the spectrum interpolation and frequency estimation is given in [11]. 

Currently, amplitude and phase estimation methods are also frequently developed. In [14], the 
author presents a method for estimation of multi-sinusoidal signal parameters that is based on 
a singular value decomposition method.  The parameters are then used to synchronize the power 

grid and a distributed generation system. In [15], an estimation method for stationary and time-
varying signals based on the ESPRIT method (Estimation of Signal Parameters via Rotational 

Invariance Technique) using AWNN (Adaptive Wavelet Neural Network) is proposed; in [16], 
the phase probability density function is approximated, and then the phase estimation error is 
minimized using the MSE (Mean Square Error). An interesting analytical solution of the phase 

estimation, taking into consideration the AWGN noise, is presented in [17]. The method 
presented in [18] is based on a type of resampling algorithm in the frequency domain  A 

recursive technique based on the Gauss-Newton algorithm used for estimation is presented in 
[19]. An interesting comparison of frequency-domain and time-domain estimation algorithms 
is presented in [20]. 

The remainder of this paper is arranged as follows. Section 2 presents analytical formulas 
for amplitude and phase values using the FFT procedure and maximum decay side-lobes 

windows. In Section 3, the simulation results of amplitude and phase estimation for the pure 
signal and the signal in the presence of white Gaussian noise are presented. Section 4 provides 

the results of amplitude and phase estimation in response to changing parameter values in a 
real-time DSP system. Section 5 contains a study on the influence of harmonics on the 
estimation accuracy and the effect of the applied pre-filter on the obtained results. Section 6 

presents the estimation results for the signal containing harmonics, Gaussian noise and a slow 
delay exponential component. Finally, the conclusions are presented in Section 7. 

 

2. Amplitude and phase estimation method using maximum decay side-lobes windows 

 

This paper presents the parameters estimation method for an x(t) signal described in the time 
domain as follows:  
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Each sinusoidal oscillation is characterized by the amplitude Ai, the frequency fi and the 

phase φi. Instead of the frequency f, it is convenient to determine the normalized frequency λ 

(also referred to as CiR (Cycles in Range)) with respect to the measurement time: λ = f NT [bin], 
where N is the number of samples of x(t) signal sampled with the frequency fs = 1/T. The 

frequency estimation method is presented in [11]; this paper focuses on presentation of the 
amplitude and phase estimation method for a sinusoidal signal. 

The Discrete-time Fourier Transform (DtFT) of a signal is defined as: 
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where: xn = x(nT); n = 0, …, N‒1 and wn are the time window samples. The spectrum of the 

primary component can be presented as the sum of the fundamental component characterized 

by the normalized frequency λ1 and the component coupled with the frequency − λ1: 
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is the DtFT spectrum of the used time window. 

In the presented estimation method, maximum decay side-lobes windows (also known as I 
class Rife-Vincent windows [21] or binomial coefficient windows) are used. They belong to 
the family of cosine windows defined as follows [21‒23]: 
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where: P = H‒1 defines the number of used cosine functions; H is the window order, and ah are 

the window coefficients. The windows used in the method have maximum decay amplitudes of 
side-lobes from all cosine windows. 

The spectrum of the maximum decay side-lobes windows can be approximated for H > 1, 

λ « N, N » 1 by [23]: 
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The values of coefficients ah for windows with H  ≤  7, together with the most important 
parameters, can be found in [11]. 

The method given in [11] enables determining the normalized frequency λ1. It is based on 

three relevant consecutive points of the spectrum X(λ) for λ = k ‒ 1, k, k + 1 (values Xk−1, Xk, 

Xk+1) around the main lobe, where k is the index of DFT spectrum Xk, i.e. (2) for integer λ. An 
important advantage of the method is taking into consideration the effect of a coupled 

component having the frequency −λ1. 
The equations for the amplitude and phase can be determined analytically. Based on (7) and 

(8), they can be written for λ = k ± λ1: 
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Introducing the following notation: 
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taking into account that: 
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and (6) and (3) for λ = k − 1, k, k + 1, three equations are obtained: 
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where: 
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Based on (11) and (12), the amplitude estimate 
1
Â  can be obtained, which is burdened with 

some error (because of the assumptions λ « N, N » 1 and real signal distortions): 
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where F+ and F‒ can be obtained after transformation (14), taking into account two points of 

the signal spectrum. For example, for points Xk ‒ 1 and Xk: 
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Substituting (18) and (19) in (17), the following is obtained for k = 1 and H = 2: 
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The value of signal phase can be estimated based on (11) and (12) from: 
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For the spectrum points Xk ‒ 1 and Xk, (21) for k = 1 and H = 2 is: 
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3. Simulation research 

 

Simulation research of the estimation method was performed in the MATLAB environment. 
There was used the Hanning window (H = 2), which has a good suppression of side-lobes and 
a small width of the main lobe. Research included analysis of the impact of measurement 

parameters on the accuracy of amplitude and phase estimation for the pure sinusoidal signal 
and for the signal disturbed by Gaussian white noise. The signal frequency was known a priori, 

but, for practical application, it can be obtained using the method presented in [11]. 
First, the impact of the number of samples N on the systematic errors of amplitude and phase 

estimation was examined for the pure sinusoidal signal. The signal phase φ1 was changed from 

0 to 2π in steps of 0.01 rad. For each CiR value, the maximum error of the entire range of φ1 

was taken. Values of N were changed in the range of 25,…, 211 (because of the FFT radix-2 

algorithm). The value of k was 1 because of the range of tested CiR values (0.1 < CiR < 2). 
 

 

Fig. 1. The systematic amplitude error δA1 for the method in Section 2: | δA1| is inversely proportional to N4; 

 the smallest error is for CiR = 1. 
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Fig. 2. The systematic phase error δφ1 for the method in Section 2: | δφ1| is inversely proportional to N4; 
the smallest error is for CiR = 1. 

 
The systematic error of amplitude and phase estimation method (for the worst phase case) is 

inversely proportional to N4 (Figs. 1, 2). Increasing the N value at the constant CiR value 

increases the estimation accuracy. The smallest estimation error (global minimum) occurs for 
CiR = 1 – when there is one period of the signal in the measurement window. Figs. 1 and 2 

differ by the fact that in Fig. 1 there is no local minimum for CiR = 2, whereas in Fig. 2 it exists, 
due to the properties of the method for H = 2. 

The Gaussian white noise that was subsequently added to the signal in the second stage of 

research was generated using the randn() function. The estimation results were compared with 
corresponding Cramer-Rao bounds (Figs. 3, 4) [24]. The variance estimator was, in this case, 

eMSE (Empirical Mean Square Error) assuming that the systematic square error is negligibly 
small in relation to the variance estimator. The upper value of the SNR (Signal to Noise Ratio) 
range corresponds to the actual dynamics of the 16-bit A/D converter. The number of realization 

was 105, the phase φ1 was changed from 0 to 2π in steps of 0.01 rad and the value of N was 512. 
 

 
 

Fig. 3. The statistical properties of the proposed method for estimating the A1
 amplitude: the eMSE error  

and the Cramer-Rao bound as a function of SNR and for sample CiR values. 
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Fig. 4. The statistical properties of the proposed method for estimating the φ1 phase: the eMSE error  

and the Cramer-Rao bound as a function of SNR and for sample CiR values. 

 

For a given CiR value, increasing the SNR value (decreasing the noise power σ2 added to the 
signal) decreases estimation errors. The square root of eMSE errors to the CRB bounds was 

constant regardless of the SNR value (Figs. 3, 4). The ratio value ranged from approximately 
1.76 for CiR = 0.7 to approximately 5.25 for CiR = 1.5. For CiR < 1 errors decrease and for CiR 
> 1 errors increase due to the properties of the method for H = 2. 

 

4. Real time implementation in DSP system and reaction time to changing parameters 

 

To confirm correct functioning of the estimation method and accuracy of the obtained 
results, the method was implemented in a real-time DSP system with the same hardware 

structure as presented in [11] (Fig. 5) and the software extension to estimate the amplitude (20) 
and the phase (23). The test analogue signal x(t) was generated using an Arbitrary Waveform 

Generator (AWG) with a 14-bit D/A converter. To convert the x(t) signal into the digital form, 
a 16-bit A/D converter at 24 kHz sampling rate was used. Processing of the measurement data 
was performed using a TMS320C6713 floating-point Digital Signal Processor (DSP) with 

225 MHz clock rate. The last N samples of the signal were stored in the DSP memory because 
they were needed to calculate the current estimate. The frequency, amplitude and phase values 

were updated every four sampling periods (167 µs). 
 

 
 

Fig. 5. The real-time measurement system for signal parameter estimation. 
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Test signals were generated as recommended by the IEEE Standard for Synchrophasors for 

Power Systems [25]. They can also be e.g. test signals used for synchronization between the 
power grid and the distributed generation system [26]. In the case of amplitude estimation, the 
effect of amplitude’s 10% jump at t = 0 was examined (Fig. 6a), whereas, in the case of phase 

estimation, the effect of phase 90º jump at t = 0 was examined (Fig. 6b). 
 

 
 

Fig. 6. Test signals generated in the DSP system: a) the test signal for amplitude estimation;  

b) the test signal for phase estimation. 

 

A sudden jump in the estimated value causes appearing so-called transient states. The greater 
the N value at the constant sampling frequency (greater CiR value), the longer the transient 

states (Figs. 7, 8). The time required for amplitude estimation with an accuracy of 1% was ca. 
2.16·10‒3 s (ca. 0.81 NT) for CiR ≈ 0.16, ca. 4.38·10‒3 s (ca. 0.82 NT) for CiR ≈ 0.32, and ca. 
8.38·10‒3 s (ca. 0.78 NT) for CiR ≈ 0.64. The maximum relative estimation errors for amplitude 

estimation in the steady state were as follows: for N = 64 the error was ca. 3.1·10‒3; for N = 128 
‒ ca. 2.5·10‒3; and for N = 256 ‒ ca. 1.8·10‒3. In the case of phase estimation, the time required 

to obtain results with an accuracy of 0.15 rad was ca. 1.39·10‒3 s (ca. 0.52 NT) for CiR ≈ 0.16, 
ca. 3.27·10‒3 s (ca. 0.61 NT) for CiR ≈ 0.32, and ca. 7.59·10‒3 s (ca. 0.71 NT) for CiR ≈ 0.64 
(Fig. 8). The maximum estimation errors in the steady state were as follows: for N = 64, the 

error was ca. 7.4·10‒2 rad; for N = 128 ‒ ca. 6.5·10‒2 rad; and for N = 256 ‒ ca. 5.5·10‒2 rad. 
The smaller the value of CiR, the higher the phase spike in the transient state. The highest spike 

was for N = 64, but it does not exceed 10% of the actual phase value. 
 

 

Fig. 7. The effect of 10% amplitude jump of the tested signal in the amplitude estimation using the proposed      

method for N = 64, 128, 256: the transient time is longer when N is greater, and 1% accuracy  

is obtained after ca. 0.8 NT. 
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Fig. 8. The effect of 90° phase jump of the tested signal in the phase estimation using the proposed  

method for N = 64, 128, 256: the transient time is longer when N is greater, and 0.15 rad accuracy  

               is obtained after ca. 0.5 NT for N = 64, ca. 0.6 NT for N = 128, and ca. 0.7 NT for N = 256. 

 

5. Influence of harmonics and necessity of pre-filtering 

 

In practice, the grid signal is not a pure sinusoid. It can be distorted in a deterministic way 

by harmonics or in a random way by white, colored or quantization noise. The presence of 
harmonics in the grid signal decreases the energy quality. They can have various sources, e.g. 
working of non-linear loads. The grid signal spectrum contains, except the component (3) 

corresponding to the grid frequency f1, additional components of a form similar to (3) but with 

parameters Ai, fi, ϕi, where fi = i·f1, i = 2, 3, …, M. In practice, the first seven harmonics (M = 7) 
have the greatest impact, and their amplitudes do not exceed 10% of the fundamental 
component [27]. 
 In the simulation research, the effect of the 2nd to the 7th harmonics was determined 

(Tables 1, 2) for the cases of the tested signal containing only one harmonic (columns for 
i = 2, ..., 7 in Tables 1, 2) and simultaneously containing 2 or 3 harmonics: i = 2, 3; i = 3, 4, and 

i = 2, 3, 4 (the last three columns in Tables 1, 2). The amplitudes of harmonics were equal to 
10% of the fundamental component, and the estimation error was determined as the maximum 
amplitude estimation error (Table 1) and as the maximum phase error (Table 2). The phase φ1 

of the fundamental component was changed in the full range (0 to 2π in steps of 0.01 rad), 
which is necessary because the φ1 value has a significant impact on the frequency estimation 

error [11] as well as the amplitude and phase estimation errors. It is necessary to pre-filter the 
signal to significantly increase the accuracy of A1 and φ1 estimation. Tables 1, 2 show the 
maximum estimation error (for the worst phase φ1 case) for two cases: 1) without pre-filtration 

and 2) using two arbitrarily chosen band-pass FIR filters marked A (with 40 dB band-stop 
attenuation) and B (with 60 dB band-stop attenuation). The use of band-pass filter enables 

limiting the influence of harmonics and slow damped disturbances (including the constant 
component). 

The results presented in Tables 1, 2 show that estimation errors are strongly dependent on 

the applied filters and that the use of A filter enables achieving accurate estimations of 
amplitude A1 (the error below 1%) and phase φ1 (the error below 0.001 rad). The use of better 

filters (e.g. B) improves the estimation accuracy. The limitations are the maximum error values 
presented for the pure sinusoid (Figs. 1, 2). However, a better filter requires a faster processor 

in real-time execution, which usually increases the system response time. 
The results in Tables 1, 2 show also a typical dependence of estimation errors on the CiR 

value (the measurement time). In analogy to that of f1 estimation [11], the A1 and φ1 estimation 
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errors usually decrease when the CiR increases in the tested range CiR = 0.13, ..., 1.07, such as 

for the undistorted signal (Figs. 1, 2). For φ1 estimation this effect can be observed more clearly 
than for A1 estimation. Additionally, when increasing the harmonic number i, the φ1 estimation 
error usually decreases (Table 2). The influence of inter-harmonics is similar because there are 

no significant restrictions for fi. In Tables 1 and 2 fi = i·f1 because of its greatest significance for 
the purpose of research.  

 
Table 1. The influence of the 2nd to 7th harmonics on the results of basic component amplitude  

estimation without and with using two band-pass FIR pre-filters: A & B. 

CiR Filter1) Amplitude estimation error [%] 

 for2) i = 2 3 4 5 6 7 2&3 3&4 2&3&4 

0.13 

no filter 15 12 9.4 22 38 48 27 19 31 

filter A 0.47 0.43 0.48 0.48 0.67 0.57 0.49 0.47 0.51 

filter B 0.041 0.045 0.041 0.041 0.059 0.066 0.047 0.046 0.048 

0.27 

no filter 8.9 20 25 13 7.6 14 25 45 48 

filter A 0.45 0.44 0.59 0.45 0.46 0.46 0.46 0.56 0.56 

filter B 0.039 0.049 0.046 0.039 0.041 0.046 0.051 0.058 0.059 

0.53 

no filter 14 4.1 5.1 6.4 2.3 1.1 11 8.8 5.9 

filter A 0.47 0.42 0.45 0.42 0.42 0.42 0.46 0.45 0.5 

filter B 0.039 0.039 0.039 0.037 0.037 0.037 0.039 0.041 0.039 

1.07 

no filter 3.6 0.18 0.065 0.038 0.025 0.017 3.8 1.9 3.8 

filter A 0.43 0.42 0.42 0.42 0.42 0.42 0.43 0.42 0.43 

filter B 0.037 0.037 0.037 0.037 0.037 0.037 0.038 0.037 0.038 

1) Filter A & B: Fstop1=10Hz, Fpass1= 40Hz, Fpass2= 60Hz, Fstop2= 90Hz; 

filter A: Astop1= 40 dB, Astop2= 40 dB, Apass= 0.1 dB, order 1686; 

filter B: Astop1= 60 dB, Astop2= 60 dB, Apass= 0.01 dB. order 2738. 
2) All harmonics have amplitude eq. to 10% of the basic component, and the phase eq. 0 rad with respect to the basic component. 

 
Table 2. The influence of the 2nd to 7th harmonics on the results of basic component 

 phase estimation with the FIR pre-filters: A & B. 

CiR Filter1) Phase estimation error [rad] 

 for2) i = 2 3 4 5 6 7 2&3 3&4 2&3&4 

0.13 

no filter 1.5 × 10–1 1.3 × 10–1 9.5 × 10–2 2.3 × 10–1 3.9 × 10–1 5.1 × 10–1 2.8 × 10–1 1.8 × 10–1 3.2 × 10–1 

filter A 5.5 × 10–4 1.6 × 10–4 6.3 × 10–4 6.4 × 10–4 2.5 × 10–3 1.6 × 10–3 7.1 × 10–4 5.9 × 10–4 8.7 × 10–4 

filter B 2.9 × 10–5 7.6 × 10–5 3.3 × 10–5 3.1 × 10–5 2.2 × 10–4 2.9 × 10–4 1.1 × 10–4 9.3 × 10–5 1.2 × 10–4 

0.27 

no filter 8.9 × 10–2 2.0 × 10–1 2.6 × 10–1 1.3 × 10–1 7.3 × 10–2 1.4 × 10–1 2.5 × 10–1 4.6 × 10–1 5.0 × 10–1 

filter A 3.2 × 10–4 2.6 × 10–4 1.7 × 10–3 3.6 × 10–4 4.3 × 10–4 4.6 × 10–4 4.9 × 10–4 1.5 × 10–3 1.6 × 10–3 

filter B 1.7 × 10–5 1.2 × 10–4 9.2 × 10–5 1.8 × 10–5 3.8 × 10–5 8.6 × 10–5 1.3 × 10–4 2.1 × 10–4 2.2 × 10–4 

0.53 

no filter 1.4 × 10–1 4.0 × 10–2 5.0 × 10–2 6.4 × 10–3 2.2 × 10–3 1.1 × 10–3 1.1 × 10–1 8.7 × 10–2 6.1 × 10–2 

filter A 5.1 × 10–4 4.8 × 10–5 3.5 × 10–4 1.8 × 10–5 1.5 × 10–5 3.6 × 10–6 4.6 × 10–4 3.1 × 10–4 8.1 × 10–4 

filter B 2.6 × 10–5 2.3 × 10–5 1.8 × 10–5 9.1 × 10–7 1.3 × 10–6 6.8 × 10–7 1.2 × 10–5 4.1 × 10–5 1.7 × 10–5 

1.07 

no filter 3.6 × 10–2 1.8 × 10–3 6.5 × 10–4 3.8 × 10–4 2.5 × 10–4 1.7 × 10–4 3.8 × 10–2 2.4 × 10–3 3.8 × 10–2 

filter A 1.3 × 10–4 2.3 × 10–6 4.5 × 10–6 1.1 × 10–6 1.6 × 10–6 5.5 × 10–7 1.3 × 10–4 2.6 × 10–6 1.3 × 10–4 

filter B 6.9 × 10–6 1.1 × 10–6 2.4 × 10–7 5.4 × 10–8 1.4 × 10–7 1.1 × 10–7 7.9 × 10–6 1.3 × 10–6 8.1 × 10–6 

1), 2) See Table 1. 

 

6. Real-time implementation with pre-filtering 
 
To experimentally verify effectiveness of the proposed method for estimation of the grid 

signal parameters, the DSP system (Fig. 5) was supplemented in the software layer with pre-
filtration using a bandpass FIR filter corresponding to A filter in Section 5. The test signal x(t) 

with frequency f1 = 50 Hz (ω = 2πf1) was distorted in a significant way by four harmonics 
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(THD ≈ 38%), white noise with the zero expected value and the standard deviation σ = 0.05 
(that means SNR ≈ 53 dB for the 50 Hz component), as well as the exponential component with 

parameters typical for an industrial load [28‒31] (Fig. 9). The test signal was generated using 
an Arbitrary Waveform Generator (AWG) with a 14-bit D/A converter. For N = 512 
(CiR ≈ 1.07) and N = 256 (CiR ≈ 0.53), the signal frequency was estimated by the method 

described in [11], then the amplitude was estimated from (20), and finally the signal phase was 
estimated from (23). To eliminate harmonics, the DC offset and slow decay exponential drift 

of the bandpass FIR filter (A filter) were applied before estimation. The lower the CiR value, 
the shorter the total response time of the estimation method with filtering (Fig. 10). 

 

 
 

Fig. 9. The grid signal x(t), tested in the final experiment, as the sum of x1(t) – 50 Hz sinusoid with four 

harmonics, x2(t) – Gaussian noise, and x3(t) – exponential component. All parameter values  

are the same as in [28‒31] to make possible comparison of the results. 

 

 

Fig. 10. The total delay of the proposed estimation method in the example of amplitude estimation:  

the marked times, 45 ms (for CiR ≈ 1.07) and 40 ms (for CiR ≈ 0.53), show the delay effect  

of the exponential part x3(t) on its maximum value (t = 0 and Fig. 9). 

 

For N = 512 (CiR ≈ 1.07), the maximum amplitude estimation error was ca. 0.49% without 
the exponential component and ca. 0.91% after the occurrence of this component, whereas, for 

N = 256 (CiR ≈ 0.53), these errors were ca. 0.71% and 0.82%, respectively. For N = 512 
(CiR ≈ 1.07), the maximum phase estimation error was ca. 5.1·10‒2 rad without the exponential 
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component and ca. 8.3·10‒2 rad after the occurrence of this component, whereas, for N = 256 

(CiR ≈ 0.53), these errors were ca. 6.3·10‒2 rad and 7.7·10‒2 rad, respectively. The results are 
more accurate and obtained quicker than those obtained with the methods presented in [28‒31] 
(including the Least Mean Square Method – LMS), even when the signal frequency is estimated 

(not known a priori, as in [28‒31]), which is necessary in practice. 
The execution time for (20) and (23) is shorter than the execution time for the FFT procedure 

(Table 3) with 6.1% and 6.9% of the processor load, respectively. The pre-filter additionally 
involves the processor in 13.4%, which does not significantly affect the total calculation time. 
The total load can be reduced by using a smaller number of samples N, a pre-filter with worse 

parameters or a processor with a higher clock rate frequency. 
 

Table 3. The execution time of operations on TMS320C6713 in the implemented system. 

Part of the program 
Number  

of cycles Tc1) 

Execution time 

[µs] 

Processor load 2) 
[%] 

for N = 256 512 256 512 256 512 

Prefiltering 5050 5050 22.4 22.4 13.4 13.4 

FFT algorithm 4452 11590 19.8 51.5 11.9 30.8 

f1 estimation: [11] 863 863 3.8 3.8 2.3 2.3 

A1 estimation: Eq. (20)  2290 2290 10.2 10.2 6.1 6.1 

φ1 estimation: Eq. (23) 2612 2612 11.6 11.6 6.9 6.9 

Others3) 4912 5559 21.8 24.7 13.1 14.8 

Total 20179 27964 89.6 124.2 53.7 74.3 

1) Tc = (225 MHz)–1 ≈ 4.4 ns (TMS320C6713 clock). 
2) Processor load is calculated as the ratio of “Execution time” to the period 4T ≈ 167µs, where T = 1/fs ≈ 41.7 µs. 
3) Other operations include: reading data from the A/D converter, preparing the data buffer, storing data in memory, 

etc. 

 

7. Conclusions 

 
This paper presents a method of estimating the amplitude and phase of the grid signal. The 

method is an extension of the frequency estimation method presented in [11]. It uses the FFT 
procedure and maximum side-lobes windows of  H > 1 order . The possibility of using different 

windows from the used window family enables adjusting to specific problems of signal 
processing. 

Computer simulations confirm correctness of the presented method. The accuracy of 

amplitude and phase estimation for a pure sinusoid depends on the measurement time (CiR) and 
the number of samples N collected during the measurement from the A/D converter (Figs. 1, 2) 

– the errors decrease when these values increase (dependency on N is very strong – inversely 
proportional to N4). For the difficult case CiR = 0.1 (the measurement time is only 10% of the 
grid signal period, i.e., 1.67 ms for 60 Hz or 2 ms for 50 Hz) and N = 2048, the amplitude and 
phase estimation errors are ca. 10‒12 and ca. 10‒12 rad, respectively, as shown in Figs. 1, 2. This 
means that, for the amplitude and phase of a pure sinusoid, their estimation errors, as well as 

the frequency estimation error [11], are negligible. However, in practice, the grid signal is 
heavily distorted by subharmonics, harmonics and noise. Moreover, the signal parameters may 

change over time. Adaptation of the algorithm to the parameter values changing in time does 
not exceed the NT value (or equivalent CiR) (Figs. 7, 8), such as in the case of changing the 
frequency and its estimation [11]. 

The quality of the method for grid signal parameters estimation in the presence of noise is 
characterized by the ratio of the root square of the variance estimator (here, the eMSE error) to 

CRB bounds – the smaller the ratio, the better the method; the impossible limit is 1. For the 
method presented in this paper, this ratio remains constant regardless of the noise power added 
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to the test signal. For example, for CiR = 0.7 this ratio is ca. 1.76, whereas for CiR = 1.5 it is 

ca. 5.25. An increase of SNR value (a decrease of the noise power added to the signal) causes a 
decrease of the estimation errors and CRB bounds (Figs. 3, 4). A significant source of noise is 
the quantization noise made by the A/D converter, and, to maintain a high accuracy of the 

presented method, it is recommended to use the converter with the number of bits equal to b 

and not less than 16 [32]. Even for accurate converters (b ≥ 16), the error caused by the 
quantization noise is greater than the method error for a pure sinusoid [11, 32]. 

The biggest impact on the estimation results is caused by subharmonics and harmonics, as 
demonstrated by the simulations in Section 5 and the experiment described in Section 6. Basing 
the method on the signal spectrum enables using the pre-filtration employing universal digital 

filters. In this paper, bandpass FIR filters were used (A and B filters in Section 5 and A filter in 
Section 6), but the task of choosing a filter type for different grid signal distortions is, according 

to the authors, worthy of a further study – the capabilities are large because of a wide variety 
of different types of digital filters, and the desired objective is to increase the filter accuracy 

and decrease the delay time brought by the filter.  
Comparison with other methods based on the results obtained by other researchers [28‒31], 

including the LMS method (which is known to be very accurate), shows that the method based 

on the interpolated DFT spectrum presented in the paper is a good alternative. It is also very 
important that the method uses the same spectrum points to estimate the amplitude, phase and 

frequency [11]. Therefore, the amplitude and phase estimation slightly increases the calculation 
time of signal parameters (Table 3). 

The results show that the amplitude and phase estimation method presented in this paper, 

together with the frequency estimation method given in [11], can be successfully applied in 
control applications of renewable energy systems, especially photovoltaic systems. The 

research results of both simulations and implementation in a real-time DSP system confirm 
correctness of the developed methods. The research results of Sections 5 and 6 enable assessing 
the influence of individual harmonics in the signal on the parameter estimation accuracy and 

choosing the pre-filter parameters. 
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