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Abstract 

A simulation-based optimization approach to design of phase excitation tapers for linear phased antenna arrays is 

presented. The design optimization process is accelerated by means of Surrogate-Based Optimization (SBO); it 

uses a coarse-mesh surrogate of the array element for adjusting the array’s active reflection coefficient responses 

and a fast surrogate of the antenna array radiation pattern. The primary optimization objective is to minimize 

side-lobes in the principal plane of the radiation pattern while scanning the main beam. The optimization 

outcome is a set of element phase excitation tapers versus the scan angle. The design objectives are evaluated at 

the high fidelity level of description using simulations of the discrete electromagnetic model of the entire array 

so that the effects of element coupling and other possible interaction within the array structure are accounted for. 

At the same time, the optimization process is fast due to SBO. Performance and numerical cost of the approach 

are demonstrated by optimizing a 16-element linear array of microstrip antennas. Experimental verification has 

been carried out for a manufactured prototype of the optimized array. It demonstrates good agreement between 

the radiation patterns obtained from simulations and from physical measurements (the latter constructed through 
superposition of the measured element patterns). 

Keywords: linear antenna array, micro-strip antenna array, phased antenna array, antenna optimization, antenna 

array optimization, simulation-based optimization, surrogate model. 
 

© 2016 Polish Academy of Sciences. All rights reserved

 

1. Introduction 

 
Design of phased antenna arrays is a challenging task due to a large number of designable 

parameters and, in particular, the necessity of accounting for element coupling, element 

environment, feeding, finite size of substrate, radome, etc. [1, 2]. Excitation of a phased antenna 
array with phase-only tapers is attractive from the implementation standpoint [3‒5]. Phase-only 
synthesis has been performed using numerical optimization [3‒5] of suitably defined objective 

functions (e.g. the side-lobe level).  Popular tools for phased array pattern synthesis include 
population-based metaheuristics [6‒8]. Although these methods have proven to be useful for 

handling certain challenges (e.g. multiple local optima), they are characterized by a tremendous 
computational cost, which can be prohibitive in the context of simulation-driven design 

accounting for element coupling, emission of surface waves, and the array environment. 
Consequently, design of phased array antennas (especially with phase-only excitation tapers) is 
normally performed through optimization of the associated array factor [3‒8] and analytical 

models accounting for coupling (see, e.g. [3]).  
Scanning can lead to degradation of array performance, e.g. rising side-lobes, grating lobes, 

scan blindness, etc. [1]. This issue can be partially addressed by using rather simplified 
Electromagnetic (EM) [8] or circuit [9] models of the antenna array at hand. Systematic 
handling of this problem requires re-optimization of phase tapers for a range of scan angles 
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of interest. Unfortunately, this is virtually prohibitive ‒ due to an excessive computational cost ‒ 

when applied at the level of accurate EM discrete model of the entire array aperture and using 
conventional numerical optimization methods (e.g. gradient-based or metaheuristic algorithms). 
On the other hand, Surrogate-Based Optimization (SBO) methodologies [10] can be used for 

reliable antenna array designs accounting for different EM interactions and structural details, in 
particular with phase-only tapers with acceptable numerical costs [11, 12].   

In this paper, we extend the approach of [11] so that the phase-only excitation of a linear 
phased antenna array of interest is optimized for a reduced Side-Lobe Level (SLL) for selected 
scan angles at the operational frequency. For each element, the excitation within the scan sector 

is obtained via interpolation of the optimal values. The design procedure is based on expedited 
optimization of the radiation pattern exploiting a suitably corrected array factor model. It is 

demonstrated through the design of a linear array comprising sixteen individually fed micro-
strip antennas. The element and feed geometry as well as the optimal excitations are obtained at 
the high-fidelity level of EM descriptions and with reasonable computational costs. The fully 

simulated radiation pattern of the optimal design is also compared with the radiation pattern 
evaluated using sixteen measured radiation patterns of the embedded array elements. 

 

2. Optimization methodology 
 

Optimization of the EM-simulated antenna array model Rf can be accelerated by exploiting 
the SBO paradigm [10, 11] and using the analytical array factor model Ra (with ideal isotropic 

radiators) as an underlying low-fidelity array model. We have two objectives: (i) simultaneous 
minimization of SLL and centering the reflection responses on the operating frequency f0, and 
(ii) obtaining phase excitation tapers which ensure minimal SLL in the process of beam 

scanning. 
 

2.1. Element optimization 

 
Here, we optimize the EM model of the radiating element, Ref(xg), where xg represents 

geometry parameters. The optimization process uses a corrected coarse-discretization model of 
the element, Rec. Due to the narrow-band reflection response of the antenna array, the best way 

to align Rec with Ref is frequency scaling F(ω) = α0 + α1ω [13], where α0 and α1 are the 

parameters to be determined. The frequency scaled model is defined as: 

                                    
. 1
( ) [ ( , ( )),..., ( , ( ))]R x x x

T

ec F ec g ec g m
R F R Fω ω= ,                              (1) 

where: Rec(xg) = [Rec(xg,ω1), …, Rec(xg,ωm)]T is the reflection coefficient at the frequencies ωj; j = 

1, …, m; α0, α1 are obtained as:  

                                    
0 1

( ) ( ) 2

0 1 0 11[ , ]
[ , ] arg min [ ( , ) ( , )]x x

mi i

ef g k ec g kk
R R

α α

α α ω α α ω
=

= − +∑ .               (2) 

The optimized element design is found as: 

                                                    
11 .

argmin ( ( ))
x

x R x
g

opt

g S ec F g
U= ,                                              (3) 

where US11 is the objective function defined as the reflection coefficient at the operating frequency 
f0. In practice, up to three iterations (3) are sufficient to find the optimum of Ref (with the scaling 
(1), (2) repeated at the beginning of each iteration). 

 

2.2. Correction of the Array Factor Model 
 

Discrepancies between the models, used to evaluate the array radiation pattern, can be 

reduced by applying a suitable response correction function D(θ). It is defined at the initial 
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design (here, with all excitation phases xp equal to zero) as follows. Let pf 
k = [θf 

k rf 
k], k = 1, …, 

Kf, be Kf points extracted from the nominal Rf response (cf. Fig. 1) where θf 
k is the angle and rf 

k 

is the corresponding achieved gain value, for θ = 0, +180 degrees as well as all local realized 

gain maxima in the range [0, +180] degrees; pa
k = [θa

k ra
k], k = 1, …, Ka, denote similar points 

extracted from the Ra response (here Ka = Kf). D(θ) is defined as: 

( ) ( ) ( )
f a

D E Eθ θ θ= −       (4) 

with 1 1( ) ([ ... ],[ ... ], )f fK K

f f f f f
E F r rθ θ θ θ= , where F (X, Y, x) is the interpolation of the data value 

vector Y (defined on a discrete argument set X) onto x. A similar definition holds for Ea(θ). Fig. 1 

shows the plot of D(θ) for the linear array, extracted from the responses Rf and Ra. 
 

0 50 100 150
-35

-30

-25

-20

-15

-10

-5

0

θ [deg]

R
el

a
ti

v
e
 P

o
w

e
r 

[d
B

]

 

Fig. 1. The Power pattern of the 16-element array antenna in the E-plane at 10 GHz at the initial design: 

 (—) the EM model Rf, and (- - -) the analytical array factor model Rc; (⋅⋅⋅⋅⋅) the correction function D  

extracted from Rf and Ra (cf. (4)). 

 

The surrogate model Rs is defined using D(θ) as follows: 

                                                      ( , ) ( , ) ( )R x R x
s p a p

Dθ θ θ= + ,                    (5) 

where xp = [p1 p2 … pN] is the phase excitation. Note, that D generally depends on the array 

geometry (in particular, on xg) and the current phase taper xp
curr, so we have D(θ) = D(xg,xp

curr, θ). 

Consequently, we write Rs(xp; xg,xp
curr, ⋅) = Ra(xp, ⋅) + D(xg,xp

curr, ⋅) to indicate its dependence on 
both xg and xp

curr. 
 

2.3. Array design for scanning 

 
At this stage, we search for a phase excitation taper ensuring minimum SLL for a given 

scan angle α. We start from optimizing the array for α = 0, using the surrogate model (5) as 
follows: 

                                                argmin ( ( , ))
x

x R x x
p

opt

p SLL s p g
U= ,                    (6) 

where USLL evaluates the SLL for any given xp. The random-search-initialized gradient-based 
algorithm [16] is used at this point. Because of mutual coupling within the array, the active 
reflection responses of the EM-simulated array at xp

opt differ from what we expect as illustrated in 

Fig. 2a: the reflection responses are jointly shifted in frequency by ∆f. This can be eliminated by 

redesigning the element so that its center frequency is moved from f0 to f0 – ∆f. The optimization 
(cf. Subsection 2.1) results in a new element geometry xg

1.  

In the next step, the array model Rf is evaluated at the element geometry xg
1 and the 

optimized phase taper xp
opt. At this point, the active reflection coefficient responses are 
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centered around f0 at the –10dB level (cf. Fig. 3). The entire design process requires only four 

high-fidelity simulations of the antenna array model. The computational cost of other 
operations is low and can be neglected compared with the cost of EM simulations. 

 
                                       a)                                                   b) 
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Fig. 2. The initially optimized EM array model Rf: a) The active reflection coefficients at all ports  

with the frequency shift ∆f denoted; b) the E-plane radiation pattern. 
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Fig. 3. The reflection responses (centered around 10 GHz at the ‒10dB level) of the EM array model Rf  

with re-optimized element xg1. 

 
Subsequently, the phase excitation tapers for the scanned array are found by iterative 

identification of the response correction term (4) and surrogate-assisted optimization (5), (6). 

This is executed, separately, for each scan angle α(k) as follows (here, xp
opt.k is the optimized 

phase taper corresponding to α k): 

1. Evaluate the EM array model Rf at xp
opt.k–1 (progressive phase shift for α(k) is applied 

separately); 

2. Calculate the correction term D (cf. (4)); 
3. Find the phase taper xp

opt.k by optimizing the surrogate Rs (5) for the minimum SLL 

(corresponding to α(k)) using (6). 
The above procedure requires only one evaluation of the high-fidelity model Rf per a scan 

angle. 

 

3. Case study: 16-element linear phased array 

 

Consider a linear array of microstrip antennas shown in Fig. 4. We search for excitation 
phases (phase taper) of signals, which are incident at the elements’ inputs to minimize the Side-
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Lobe Level (SLL) in the E-plane. The active reflection coefficient responses of the array should 

be centered around the operational frequency of 10 GHz. Excitation amplitudes are uniform; 
center-to-center element spacing is a half wavelength. 

 

3.1. Element optimization 

 
An element (Fig. 4b) is implemented on a 0.76 mm thick layer of Taconic RF-35 [14]. The 

parameters are: the patch size is d1 by d2; the metal ground has the slot aperture of w1 by u1, 
the slot center is v1 relative to the patch center; a feed substrate is another 0.76 mm layer of 

RF-35; the input 50 ohm microstrip has the width of w0 = 1.7 mm, the open end stub of length 
v2 terminates the feed and wc is the chamber length of the input microstrip. The antenna was 

simulated in CST Microwave Studio [15]. 
The design variable vector is xg = [d1 d2 w1 u1 v1 v2 wc]T. The design was carried out as 

described in Subsection 2.1. We use two EM models: the coarse-mesh model Rec (70,000 mesh 

cells, the simulation time 30 s) and the fine model Ref (~1,000,000 cells, 10 min). The initial 
design is x(ini) = [9.0 7.4 2.0 6.0 2.5 6.0 1.5]T mm. The optimized design xg

opt
 = [9.53 7.29 2.90 

5.50 1.91 5.50 1.48]T mm was found in 3 iterations at the total cost corresponding to about 12 
simulations of Ref (including 160 evaluations of Rec, which corresponds to the CPU time of 
about 80 minutes, and four evaluations of the high-fidelity model, or 40 minutes). The reflection 

response of this design with the 3.5% bandwidth at the –10 dB level is centered at 10 GHz. 
 

3.2. Optimal excitation taper for main beam pointed broadside 

 
At this stage we search for a set of excitation phases {αn}n=1,…,,N

  of the linear array (Fig. 4a), so 

that the SLL of the array power pattern is minimized (cf. Fig. 5). 
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Fig. 4. A linear array of microstrip antennas: a) equally spaced array, the E-plane of the antenna array is shown 

with the dash-line; b) the top view of an array element (slot fed microstrip patch antenna); dielectric layers  

and the ground plane are shown transparent; the edges of the patch (light gray), contours of the slot  

(bold rectangle), open end micro-strip stub, and input micro-strip (dark gray) are shown with solid lines.   
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We assume symmetrical phase excitations with respect to the array center: αN+1-n = αn, n = 

1,..N/2; in this work N = 16. The array spacing s and amplitudes are uniform. The design 
variable vector was xp = [α1 α2 … α8]T. The uniform amplitude and phase array (SLL ≈ 
−13.2 dB) is the initial design, xp

(ini) = [0 0 0 0 0 0 0 0]T degrees. The CST high-fidelity model 

of the entire array Rf (~10,000,000 mesh cells, the evaluation time 76 minutes) was simulated 
for the power pattern. The array was optimized as in Subsections 2.2‒2.3. The optimal phase 

taper for the main beam pointed broadside (SLL = –16.0 dB) was found at xp
opt = [–58.1  0.0  

–95.9  –70.7  –71.4  –64.4  –65.6  –59.9]T degrees. The reflection responses at this design are 
shifted towards higher frequencies as shown in Fig. 2a. The re-optimized element design was 

found at xg
1 = [9.38 7.34 2.9 5.5 1.91 5.5 2.05 1.28]T mm. The fine-tuned optimal design 

(SLL = −16.5 dB) was found at xp
opt,2 = [–58.5  0.0  –96.3  –71.1  –71.6  –64.7  –65.9  –60.3]T 

degrees by repeating (6) with the updated surrogate. Each execution of (6) takes a few 

seconds. 
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Fig. 5. The radiation pattern of an antenna array with design specifications shown as thick horizontal lines.  
The vertical dashed lines define the main beam sector. 

 

 
                                        a) 

 
 

                                            b) 
 

 
 

Fig. 6. The photograph of the manufactured array microstrip antennas: a) top; b) bottom. 

 
 

3.3. Array Optimisation for Scanning 

 
The procedure of Subsection 2.4 has been applied to find the optimum tapers for the scan 

angles of 5, 10,…, and 50 degrees. The results are listed in Table 1. It should be noted, 
however, that the total phase excitation applied to a particular element for a given scan angle 

is the sum of the listed optimal value and the scan-dependent progressive phase shift [1] (not 
listed in Table 1). 
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3.4. Experimental Validation of the Optimal Design 

 

The final design with geometry of xg
opt has been manufactured (the photograph shown in 

Fig. 6). The radiation patterns of this array, sixteen in total, with only one input fed at a time (i.e. 

one element active at a time) ‒ while other terminated on matched loads ‒ have been measured. 
The measured radiation patterns are shown in Fig. 7. The measured radiation patterns have been 

combined with the optimal phase tapers xp
opt,2 and the progressive phase shifts to evaluate the 

array radiation pattern for different scan angles. The radiation patterns for the scan angles of zero 
and 40 degrees are shown in Fig. 8 (dot-lines). Excellent agreement of the simulated and 

evaluated (configured from the measured data) patterns was observed within ± 50 degree sector 
of scan with the phase tapers listed in Table 1. 

 
 

3.5. Optimal Design as the Phased Antenna Array 

 

Appropriate interpolation enables to use the results of Table I for any angle within the scan 

sector. To evaluate performance of the linear array with the interpolated phase tapers at the 
high-fidelity level of description, the superposition model of the entire structure has been 
configured from sixteen high-fidelity discrete simulations, as described in [12]. 

The radiation and reflection responses of the array have been evaluated versus the scan 
angle, using the superposition model. The following excitations have been compared: the 

interpolated set of the optimal phase excitation tapers, the phase excitation taper obtained as an 
optimum for the zero scan angle and the uniform excitation. The excitations have been 
compared in the following figures: the SLL (the optimized figure) illustrated in Fig. 9; the 

achieved peak realized gain scan loss shown in Fig. 10; the beam broadening; and the total 
reflected power provided in Fig. 11. 

Figure 9 clearly indicates that the interpolated set of the optimal phase excitation tapers is 
superior over the other excitations as it enables keeping the SLL at much lower levels within 

the wide sector of scans. This also justifies the optimization step described in Subsection 2.3 
and reliability of interpolation of the optimal phase sets. At the same time, Fig. 9 shows that 
with the excitation being optimal at broadside, the SLL quickly degrades with the scan angle. 

The achieved realized gain scan losses (cf. Fig. 10) are very close for all excitations up to the 
scan angles of ± 50 degrees although the interpolated set of the optimal phase excitation 

tapers provides slightly lower scan losses. The beam broadening with all excitations is closely 
follows the large array limit [1].  For all excitations, the total reflected power, plotted in Fig. 11, 
stays under –15 dB level almost up to the ± 50 degrees of scan angles. 

 
 

4. Conclusion 

 

A technique for simulation-driven design of phased linear antenna arrays including the main 

beam scanning has been presented. Our approach produces phase-only excitation tapers with 
low side-lobes within the scan sector. Importantly, possible interactions and coupling within the 

structure are taken into account at the high-fidelity level of description due to the use of discrete 
EM simulations. The use of surrogate-based optimization and the proposed array factor 
correction functions enables to keep the design costs at a low level. The proposed method has 

been verified experimentally through physical measurements of the manufactured array 
prototype. The comparison of the objective figures (in this work, the SLL) justifies using the 

presented approach to avoid degradation of the radiation pattern in the process of scan. 
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Fig. 7. The antenna array patterns with one element active. The measured (▪▪▪) and simulated (─) patterns 

are normalized, respectively, to the maximum measured and simulated peak values.  

Element numbers are listed in the bottom-left corners. 
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opt
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at 10 GHz simulated with the high-fidelity array model Rf,a (──); evaluated using 16 measured radiation patterns  

of the array with only one element active (▪▪▪): a) for the zero scan angle (phases corresponding to the scan angle 

of 0 deg. in Table 1); b) for the scan angle of 40 degrees (phases corresponding to the scan angle  

of 40 deg. in Table 1). 
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Fig. 9. The side-lobe level versus the scan angle: the interpolated set of the optimal phase excitation tapers (──),  

the phase excitation taper obtained as an optimum for the zero scan angle (─ ─), the uniform excitation (▪▪▪). 
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Fig. 10. The simulated achieved peak realized gain scan loss (relative to that at the zero scan angle which is 18 

dB for the uniform excitation and 17 dB for the optimized excitation): the interpolated set of the optimal phase 

excitation tapers (──); the phase excitation taper obtained as an optimum  

for the zero scan angle (─ ─); the uniform excitation (▪▪▪). 
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Table 1. The optimal Phase Tapers*. 

Scan 
Angle [°] 

Excitation Phase [°] 

Elements 

1(16) 2(15) 3(14) 4(13) 5(12) 6(11) 7(10) 8(9) 

0 –58.5 0.0 –96.3 –71.1 –71.6 –64.7 –65.9 –60.3 

5 –51.8 0.0 –97.0 –67.7 –70.2 –67.5 –61.4 –61.5 

10 –48.6 0.0 –95.9 –64.1 –70.6 –63.7 –60.9 –59.1 

15 –44.6 0.0 –92.4 –62.6 –67.5 –60.6 –57.6 –55.4 

20 –40.4 0.0 –88.7 –60.7 –64.7 –58.9 –55.6 –53.6 

25 –37.7 0.0 –87.1 –60.8 –63.3 –58.4 –54.7 –52.9 

30 –36.1 0.0 –86.4 –61.3 –62.2 –58.1 –53.8 –52.0 

35 –34.7 0.0 –85.8 –62.0 –61.7 –58.4 –53.5 –51.9 

40 –33.7 0.0 –85.7 –62.8 –61.1 –58.4 –52.7 –51.2 

45 –32.8 0.0 –85.1 –63.6 –61.0 –59.2 –53.1 –51.9 

50 –32.6 –48.3 –78.2 0.0 –38.5 –38.9 –46.1 –38.9 
                                                                 * The listed values do not include the progressive phase shift.  
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Fig. 11. The simulated total reflected power versus the scan angle: the interpolated set of the optimal phase 

tapers (──), the phase excitation taper obtained as an optimum for the zero scan angle (─ ─),  

the uniform excitation (▪▪▪). 
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