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Abstract 

This paper presents signal processing aspects for automatic segmentation of retinal layers of the human eye. 

The paper draws attention to the problems that occur during the computer image processing of images obtained 

with the use of the Spectral Domain Optical Coherence Tomography (SD OCT). Accuracy of the retinal layer 
segmentation for a set of typical 3D scans with a rather low quality was shown. Some possible ways to improve 

quality of the final results are pointed out. The experimental studies were performed using the so-called B-scans 

obtained with the OCT Copernicus HR device. 
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1. Introduction 
 
In the contemporary ophthalmology, application of the computer-aided eye biometrics is an 

essential element that gives a possibility of lesion identification. Two techniques can be applied: 

− ultrasound biometry, which uses ultrasonic waves to measure the distances between 
the structures of the eye (however, this technique requires a direct contact of the ultrasonic 

probe with the eye surface); 
− optical biometry, which uses the Optical Coherence Tomography (OCT) technique and its 

advantage is the lack of the direct contact of hardware elements with the eyeball. 
Many of advanced noninvasive measurement techniques use different kinds of light to 

examine the inner structure of a wide range of materials; among others there is the Infrared (IR) 

light, which is employed in the OCT [1, 2]. In the eye examination with the OCT, the device 
produces a light beam that is focused on the retina. The light, that is reflected from the internal 

structures of the eye, is analyzed with the means of interferometry by the device. The OCT 
images visualize the retinal layers.  

An older, the so-called Time Domain (TD) OCT technology, uses a movable mirror and – 

for registration ‒ a photodiode [3]. Contemporary OCT devices are based on the Spectral 
Domain (SD) analysis, in which the mirror is fixed and a spectrometer is used as the recorder.  

The result of the OCT measurement with the use of these devices is a set of images of cross-
sections (i.e. B-scans), which are constructed from a set of A-scans (amplitude modulation 
scans). A single B-scan image is noisy, thus in order to improve the image quality an averaging 

operation is applied, if we want to observe only a single image. For that purpose, several scans 
are gathered to create a single image ready for medical analysis. Such operation, though 

advantageous, considerably increases the acquisition time. 
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In acquisition of a set of B-scans for a 3D image, the averaging operation is not applied. The 

data acquisition speed of typical OCT devices is 50 000 to 70 000 A-scans per second [4, 5], 
i.e., if we want to get a 3D image composed of 100 B-Scans with the horizontal resolution of, 

say, 800 A-scans, the acquisition time is approximately 1.6 seconds. This time should not be 
extended to prevent artifacts associated with involuntary movements of the eyeball. Some 

manufacturers of the OCT devices use the technology of tracking the movement of the eyeball 
in order to prevent this problem. 

The key element to effective operation of the diagnostic software is the correct determination 

of individual layers of the retina. Exact segmentation is an entry operation for the next stages 
of visualization. The following seven retina layers are typically analyzed: Inner Limiting 

Membrane (ILM), Nerve Fiber Layer (NFL) / Ganglion Cell Layer (GCL), Inner Plexiform 
Layer (IPL) / Inner Nuclear Layer (INL), INL / Outer Plexiform Layer (OPL), OPL / Outer 
Nuclear Layer (ONL), Inner Segments / Outer Segments of Photoreceptors (IS/OS), and Retinal 

Pigment Epithelium (RPE) / choroid. For example, the thickness of the retinal Nerve Fiber 
Layer (NFL) was frequently used during examination of glaucoma patients, while the 

measurements of the total retinal thickness (between NFL and RPE) were often used in 
assessment of patients with macular edema, choroidal neovascularization, and macular hole. 

An example of visible layers and their identification in a single OCT B-scan can be seen in 
Fig. 1.  

 

          

Fig. 1. An OCT image from a healthy patient with correctly segmented seven retinal boundaries:  

ILM, NFL/GCL, IPL/INL, INL/OPL, OPL/ONL, IS/OS, RPE. 

The standard software of OCT devices includes algorithms for automatic segmentation of 

layers, which are e.g. based on: analysis of the image brightness [6], the technique of active 
contours [7], the pattern recognition [8], the graph theory [9‒11], or techniques of grouping [12, 
13]. Automatic layer segmentation of the retina in the OCT images requires overcoming many 

problems, such as noise [14], an uneven reflection of light by the tissues [15], absorption of 
light through the blood vessels, an unexpected movement of the patient, and the dependence of 

the proper segmentation algorithm on the device [16]. Particular difficulties are also introduced 
due to the presence of lesions [17]. All these aspects are considered in our analysis.  

The B-scan quality can be assessed with the use of:  

− the Signal to Noise Ratio (SNR);  

− the Signal Strength (SS);  

− the Quality Index (QI).  
The first two indicators (SNR and SS) may be determined by the device manufacturer, 

whereas the QI is calculated from the image histogram and its value is close to the subjective 

evaluation carried out by the expert [18]. The QI is calculated by the device software in a 
standard way. Unfortunately, the respective formula is not provided by the device manufacturer. 

For example, in the case of a Copernicus HR OCT device, for a QI value below 4 it is advisable 
to repeat the examination, while for values above 6 the acquired set of images has a sufficient 
quality. For values between 4 and 6, the manufacturer suggests a careful analysis of the 
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measurement results [4]. One should remember that for some lesions (e.g. cataract) a re-

examination will not result in any improvement of the image quality. In addition, each OCT 
device may use a different scale of the image quality, making it difficult to compare scans 

obtained with various devices when using the indicators set by the manufacturers.  
Figure 2 shows the B-scans obtained during the 3D OCT using the Copernicus HR device. 

The examination was made with the acquisition of 100 B-scans – each with a resolution of 800 
pixels horizontally and 1,010 pixels vertically. An average QI determined by the manufacturer 
software was equal to 4.52. 

 
  a)                                                b)                                    c)                                     d) 

      

Fig. 2. Sample 3D OCT examination – 100×800×1010 data points: a) fundus reconstruction;  

b) B-scan No. 53 with expert's assignments, QI = 5.29; c) B-scan No. 52 with automatic assignments,  

QI = 5.29; d) B-scan No. 8 with automatic assignments, QI = 2.01;  

places with erroneous segmentation are indicated with arrows. 

 
We see that the B-scan in Fig. 2c has a good quality, i.e. QI = 5.29, but even then the lesions 

can cause errors in the segmentation, with respect to manual determinations made by the human 

expert (Fig. 2b). A similar situation also occurs for the scan in Fig. 2d, which does not include 
a lesion, but its low quality caused by the acquisition also results in problems with the correct 

segmentation of layers. 
 

2. Segmentation of Retina Layers in OCT images 

 
As mentioned above, designation of the retina morphological structure (through analysis of 

retinal layers) is essential for the eye disease diagnosis. The presented experiment was designed 
to examine the effect of the OCT image quality on correctness of automatic segmentation of 

retina layers. For this purpose, a very efficient algorithm for image segmentation based on the 
graph theory was applied [10]. This was followed by removing portions of the image with low 
signal levels to improve the segmentation effectiveness. The results of the experiment are 

presented in section 4. 

  

2.1. Segmentation algorithms based on graph theory  
 

The applied algorithm is based on the use of a single OCT B-scan image f of the size NM ×

pixels as a graph G, in which each pixel p∈P is treated as a node Vv∈  of the graph connected 

with other nodes by edges e∈Ɛ. A selection of connections between the nodes creates a path 

between the start and end nodes of the graph. Given a set of K non-intersecting layers 

( ) ( ) ( ){ }ililil
K

,,.,

21
…  that divide the graph into K+1 regions, the final path defining each layer is 

dependent on the nonnegative weights (costs) ( )ew
k

 assigned to the edges of the graph. The 

cost of the cut is defined by the sum of weights for the path (1): 
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The algorithm is aimed at selection of a path that has the lowest total sum of weights (using 
the Dijkstra algorithm [19]). This path designates the border between neighboring layers of the 
retina that can be defined as a transition between two different brightness regions, as can be 

seen in Fig. 3.  
 
                     a)                                                                 b) 

 

Fig. 3. An illustration of layers to be segmented on the macular OCT cross-section:  

   a) center of the B-scan image and b) assignments of the seven segmented layers.  

 
The key element in this method is the right assignment of weights to the edges of the graph. 

In the literature, various methods for computing the weights are mentioned [20]. They use a 
function of the distance between pixels or the difference of their brightness. Since most features 
of interest have a smooth transition between neighboring pixels, due to a relatively high 

resolution of the SD-OCT retinal scans, each node is associated with only its eight nearest 
neighbors. Thanks to that, there is no need to incorporate geometric distance weights. All other 

node pairs are disconnected, resulting in a sparse adjacency matrix of intensity difference graph 
weights. We then define the graph to be undirected, thus halving the size of the adjacency 

matrix. The applied solution enables to assign low weight values to the edges of the searched 
object (the border of the retina layer) in opposition to the rest of the image. This is based on the 
assumption that the segmented object has the features distinguishing it from the surrounding 

area. This is possible due to the fact that the neighboring layers of the retina have different 
reflectivities, thus causing differences in brightness between pixels of the image in the vertical 

direction (see Fig. 3). This enables to calculate the weights (2) using the vertical gradient 
values [10]: 
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where ( )baw
k

,  represents the weight of the graph edge between nodes a and b, the brightness 

gradients yf ∂∂  for the nodes a and b are normalized to values between 0 and 1, while wmin is 

the minimal weight of the graph (set at a low positive value equal to 10‒5) that enables to 

maintain the system stability. From (2), we can see that low weight values are assigned to the 
node pairs with large vertical gradients. In this way, the calculated weights are gathered in the 

adjacency matrix, whose elements represent costs of crossing the graph nodes. It should also be 
mentioned that this solution yields two undirected adjacency matrixes designed for dark-to-
light and light-to-dark intensity transitions. 

In the proposed algorithm, the start and end nodes of the graph are predefined as the top left 
and the bottom right corners of the image, in contrast to methods that calculate the shortest path 

between every possible pair of nodes in the graph.  
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In the next step, an empty column (with zero crossing weights) is added at each side of the 

image. This initialization is based on the assumption that the segmented layers extend to the 
entire width of the analyzed image.  

In the final step, the added columns can be deleted, thus returning to the original image with 
the obtained segmentation. An illustrative B-scan image segmentation using this automatic 

method is presented in Fig. 4. The red dashed line illustrates the cut made with the Dijkstra 
algorithm.  

 

 

Fig. 4. An example of the OCT image segmentation method. 

 

Considering the presence of layers with similar characteristics (e.g. brightness, density) in a 
close proximity to each other, it is desirable to limit the search area for each layer. This means 
that before finding the shortest path the edges that are outside the desired region of interest are 

removed from the graph . In practice, defining these regions is not an easy task and may require 
prior knowledge of the structure of the tissues presented in the image.  

 
 

 

Fig. 5. A general scheme of the ILM retina layer segmentation of the OCT B-scan. 

 
Given the information that the retinal layers are by the definition continuous in the plane of 

a single image as well as between the cross-sections, the algorithm was expanded to limit the 
search region of the graph for two of the most prominent layers based on their location in the 

neighboring cross-sections (images). 
A general scheme visualizing the algorithm presented above is shown in Fig. 5. 
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2.2. Adaptive method of removing low quality signal 

 
The detailed analysis of the OCT B-scan images shows that there exist regions with a very 

low signal, causing retinal layers to be almost entirely invisible near the lateral edges of the 
scan. This phenomenon occurs due to underexposure of the tissues in the periphery of the scan. 

An illustrative cross-section with this type of defect and the reconstructed corresponding fundus 
image are presented in Fig. 6. Since such a situation is in conflict with the assumption of the 
continuity of the layers through the entire image, it is the main cause of errors during the 

automatic image segmentation. The segmentation error is defined as the difference between the 
automatic and manual assignments of the layers for each column of the image. 

The performed research includes removal of some parts of the B-scan image along sides in 
order to overcome the discussed obstacle. The best method to define the area to be removed is 
to apply adaptive techniques. The point at which a single B-scan image (of size M by N) should 

be cropped is defined by finding the first side column i, in which the maximum value of the 
brightness X is higher than the predefined threshold t, as it is described by (3): 

 NitXi ij
Mj

,1)(max:
,1

∈<
>∈<

 . (3) 

Despite its higher computational requirements and time consumption, the adaptive method 

enables to obtain better results than easier and faster methods of removing parts of the image 
with a constant width. 

  
             a)                                                                                   b) 

 
Fig. 6. An illustration of three examined methods of reducing the impact of a low level signal area  

on the correctness of automatic segmentation algorithm in an example of:  

a) the reconstructed fundus image; b) the B-scan image.  

 

Figure 6 presents the applied methods of removing low quality parts of an image. The 
dashed lines represent examples of cut lines: the red line – the initial image without cutting, the 
orange line – the image cut with a constant width, the green line – the image cut with an 

adaptively computed width. In Section 4 there are presented the results of the performed 
experiments comparing their accuracy for the proposed method of removing low quality parts 

of the scan. 
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3. Data and implementation 

 

To test the accuracy of the proposed method, we used a series of 3D OCT scans gathered 
with the Copernicus HR (OPTOPOL Technology Sp. z o.o., Zawiercie, Poland) device. The 
scans of the retina were collected from 30 patients with symptoms of vitreoretinal interface 
pathologies. The average age of the examined patients was 70 years. For each patient an 8 mm 
× 8 mm × 2 mm macular scan was performed with the volume of 100 × 800 × 1010 points (100 
B-scan images with the resolution of 800 × 1010 pixels). 

The methodology of the experiments included manual assignment of the correct 
segmentation of seven retina layers and its comparison with the automatic segmentations that 
were obtained using the presented graph theory approach. The layers were selected and 
manually assigned by the experts from the Clinical Eye Unit, Heliodor Święcicki University 
Hospital, Poznan University of Medical Sciences, Poland. The accuracy assessment involved 
calculation of the arithmetic average of the absolute error in pixels (4) as well as its standard 
deviation (5), while the error was defined as the difference between the manual and automatic 
assignments: 

 ( ) ( ) 7,1ˆ1
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1

∈−= ∑
=

kiLiL
N

N
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where ( )iL
k

 and ( )iL
k

ˆ  represent the values of layer k segmented in the manual and automatic  

ways, respectively, k
ME  is the arithmetic average of the error for layer k, and N stands for the 

number of pixels, for which both manual and automatic assignments exist. It is worth 
mentioning that due to a dissimilarity, in which the borders between layers are found by the 
human expert and by the algorithm, the difference between the assignments that is less than 
5 pixels is treated as the exact 0 error value. The algorithm was implemented in the 
Matlab/Simulink environment.  

 
 

4. Comparison of standard segmentation method and adaptive improvement technique 
 

In this section the results of the proposed algorithm for automatic segmentation of seven 
retina layers are presented. A set of 15 scans (15 eyes) from 12 patients was selected for this 
experiment. The average value of the QI parameter calculated for these scans by the OPTOPOL 
SOCT software is 4.17, thus their quality can be classified as low.  

The performed experiment was aimed at testing two of the proposed methods for improving 
accuracy of the automatic image analysis: 
− additional tracking of surfaces of ILM and IS/OS borders, and 
− a method for removing low quality lateral parts of an image based on adaptive and constant 

(10% in both sides) image width cropping. 
The results of the experiments are presented in Fig. 7 and Tables 1‒3. Their analysis leads 

to the conclusion that both tracking of layers (limitation of the searched region of interest) and 
removal of low quality signal parts of the image can significantly improve the algorithm 
efficiency. 
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Fig. 7. An average error graph for each of the automatic segmentation methods. 

 
Table 1. The average absolute error values and the standard deviations of the automatic retinal layer 

segmentation algorithm without cutting areas of low signal levels. 

 
Base algorithm 

Additional tracking  
of ILM layer 

Additional tracking  
of ILM and IS/OS layers 

layer 
average 

error [px] 

standard 

deviation 
[px] 

percentage of 

erroneous 
segmentation 

average 

error 
[px] 

standard 

deviation 
[px] 

percentage of 

erroneous 
segmentation 

average 

error 
[px] 

standard 

deviation 
[px] 

percentage of 

erroneous 
segmentation 

average 
value 

104.71 167.88 65.68% 34.23 83.49 44.57% 18.81 43.04 39.12% 

ILM 203.90 254.95 57.56% 17.58 44.13 21.63% 16.47 42.82 20.23% 

NFL/GCL 169.79 212.29 75.14% 31.78 48.92 46.78% 20.88 36.80 41.21% 

ONL/INL 129.26 156.10 82.96% 54.78 95.56 58.17% 28.17 53.11 52.98% 

INL/OPL 112.40 136.91 81.94% 23.44 27.54 56.86% 21.85 27.07 51.54% 

OPL/ONL 84.49 105.95 79.40% 80.71 164.60 52.58% 28.89 70.27 45.41% 

IS/OS 15.26 36.60 48.31% 15.08 36.38 44.85% 7.97 18.79 34.49% 

RPE/ 
Choroid 

17.79 38.27 34.44% 14.19 38.90 31.08% 7.36 20.92 27.98% 

 
Table 2. The average absolute error values, the standard deviations, and the percentages of erroneous 

segmentation for the automatic retinal layer segmentation algorithm using the truncated B-scan image  
of a constant width value (2 × 40 pixels = 10% image width). 

 
Base algorithm 

Additional tracking  
of ILM layer 

Additional tracking  
of ILM and IS/OS layers 

layer 
average 

error 

[px] 

standard 

deviation 

[px] 

percentage 

of erroneous 

segmentatio

n 

average 

error 

[px] 

standard 

deviation 

[px] 

percentage 

of erroneous 

segmentatio

n 

average 

error 

[px] 

standard 

deviation 

[px] 

percentage 

of 

erroneous 

segmentatio

n 

average 
value 

81.04 151.54 52.61% 28.08 74.25 38.30% 16.09 39.41 31.25% 

ILM 
155.3

0 
238.35 42.49% 13.67 40.32 15.29% 13.31 39.85 13.44% 

NFL/GCL 
131.3

9 
198.84 59.50% 26.17 44.03 38.60% 17.42 32.93 32.14 % 

ONL/INL 99.83 143.04 67.76% 44.89 84.89 50.67% 23.71 45.23 44.23 % 

INL/OPL 86.48 122.98 66.72% 20.83 25.58 49.62% 19.64 25.10 42.70 % 

OPL/ONL 65.03 93.86 63.63% 66.07 148.08 45.63% 25.48 67.81 36.79 % 

IS/OS 12.55 32.19 41.71% 12.59 32.19 39.28% 6.70 15.00 27.97 % 

RPE/ 
Choroid 

15.47 35.09 26.45% 10.96 32.73 29.03 % 6.26 17.55 21.44 % 
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Table 3. The average absolute error values, the standard deviations, and the percentages of erroneous 

segmentation for the automatic retinal layer segmentation algorithm using the truncated B-scan image  

of a width calculated on the basis of the signal quality level. 

 
Base algorithm 

Additional tracking  
of ILM layer 

Additional tracking  
of ILM and IS/OS layers 

layer 
average 

error [px] 

standard 

deviation 
[px] 

percentage of 

erroneous 
segmentation 

average 

error 
[px] 

standard 

deviation 
[px] 

percentage of 

erroneous 
segmentation 

average 

error 
[px] 

standard 

deviation 
[px] 

percentage of 

erroneous 
segmentation 

average 
value 

67.90 140.47 46.30% 26.03 61.33 31.84% 24.26 57.81 24.81% 

ILM 126.42 224.55 37.19% 32.89 67.70 6.87% 32.36 67.44 6.87% 

NFL/GCL 107.96 184.36 53.11% 32.48 55.55 32.82% 32.01 55.09 24.92% 

ONL/INL 84.66 135.63 62.90% 36.24 69.46 44.58% 34.71 66.71 37.64% 

INL/OPL 75.22 117.93 61.67% 21.34 31.84 42.54% 20.61 30.50 35.61% 

OPL/ONL 56.22 88.80 59.00% 38.45 100.43 38.13% 35.11 91.94 29.78% 

IS/OS 11.56 28.02 33.59% 9.31 27.45 34.55% 6.44 18.81 23.61% 

RPE/ 

Choroid 
12.28 31.47 16.63% 10.62 29.87 23.43% 7.64 21.25 15.23% 

 

In the case of additional tracking of ILM and IS/OS borders, almost twice as much pixels is 
erroneously segmented, while the average error is 5 times smaller. On the other hand, exclusion 
of low quality signal parts leads to a smaller segmentation error value for all layers. Despite the 
fact, that for the best combination of methods, even almost ¼ of pixels is erroneously 
segmented, they are assigned very near the manual segmentation borders, which is proved by 

the average error value of 16.1 pixels. This means a high efficiency of the proposed approach. 
High values of the standard deviation occur due to high error values of the segmentation process 

in the peripheral regions of cross-sections with very low QI (i.e., below 2).  
The performed segmentation of layers  enables to generate a virtual profile map of the 

distances between the selected layers, as proposed in [21]. Such a detailed analysis is used by 
the specialists of ophthalmology to estimate abnormalities in the retinal structure. Fig. 8 
presents an illustrative virtual map between ILM and IS/OS borders for the manual (a) and 

automatic (b, c, d) assignments. The circular ETDRS grid (with the circle diameters of 1, 3 and 
6 mm) was placed on the image as the reference grid for medical purposes. 

A close analysis of the generated maps shows that exclusion of low quality parts visually 
improves the algorithm accuracy. Fig. 8b demonstrates artifacts in the peripheral sections of the 
scan as well as errors in segmentation between the 90th and 100th cross-sections. Elimination 

of the selected parts improves the segmentation as it is seen in Fig. 8c and 8d. 
 

5. Conclusion 

 

The performed experiments prove that the accurate analysis of low quality OCT images is 

possible even when standard methods provided by the manufacturer are no longer viable (as 
shown in Fig. 2). Additionally, the graph-based method of 3D data segmentation proves to be 

one of the fastest and most accurate solutions. However, in cases of underexposure or the 
presence of lesions, this algorithm needs a further adjustment. 

The proposed adaptive solution improves accuracy of the segmentation that is the first and 

crucial step for further calculations in the process of medical diagnosis. In the case of 3D OCT 
scans, the analysis of layers is performed with higher precision if each B-scan image is analyzed 

individually but with taking the neighboring images into account.  
The proposed technique guarantees a precision that is necessary for generation of virtual 

maps of the distances between the selected retinal layers. These virtual maps support tracking 
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the disease progression and selecting an appropriate treatment strategy, both pharmacological 

and surgical, as proved in article [21]. Moreover, the precise virtual maps help in selection of 
the best positioning of surgical tools during the vitrectomy surgery. 

Further work will aim at combining several 3D OCT data matrices obtained with various 

resolution parameters to maximize the informative content of data between the subsequent 
cross-sections. 

 
  a)                                                                                        b) 

  
 c)                                                                                         d) 

  

Fig. 8. The virtual maps between ILM and IS/OS segmented layers for: a) manual, and automated segmentations 

carried out; b) without cutting areas of low signal level; c) with cropping the B-scan image  

with a selected constant width; d) with the adaptive technique of removing the low quality area. 
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