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JERZY MICHALCZYK*

MAXIMUM AMPLITUDES IN TRANSIENT RESONANCE OF DISTRIBUTED-PARAMETER SYSTEMS

AMPLITUDY MAKSYMALNE W REZONANSIE PRZEJŚCIOWYM UKŁADÓW 
O PARAMETRACH ROZŁOŻONYCH

The application of the kinetic energy balance for the estimation maximum amplitudes of continuous 
systems in the transient resonance excited by the free coasting of unbalanced rotor or piston machines 
placed on the continuous system – was proposed in the study.

The exact as well as the approximate methods were shown. For the typical one- and two-dimensional 
systems the calculation formulae, useful for the engineering practice, were given. 

Keywords: transient resonance, distributed-parameter systems

W pracy wskazano na możliwość zastosowania metody bilansu energii kinetycznej dla oszacowania 
amplitud maksymalnych w rezonansie przejściowym podczas wybiegu ciężkich maszyn wirnikowych 
lub tłokowych posadowionych na układach o ciągłym rozkładzie masy. 

W szczególności rozważono drgania okołorezonansowe przesiewaczy i przenośników wibracyjnych 
o znacznej długości oraz płytowych i belkowych układów podporowych maszyn o dużym zredukowanym 
momencie bezwładności, jak wirówki odwadniające czy kruszarki młotkowe, stosowanych w zakładach 
przeróbki kopalin.

Słowa kluczowe: rezonans przejściowy, układy o parametrach rozłożonych

1. Introduction

The transient resonance constitutes one of the most dangerous dynamic states in case of unbal-
anced rotor and piston machines placed on flexible floors, supporting structures or vibroinsulating 
systems. Exceeding by an unbalanced rotor the natural frequencies range of the system, during 
start-up and coasting, generates loading of the supporting system several times higher than in the 
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steady state. Especially dangerous is the transient resonance during coasting due to its long-lasting 
action and for machines of a high rotor inertia such as e.g. hydroextractors, hammer crushers and 
vibratory machines in mineral processing plants, blast fans in metallurgical plants, etc.

The transient resonance analysis performed in papers (Lewis, 1932; Kac, 1947; Markert & 
Seidler, 2001; Cieplok, 2009) is limited to systems of one degree of freedom and except for the 
last cited paper, based on assumption that the rotor angular velocity is a priori known. In reality 
we are dealing with systems of several degrees of freedom (Goliński, 1979) or of a continuous 
mass distribution. In addition, a decisive influence on the rotor angular velocity has its feedback 
with machine vibrations (Kononienko, 1964). Such coupling causes, that the rotor in the transient 
resonance returns the majority of its kinetic energy for the increase of the machine vibrations 
amplitude (Agranowskaja & Blechman, 1960; Michalczyk,1995). This allows to determine 
the maximum amplitudes on the basis of the energy balance in the rotor-machine system. This 
method was used for the lumped-parameter systems in papers (Agranowskaja & Blechman, 1969; 
Michalczyk, 1993). Formulae – suitable for the engineering practice – for maximum amplitudes 
during the transient resonance, of elastically supported bodies of 6 degrees of freedom, were 
derived in paper (Michalczyk, 2012).

The aim of this study is an indication of the possibility of applying this method for the dis-
tributed-parameter systems.

2. Accurate analysis

The starting point of the analysis, based on the kinetic energy balance of the rotor and ma-
chine body, is the matrix equation (Michalczyk, 2010):
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where:
 κ — number of identical synchronously running driving systems,
 Jr — moment of inertia of the driving system reduced on the rotor shaft 

of unbalanced vibrator,
 ω0n — angular velocity at which the energy exchange occurs (generally 

different (Lewis, 1932) in a certain range from the nth frequency of 
natural vibrations ωn of the machine body supported on an elastic 
suspension system),

 q = col{xs,ys,zs,φx,φy,φz}  — coordinates vector, describing the system vibrations, assumed
 q ≅ qn in the vicinity of the nth resonance,

 q· maxn — velocity vector, determined for the moment of the maximum 
ampli tude qmaxn of the nth form in the nth resonance, 
q· maxn = ω0n · qmaxn.

In case of distributed-parameters systems a further modus operandi is formally slightly 
different. In order to demonstrate it, let us consider a machine e.g. vibratory screen or conveyer 
of a diagram illustrated in Fig. 1.
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Disregarding, small in this case, an influence of the horizontal forces component on trans-
verse vibrations allows to separate transverse vibrations problems from the body motion along 
the coordinate x. Vibrations in the horizontal direction x were not analysed since usually kx << ky, 
which causes that the transient resonance of vertical vibrations does not occur together with the 
resonance in the horizontal direction and is much more dangerous. In addition, antisymmetric 
vibrations were not analysed, since the central way of applying force P–(t) causes that there are 
no direct excitations of antisymmetric forms, (this problem is much more complicated in case of 
machines utilising the self-synchronisation effect (Michalczyk & Czubak, 2010) and for machines, 
in which the centre of elasticity is not coinciding with the mass centre (Michalczyk, 2012)).

Equation of machine body free vibrations is of a form:
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where: 
 EI — fl exural rigidity, 
 m— = m/L — mass for the body length unit.

Boundary conditions, on account of the system symmetry, were assumed for the ‘half’ 
model: 
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Fig. 1. Computational diagram of the system
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where k = ky — coefficient of vertical rigidity of support springs.

After separation of variables:

 ( , ) ( ) ( )x ty x t f x f t� �  (4)

and substituting (4) to (2) the solution can be obtained in a form:
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Substituting the above into boundary conditions (3) it is possible to obtain the equations 
system for C1n, C2n, C3n, C4n. From the condition of non-zero solution of these equations (zeroing 
of the main determinant) the equation for eigenvalues αn can be obtained: 

 

4 3
4 3

8 8
(1 cosh cos ) (sin h cos )

(cosh sin sinh cos ) 2 cosh cos 0

EIM EI

mL L

kM
k

mL

� � � � � � � �

� � � � � �

� � � � � � �

� � � � � � � �

sincosh

�

 (6)

The form of the nth vibration, it means the set of ratios C1n: C2n: C3n: C4n, can be determined 
as the ratio of algebraic complements of the selected matrix row coefficients in the above equa-
tions, for the given α = αn:
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This allows to write the main vibrations of the symmetric type in a form containing only 
one unknown parameter C1n:
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Value of coefficients C1n and δ,(5), can be estimated on the basis of initial conditions.
An example of the symmetric main vibrations is shown in Fig. 2.

Fig. 2. Symmetric forms of the main vibrations

Angular frequencies corresponding to main vibrations can be determined from the depend-
ence:
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Since the considered systems are tuned to have: ω1 < ω < ω2, ω3, ..., the transient resonance, 
in their case, means passing via ω1.

The equation of the kinetic energy balance (1) obtains a general form:
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where:
 κ — number of unbalanced rotors running synchronously,
 Jr — moment of inertia of the driving system reduced on the rotor shaft,
 ω0n — frequency, at which the energy exchange occurs (slightly different than the natural 

frequency) ωn, n = 1.

After reduction and taking into account (8) value of C11 can be determined for n = 1:
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After calculating C11 a form of fx1(x), (8), determining the maximum of the first symmetric 
form of vibrations in the transient resonance, is completely known. The maximum amplitude of 
the machine body, occurring for x = L/2 equals:
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Let us also consider the case of a simple-supported beam of a constant cross-section, in 
the centre of which a concentrated mass M – being the source of forces of variable frequencies 
– was placed. The previously analysed system can be used for the solution of the above problem, 
assuming k → ∞.

Then the frequency equation (6) becomes:
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This simplifies the nth vibration form:

 C1n : C2n : C3n : C4n = [coshα] : [0] : [cosα] : [0] (14)
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Equations (11) and (12) are still correct, but they do not contain terms: C21, C41.

3. Approximate estimations of maximum amplitudes of 
continuous systems one- and two-dimensional

Performed above considerations indicate that, even in relatively simple cases, exact ana-
lytical determinations of maximum amplitudes is difficult due to the necessity of integration of 
complicated expressions.

In order to obtain simpler, useful in engineering practice, dependencies the exact solution 
can be substituted by its approximate form. 

a) Beam of a constant cross-section, length L and mass m, simple-supported at the end points, 
loaded by inertial excitation generated by the unbalanced shaft of the reduced moment 
of inertia Jr, applied to the concentrated mass M in the beam centre.

 The real form of vibrations (15), given above, can be substituted by the approximate one:
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 exact for M/m → ∞.
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 The equation of the maximum kinetic energy balance for n = 1:
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 leads for the shape function (16a) to the dependence:
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 while for the shape function (16b) to:
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 The transient resonance occurs in such cases for: 
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b) The same system as in point (a), but the beam on both sides fixed to supports.
 In such case, for the approximated vibration form, acc. to Rayleigh, equation (17) leads 

to:
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c) The same system as in point (a), but the cantilever beam, mass M on the free end- point 
of the beam. In such case:
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d) Rectangular plates, with lumped mass M(xM, yM) attached.
 In the case of flat elements of a constant mass for the area unit, 
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, υ – Poisson’s ratio,

 The equation of the kinetic energy balance is of a form:
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 In the case of the rectangular plate of dimensions a × b and xM = a/2, yM = b/2:
d1) Simply – supported in the perimeter:
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 equation (21) leads to:
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d2) Fixed in the perimeter:
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 equation (21) leads to:
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 where shape coeffi cient β = 0.0624 for b/a = 1, β = 0.0816 for b/a = 2 and β = 0.072 
for b/a = 4 (Niezgodziński, 1975).
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4. Conclusions

A possibility of the estimation maximum amplitudes in the transient resonance of systems 
of a continuous mass distribution – on the basis of the kinetic energy balance of the unbalanced 
rotor of the driving system and the kinetic energy of the vibrating system – was indicated in the 
study.

The exact as well as the approximate methods were shown, together with the calculation 
formulae for the basic cases of one- and two-dimensional systems. 
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