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THE LAW OF EFFECTIVE STRESS FOR ROCKS IN LIGHT OF RESULTS OF 
LABORATORY EXPERIMENTS

PRAWO NAPRĘŻEŃ EFEKTYWNYCH DLA SKAŁ W ŚWIETLE WYNIKÓW 
BADAŃ LABORATORYJNYCH

This paper presents the results of laboratory tests carried out in order to formulate effective stress 
law. The law was sought for two different cases: first – when rock was treated as a porous Biot medium 
(Biot, 1941; Nur & Byerlee, 1971) and second – when the law was formulated according to definition of 
Robin (1973) developed by Gustkiewicz (1990) and Nowakowski (2007). In the first case coefficents (4) 
and (5) of the Biot equation (3) were were determined on the basis of compressibility test, in the second 
one effective pressure equation (9) and effective pressure value (11) were found on the basis of results 
of so called individual triaxial compression test (see Kovari et al., 1983) according to the methodology 
given by Nowakowski (2007).

On the basis of Biot coefficients set of values was found that volumetric strain of the pore space 
described by a coefficient (5) was not dependent on the type of pore fluid and the pore pressure of only, 
while in case of volumetric strain of total rock described by coefficient (4) both the structure and texture 
of rock were important. 

The individual triaxial compression test results showed that for tested rock an effective pressure 
equation was a linear function of pore pressure as (15). The so called Rebinder effect (Rehbinder & Licht-
man, 1957) might cause, that the α coefficient in equation (15) could assume values greater than one. This 
happened particularly in the case when the porous fluid was non-inert carbon dioxide.

In case of inert pore fluid like kerosene the test results suggested that the a coefficient in equation 
(15) decreased while the differential strength limit was increasing. This might be caused by, so called, 
dillatancy strengthening (see Zoback & Byerlee, 1975).

Another considered important parameter of the equation (15) was the value of the effective press p'. 
The results showed that the value of this parameter was practically independend on the pore fluid type. This 
conclusion was contrary to previous research (see, for example, Gustkiewicz et al., 2003 and Gustkiewicz, 
1990) so these results should be treated with caution. There are no doubts, however, over p' increasing 
simultaneously with increase in Rσ1–σ3. Basically, the differential strength limit of the specimen is greater 
the greater is confining pressure applied to it. Thus, higher Rσ1–σ3 values are accompanied by higher p'.

Keywords: effective stress law, conventional effective stress law, effective pressure equation, effective 
pressure value, Biot theory, Biot coefficient, compressibility test, triaxial compression test
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W artykule przedstawiono wyniki badań laboratoryjnych wykonanych w celu sformułowania prawa 
naprężeń efektywnych, które prowadzono dla dwóch różnych sposobów formułowania tego prawa. 
W pierwszym przypadku zakładano, że skała jest ośrodkiem porowatym Biota (Biot, 1941; Nur i Byer-
lee, 1971), a samo prawo naprężeń efektywnych ma postać (3). W drugim przypadku posługiwano się 
podejściem zaproponowanym przez Robina (1973), które zostało następnie rozwinięte w Pracowni 
Odkształceń Skał IMG PAN m.in. przez Gustkiewicza (1990) i Nowakowskiego (2007) i wyznaczano 
prawo naprężeń efektywnych składające się z dwóch elementów: równania ciśnienia efektywnego (9) 
oraz wartości ciśnienia efektywnego (11).

Podstawą wyznaczania współczynników dla równania Biota (3) były testy ściśliwości próbek skał 
pozostających w stanie powietrznie suchym oraz nasyconych inertnymi (azot, nafta) bądź sorbującymi 
(dwutlenek węgla, woda destylowana) płynami porowymi. Na podstawie wyników tych testów wyzna-
czano moduły ściśliwości badanych skał a następnie wyliczano wartości współczynników Biota wg (4) 
i (5). Przedmiotem badań były próbki z naprężeń dwóch skał oznaczonych jako piaskowiec 8348 i wapień 
9166.

Równanie ciśnienie efektywnego (9) oraz wartość ciśnienia efektywnego (11) wyznaczano wg 
metodyki podanej przez Nowakowskiego (2007) na podstawie wyników testu klasycznego trójosiowego 
ściskania (ang. „individual test” – por. Kovari i in., 1983) uzyskanych dla próbek skał, w których naprę-
żenie różnicowe osiągnęło wartość różnicowej granicy wytrzymałości Rσ1–σ3. Przedmiotem badań były 
próbki wycięte ze skały oznaczonej jako piaskowiec „Tumlin”, a jako płynów porowych użyto azotu 
i nafty (płyny inertne) oraz dwutlenku węgla i wody destylowanej (płyny sorbujące).

Z przedstawionych wyników badań nad wartościami współczynników Biota wynika, że rodzaj płynu 
porowego nie wpływa na wartość wyznaczanego według wzoru (5) współczynnika α2 co oznacza, że 
deformacja objętościowa tej przestrzeni nie zależy od rodzaju płynu porowego, a jedynie od panującego 
w niej ciśnienia. W przypadku współczynnika α1 (wzór (4)) określającego wpływ ciśnienia porowego 
na deformację ośrodka jako całości wyniki wykazują pewną sprzeczność. Wartości α1 uzyskane dla 
piaskowca gdy płynem porowym jest nieściśliwa ciecz są nieco większe niż gdy jest nim ściśliwy gaz. 
Z kolei wyniki uzyskane dla opoki wskazują na coś wręcz przeciwnego: stosunkowo duża (większa niż 
dla piaskowca) wartość α1 dla gazu i wyraźnie mniejsze wartości α1 dla cieczy. Ostatecznie wydaje się, 
że to, czy wartość współczynnika α1 zależy rodzaju medium porowego jest w dużym stopniu uwarunko-
wane strukturą i teksturą badanej skały. Dla skał okruchowych o dużej porowatości i dużej swobodzie 
filtracji płynu porowego rodzaj tego płynu będzie miał prawdopodobnie mniejsze znaczenie natomiast 
dla skał zwartych o małej porowatości mogą zachodzić duże różnice w wartościach tego współczynnika 
w zależności od tego czy medium porowym jest ciecz, czy gaz.

Wyniki wykonanych testów konwencjonalnego trójosiowego ściskania pozwoliły stwierdzić, że dla 
badanego piaskowca równanie ciśnienia efektywnego na granicy wytrzymałości jest liniową funkcją 
ciśnienia porowego pp postaci (15). Zgodnie z tym co pokazali Gustkiewicz i in. (2004) oraz Nowa-
kowski (2005, 2007) jeżeli oddziaływanie płynu porowego na skałę nie jest wyłącznie mechaniczne, to 
może dojść do sytuacji, w której współczynnik α w równaniu (15) ma wartość większą od 1. Zjawiskiem 
fizykochemicznym odpowiedzialnym za taką sytuację jest najprawdopodobniej tzw. efekt Rebindera 
(Rehbinder i Lichtman, 1957), który polega na obniżeniu wytrzymałości skały wskutek adsorpcji gazu 
porowego, przy czym spadek wytrzymałości jest tym większy, im wyższa jest ilość zasorbowanego gazu 
(por. także Hołda, 1990).

Jeżeli płynem porowym jest CO2 to im wyższa wartość Rσ1–σ3 tym wyższa wartość α, czyli tym silniej 
manifestuje się wpływ ciśnienia porowego (rys. 6). Przyczyn takiego zjawiska należy prawdopodobnie 
upatrywać w sposobie pękania badanego materiału. Jak wiadomo różnicowa granica wytrzymałości 
rośnie ze wzrostem ciśnienia okólnego oraz ze wzrostem różnicy p – pp (Gustkiewicz, 1990). Wzrostowi 
temu towarzyszy stopniowa zmiana sposobu pękania skały od kruchego pękania do ciągliwego płynięcia. 
W próbce pękającej krucho wytwarza się zazwyczaj jedna płaszczyzna pęknięcia, wzdłuż której następuje 
zniszczenie próbki. Natomiast w próbce pękającej w sposób ciągliwy powstaje wiele równoległych do 
siebie płaszczyzn zniszczenia. Oznacza to, że sumaryczna powierzchnia nowych spękań powstających 
podczas zniszczenia ciągliwego jest prawdopodobnie znacznie większa niż podczas kruchego pęknięcia. 
Jeśli w trakcie eksperymentu spełnione są warunki (6) to pęknięcia te zostają wypełnione pozostającym 
pod stałym ciśnieniem gazem porowym, a to z kolei oznacza wzrost powierzchni fizykochemicznie 
czynnej, na której mogą zachodzić procesy sorpcyjne. A zatem i wpływ efektów sorpcyjnych powinien 
się okazać dla wyższych wartości Rσ1–σ3 znacząco większy.

W przypadku, gdy płynem porowym była inertna ciecz (nafta) pokazane na rys. 6 wyniki badań suge-
rują, że wartość współczynnika α maleje ze wzrostem Rσ1–σ3. Przyczyną może tu być tzw. wzmocnienie 
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dylatancyjne (por. Zoback i Byerlee, 1975). W tym przypadku polega ono na tym, że gdy próbka skalna 
osiąga swoja granicę wytrzymałości zaczynają się w niej rozwijać nowe spękania, czego konsekwencją 
jest wzrost objętości przestrzeni porowej wywołujący spadek ciśnienia porowego. Jeżeli spadek ten nie 
zostanie wyrównany przez filtrującą z zewnątrz ciecz to rzeczywista wartość ciśnienia porowego będzie 
niższa niż zakładana. Z punktu widzenia prawa ciśnienia efektywnego oznacza to, że wpływ ciśnienia 
porowego na wartość Rσ1–σ3. ulegnie zmniejszeniu, co powinno dać α < 1. 

Drugim istotnym parametrem równania (15) jest tzw. wartość ciśnienia efektywnego p'. W roz-
ważanych eksperymentach wielkość tę należy traktować jako pewne zastępcze ciśnienie okólne, które 
– zastosowane do skały dla pp = 0 – da w efekcie taka samą wartość Rσ1–σ3 jak para niezerowych ci-
śnień p i pp spełniających równanie (15). Pokazane na rys. 7 zależności sugerują, że wartość wielkości 
p' praktycznie nie zależy od rodzaju płynu porowego. Innymi słowy: jeśli pp = 0 to Rσ1–σ3 = const. dla 
danej wartości p' niezależnie od tego, czym wypełniona jest przestrzeń porowa skały. Wartości p' rosną 
natomiast ze wzrostem Rσ1–σ3 gdyż różnicowa granica wytrzymałości próbki jest tym wyższa im wyższe 
jest obciążające próbkę ciśnienie okólne. Jest zatem naturalne, że wyższym wartościom Rσ1–σ3 towarzyszą 
wyższe wartości p'.

Słowa kluczowe: prawo naprężeń efektywnych, konwencjonalne naprężenie efektywne, równanie ciśnienia 
efektywnego, wartość ciśnienia efektywnego, teoria Biota, współczynnik Biota, test 
ściśliwości, test trójosiowego ściskania

Introduction

The notion of effective pressure emerged in continuum mechanics at the beginning of the 
XX century, once there was need to describe soil as porous medium whose pore space might be 
filled with pressurised pore fluid. This fluid might cause solely mechanical interactions involv-
ing change in rock mass stress due to changes in pore fluid pressure, as well as physiochemical 
and chemical transforming properties of rock mass through interaction between the fluid and 
groundmass (e.g. sorption, chemical reactions). In more complicated instances, those factors 
could even combine with each other.

Once the aforementioned problem surfaced it became clear that mathematical description 
of processes taking place in loaded porous medium, whose pore space is filled with pressurised 
fluid would require to first derive mathematical formulae for pore space itself. Bearing in mind 
they would have to include information about the size and shape of pores, their distribution across 
analysed space and whether they create a network of connections or are just isolated cavities, it 
should come as no surprise that deriving such mathematical description has been deemed impos-
sible. Hence it was suggested to assume soil to be a homogeneous and isotropic porous medium, 
filled completely with pressurised pore fluid (pore pressure pp) and remaining under macroscopic 
stress σij. Then, it was further suggested to formulate relationships describing stress and strain 
within the medium for substitute stress 'σij called effective stress. It was further assumed the ef-
fective stress is a function of macroscopic stress and pore fluid pressure i.e.:

 'σij = f (σij, pp) (1)

Note that in Anglo-Saxon literature the above-mentioned relationship is often referred to 
as the law of effective stress (see e.g. Patterson and Wong, 2005; p. 148 and further), and for 
purposes of this paper that term will prevail.
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1. Mathematical description of the law of effective stress

Numerous interesting facts about the history of searching for the ultimate form of the for-
mula (1) could be found e.g. in work by Bluhm and de Boer (1996) as well as Lade and de Boer 
(1997). The concepts used in these papers have been described in brief below.

1.1. Conventional effective stress

First legitimate research into impact of pore fluid pressure on mechanical properties of porous 
medium was conducted by Paul Fillunger (Fillunger, 1915, 1914, 1913) at Vienna University of 
Technology at the beginning of the XX century. Unfortunately character traits of the scholar and 
his long-lasting clash with Karl von Terzaghi tied in with international popularity of the latter (see 
de Boer, 2005) meant Paul Fillunger went on to be virtually forgotten, whilst Karl von Terzaghi 
became widely acknowledged as the driving force behind the concept of effective stresses.

It is dated back to 1923 (Terzaghi, 1923), however, the law of effective stresses itself became 
his brainchild explicité as late as in 1936 (Terzaghi, 1936). It states that if: σij – macroscopic stress 
tensor, 'σij – effective stress tensor, pp – pore pressure and δij – Kronecker symbol the equation 
(1) becomes:

 'σij = σij – ppδij (2)

At the current time, the law of effective stress in that form is referred to as the conventional 
effective stress law (see Paterson & Wong, 2005, p. 148).

The equation (2) was derived for the very first time by von Terzaghi while he was working 
over consolidation of clayey soil layers and seemingly it was a product of intuitive calculations 
(see de Boer & Ehlers, 1990), hence the author did not determine its range of applications. Further 
down the line it was proven, there are specific limits.

Limits of application produced by the formula (2) were determined over the course of 
experiments carried out in 1963 by research team led by John Handin. That team, drawing on 
laboratory tests of five rocks: dolomite, limestone, sandstone, shale and fine-grained sandstone 
came up with three conditions which are ought to be satisfied should the law of effective stress 
(2) be applied to a porous medium. They are as follows (citation Handin et al., 1963):

(a) the interstitial fluid is inert relative to the mineral constituents of the rock so that pore 
pressure effects are purely mechanical,

(b) the permeability is sufficient to allow pervasion of the fluid and furthermore to permit 
the interstitial fluid to flow freely in or out of the rock during the deformation so that 
the pore pressure remains constant and uniform throughout (the test is “drained”),

(c) the rock is a sandlike aggregate with connected pore spaces, the configuration of which in-
sures that the pore (“neutral”) pressure is transmitted fully throughout the solid phase. 

The conditions cited above (a), (b) and (c) will be hereunder referred to as – for interest of 
simplicity – “Handin conditions”.

As far as theoretical considerations are concerned, the final word belongs to the most con-
clusive paper by Bluhm and de Boer (1996), in which the authors – through analysing theory of 
mixtures equations – arrived at conclusion the conventional effective stress law holds solely for 
specific case of incompressible porous medium whose pore space is filled only by incompress-
ible and inviscid pore fluid.
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1.2. The effective stress as linear function of pore pressure 
and stress

By searching for a more universal effective stress law, the equation (2) was proposed to be 
changed into:

 'σij = σij – αppδij (3)

where α is a dimensionless coefficient determining how much of pore pressure should be taken 
into account for the equation (3) to become a relationship describing effective pressure. 

The effective stress law in form (3) automatically triggers question as to the value of the α 
coefficient. For purposes of this paper the proposition put forward in 1940 by Maurice Biot is 
the most significant. It was published in his consolidation theory (Biot, 1941). Central for that 
solution was introducing to Hooke's law equations elements factoring in elastic and volumetric 
soil deformation and adding another equation taking into account pore pressure.

Nur and Byerlee (1971) showed through developing the Biot's concept that if the analysed 
medium is under hydrostatic pressure within limits of its elastic deformation, the α coefficient could 
be derived using experimentally determined medium's porosity (n), bulk modulus (K) and bulk 
modulus of its solid phase (KS). The α coefficient is expressed by the following relationships:

 
1

1

S

K

K
� � �  (4)

when effective pressure equation is formulated for changing volume of analysed medium as 
a whole (i.e. solid phase + pore space), and on the other hand

 
2

1

S
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K K
� � �

�
 (5)

when effective pressure equation is formulated solely for pore space of the medium.

Nur and Byerlee’s take on the Biot’s concept, although mathematically very neat indeed, 
introduced substantial limitations to the study of effective pressure. One should bear in mind that 
Biot’s equations are in essence expanded Hooke’s law equations (see Paterson & Wong, 2005 
– pp. 149-152; Fabre & Gustkiewicz, 1998), hence their applicability as constituent equation for 
porous medium overlaps with that of Hooke’s law. This is an important caveat, because Hooke’s 
set of equations could only be used as constituent equations for a limited range of stresses.

1.3. The law of effective stress based on conventional triaxial 
compression test

The last method of approaching effective stresses used for purposes of this paper was de-
veloped at The Laboratory of Rock Deformation of The Strata Mechanics Research Institute in 
Kraków, which uses findings provided by laboratory experiments into rocks under conventional 
triaxial state of stress (the so-called “individual test” – see Kovári et al., 1983). The inspiration be-
hind that method were theories formulated by Robin (1973). Nowakowski (2007) in turn described 
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in great detail research methodology and how to use its results to determine the law of effective 
stresses. In this paper only the fundamentals of proposed approach are to be presented.

Square one of this method are results of triaxial compression test carried out using a rock 
cylinder specimen, whose pore space was filled with pressurised pore fluid (either gas or liquid). 
During the test the specimen is placed in Kármán type triaxial cell and is loaded with axially-
symmetrical compressive stress1 satisfying σ1 ≥ σ2 = σ3 = p. The confining pressure σ2 = σ3 = p 
is applied to specimen’s side surface by liquid, and axial stress (σ1) by hydraulic piston press-
ing against the specimen’s face. The pore fluid remains under constant pressure pp. Both the 
chamber and the pore space are connected to external sources of pressure in order to satisfy the 
conditions:

 p = const  ∧ pp = const (6)

Experiment conditions require pressures p and pp to satisfy the following condition (see 
Gustkiewicz et al., 2004, 2003):

 p – pp ≥ 0 (7)

thus the pore pressure can equal the confining pressure at the most.

Following that procedure, the test can return any Q quantity, which is the function of pres-
sures p and pp. Within the space of variables (Q, p, pp) that function creates a surface where 
a curve satisfying the equation is found:

 Q(p, pp) = const (8)

This equation produces the curve across which the interesting to us Q quantity is constant. 
By projecting the curve (8) on plane (pp, p), a relationship is produced on that plane given by 
equation:

 f (p, pp) = 0 (9)

By substituting to equation (9):

 pp = 0 (10)

we get

 f(p, 0) = p' = const (11)

The equation (9) defining set of points p paired with pp for which the Q quantity is constant, 
will hereunder be referred to as effective pressure equation, and defined by formula (11) pres-
sure p' effective pressure value for effective pressure equation (9) and quantity Q satisfying the 
condition (8). For the ultimately produced p’ pressure the following is satisfied:

 Q(p', 0) = Q(p') = Q' = const (12)

1 In this paper the notations are: „plus“ for compression and „minus“ for tension.
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Note at this point that the above-obtained effective pressure law does not consist of a single 
equation – its constituent components are equation (9) and constant (11). The equation (9) defines 
the relationship between the confining pressure and pore pressure necessary to satisfy the con-
dition (8), whereas the constant (11) provides a substitute confining pressure, which – for rock 
at pp = 0 – has the same influence on the Q quantity as the pair of non-zero pressures p and pp 
satisfying the relationship (8) and (9) does.

The presented formalism of describing the effective pressure was proposed for the first time 
by Robin (1973). Gustkiewicz (1990) provided methodology to analyse phenomena occurring in 
rock specimens where the stress reached the differential strength limit. It was further developed 
by Gustkiewicz himself (Gustkiewicz, 1990) and others (Gustkiewicz et al., 2003, 2004) and 
Nowakowski (2005). The research methodology has been described in detail by Nowakowski 
(2007). Based on work carried out by those authors, it is fair to conclude the effective pressure 
equation (11) will depend among others on:

− analysed Q quantity,
− state of stress in the rock,
− properties of rock's pore space.

The aforementioned Robin (1973) did make the comment that in practice finding correct 
form of equation (11) entails usually going through convoluted and tedious laboratory experi-
ments whose findings might prove inconclusive. 

2. Solving for Biot’s coefficients based on experimental study

When discussed was – in chapter 1.2 of this paper – the law of effective stress according to 
Biot – Nur and Byerlee, the procedure used by those authors to obtain relationships (4) and (5) 
was neglected. Close inspection of that procedure (e.g. how Dutka and others did, 2008) shows, 
that the effective stress is the stress controlling changes in medium’s volume (and/or its pore 
space) depending on macroscopic stress and pore pressure. This is clear from relationships (4) 
and (5). The material constants K and KS they include are quantities linking together medium 
stresses with volume changes. 

2.1. Methodology of carried out laboratory experiments

In order to compute Biot’s coefficients necessary for the equation (3) the following material 
constants had to be determined:

– porosity (n),
– bulk modulus of rock (K),
– bulk modulus of rock solid phase (KS).

Rock porosity – pore space per total volume of the rock – determined using intermediate 
method, where bulk density of rock ρ and specific density of rock ρS, and the following was 
used:

 
1

S

n
�

�
� �  (13)
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Required densities were measured using pycnometers: ρ – GeoPyc 1360 Envelope Density 
Analyzer, ρS – AccuPyc II 1340 Gas Displacement Pycnometry System. Both devices are cur-
rently owned by the Laboratory of Micrometrics of IMG PAN.

Bulk moduli were determined directly by conducting the so-called compressibility test, 
which involves compressing rock specimen by applying hydrostatic pressure (p) whilst measur-
ing volumetric strain (e). The bulk modulus is given by tangent of angle between rectilinear part 
of plot p(e) and strain axis.

The K modulus is determined through the compressibility experiment, where the pore space 
is open and pore pressure equals barometric pressure (by convention this is given by pp = 0, al-
though that is inaccurate). Then the strain in analysed specimen is the sum of strain in its matrix 
and pores. It is easy to conclude that the higher the porosity of rock the higher the strain thus 
the lower the K modulus.

The compressibility test is used to determine the KS modulus, where the pore pressure 
constantly equals the hydrostatic pressure (pp = p). Note that the entire pore space should be 
filled with pore fluid. This means the computational error when determining the KS increases 
with percentage of the so-called isolated pores i.e. pores without connections with other cavities 
surrounded completely by rock mass. Detailed information concerning procedures of carrying 
out the aforementioned compressibility experiments at the Laboratory of Rock Deformation of 
IMG PAN are given in Gustkiewicz’s paper (1989).

At this stage is must be emphasized that neither Biot nor Nur, Byerlee or indeed any other 
– to the author’s best knowledge – paper concerning this subject matter (e.g.: Rice & Cleary, 
1976; Zienkiewicz & Shiomi, 1984; Detournay & Cheng, 1993; Roegiers and others, 1998; Lade 
& de Boer, 1997) is conclusive as to the packing material for pore space during the compressi-
bility test. The referred to on numerous occasions Gustkiewicz (1989) suggests to determine 
the K modulus when the pore space is filled with air (dry air state). The KS on the other hand 
when it is filled with kerosene. Even this author, however, takes no interest in considering the 
impact of the fluid type on test results. Hence, a decision was made to mark K and KS moduli on 
rock specimens whose pore space was filled with different pore fluids – both liquids and gases. 
Experimentally determined bulk moduli were then used to determine Biot’s coefficients α1 and 
α2 given by equations (4) and (5).

2.2. Results of laboratory experiments

Selected for research were two rocks provided by Institute of Geonics of the Academy of 
Sciences of the Czech Republic: sandstone – henceforth referred to as “sandstone 8348”, and 
gaize – “gaize 9166”. The sandstone was a sedimentary rock of ashen-yellow colour, bonded with 
cement, medium-grained, poorly sorted. The limestone was created chemically (precipitation) 
by combining carbonate phase and silica (opal, chalcedon) into a compact matrix (carbonate 
components did not leach).

Common practice in determining Biot’s coefficients is to assume the following, mean po-
rousnesses (acquired through pycnometer measurements):

• for sandstone 8348 – np = 15.9% (standard deviation 0.81%),
• for limestone 9166 – no = 7.4% (standard deviation 1.22%).
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Both series contained 16 specimens.
In order to assess influence of pore fluid on Biot’s coefficients a series of compressibility 

tests were carried out. Pore fluids were:
b) kerosene – inert liquid,
c) distilled water (H2O) – non-inert liquid,
d) nitrogen (N2) – inert gas,
e) carbon dioxide (CO2) – non-inert gas,

The compressibility test was carried out for the above-mentioned pore fluids under the 
following conditions: pore pressure equal to barometric pressure (pp = 0); pore pressure equal 
to hydrostatic pressure (pp = p). Determined through those experiments bulk moduli (K and KS 
respectively) were then used to determine Biot’s coefficients according to formulae (4) and (5). 
Figure 1 below shows an example result of compressibility test and consequently obtained 
Biot’s coefficients, and then – tab. 1 and 2 – collates experimentally obtained K, KS, α1 and α2 
quantities.

Fig. 1. Compressibility test results: kerosene saturated sandstone 8348

Analysis of quantities α1 and α2 presented in tab. 1 and 2 concludes that neither the type of 
rock nor pore fluid have any significant influence on the α2 quantity (derived using the formula 
(5)) averaging 0.925±0.034. Hence the effective pressure law derived for pore space will become 
as follows:

 'σij = σij –0,925ppδij (14)

and its form is independent of the pore fluid type.
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TABLE 1

Bulk moduli and Biot coefficients; sandstone 8348

Sandstone 8348
np

[%]
K

[MPa]
KS

[MPa] K : KS α1 α2 α1 : α2

po
re

 fl 
ui

d kerosene

15,5

12,2 47,3 1 : 3,9 0,742 0,946 1 : 1,3
H2O 12,0 41,9 1 : 3,5 0,714 0,938 1 : 1,3
N2 9,5 25,6 1 : 2,7 0,629 0,909 1 : 1,5

CO2 13,2 38,1 1 : 2,9 0,653 0,917 1 : 1,4

TABLE 2

Bulk moduli and Biot coefficients; limestone 9166

Limestone 9166
no

[%]
K

[MPa]
KS

[MPa] K : KS α1 α2 α1 : α2

po
re

 fl 
ui

d kerosene

7,6

14,4 28,8 1 : 2,0 0,493 0,923 1 : 1,9
H2O 21,5 33,6 1 : 1,6 0,360 0,865 1 : 2,4
N2 12,8 54,0 1 : 2,4 0,763 0,976 1 : 1,3

CO2

In case of the α1 coefficient the situation was more complicated and depended on the type 
of rock. Hence, values of the α1 quantity were slightly greater for liquid pore fluid. The contrary 
was true for the limestone: the α1 coefficient was greater for gas pore fluid. Possible reasons 
behind such state of affairs are discussed in chapter 4.1.

3. Determining the effective pressure law based 
on conventional triaxial compression tests

This chapter discusses results of research into effective pressure law concentrating on ana-
lysing the Q rock’s property (see chapter 1.3) of differential strength limit Rσ1–σ3 (for formal 
definitions see e.g. Gustkiewicz, 1990). Effective pressure equations (9) and corresponding 
pressure values (11) were searched for inert (kerosene, nitrogen) and non-inert (distilled water, 
carbon dioxide) pore fluids.

3.1. Laboratory equipment and testing method

The conventional triaxial compression test was carried out using owned by the Laboratory 
of Rock Deformation of IMG PAN GTA-10 machine. It enables triaxial compression tests for 
confining pressure p ≤ 400 MPa and pore pressure pp ≤ p. The maximum loading force of the 
hydraulic press is 150 kN. Fig. 2 shows schematically the specimen under triaxial compression. 
Fig. 3 shows the machine itself.

The following quantities were registered during the test: applied loading force, piston 
displacement, specimen circumference change, confining pressure and pore pressure. Based on 
registered quantities computed were: longitudinal strain ε1, transverse strain ε3 and volumetric 
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strain e of a specimen and differential stress σ1–σ3. Also produced were charts of relationships 
between differential stress and corresponding strains. Those plots were then used to compute 
the above-mentioned differential strength limit of rock Rσ1–σ3. It should also be pointed out that 
each Rσ1–σ3 value corresponds to one and one only pair of p and pp pressures.

Fig. 3. The GTA-10 machine – general view 
(Gustkiewicz & Nowakowski, 2004)

Fig. 2. Conventional triaxial compression test 
– the load case (Nowakowski, 2007)

Subsequently the experimentally obtained Rσ1–σ3 values were used plot the relationship 
between differential strength limit and pore pressure at given confining pressure. On the plane 
(Rσ1–σ3, pp) this plot was a set of bell-shaped curves, where each of the curve corresponded to dif-
ferent confining pressure p. The next step was to select Rσ1–σ3 values for deriving equations (9) 
and computing values (11). Then straights Rσ1–σ3 = const were added to the plot (Rσ1–σ3, pp). 
Abscissas of intersecting straights with bell-shaped curves satisfying p = const returned for each 
Rσ1–σ3 a set of point pairs (pp, p) enabling to solve for equation (9) and values (11). The meth-
odology outlined above has been described in detailed in paper by Nowakowski (2007).

3.2. The law of effective stresses for differential strength 
limit – the “Tumlin” sandstone

The Lower Triassic sandstone from Tumlin can be found in Northern part of Swietokrzyskie 
Mountains near Suchedniow. It is a medium-grained rock composed mainly of quartz grains and 
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clay minerals. 80% of the quartz are 40-1200 µm isometric grains. The binder is predominantly 
quartz with admixtures of claystone. Detailed petrographic description of the sandstone can be 
found in paper by Nowakowski et al., (2003).

For purposes of the triaxial compression tests, the specimens were prepared as cylinders 
of d = 22 mm diameter and h = 44 mm height. Confining pressure used for the experiment was 
p = {20 MPa, 40 MPa, 60 MPa, 80 MPa, 100 MPa}. Pore pressures were the same. Pore fluids 
were inert fluids (kerosene and nitrogen) and non-inert (distilled water and carbon dioxide). Equa-
tions and effective pressure values were computed for Rσ1–σ3 = {100 MPa, 150 MPa, 200 MPa, 
250 MPa, 300 MPa}

Fig. 4 shows the relationship between differential strength limit (Rσ1–σ3) and specimen 
pore pressure (pp) at confining pressure (p) i.e. the parameter obtained for kerosene impregnated 
“Tumlin” sandstone specimens. Shown in the figure bell-shaped curves were obtained through 
approximating experiment results with second-degree polynomial selected to make tangent to the 
bell-shaped curve a straight line horizontal at intersection with ordinates axis. Also plotted (solid 
line) were horizontal straight lines described by Rσ1–σ3 = const for specific values of differential 
strength limit for which effective pressure values and equation were determined.

Fig. 5 shows on plane (pp, p) sets of points were Rσ1–σ3 = const straight lines intersect with 
p = const bell-shaped curves required to derive – through approximation – effective pressure 

Fig. 5. Effective pressure equation and effective pres-
sure value for different differential strength limits; 

kerosene-impregnated “Tumlin” sandstone

Fig. 4. Differential strength limit as function of pore 
pressure with confining pressure as parameter; 

kerosene-saturated “Tumlin” sandstone
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equations (9). The legend gives Rσ1–σ3 values and corresponding effective pressure equation. 
Note that for all analysed Rσ1–σ3 values the equation was: 

 p' = p – αpp (15)

i.e. it was a linear function of confining pressure and pore pressure. The effective pressure value 
p' on the left-hand side of equation is in fact an coordinate of point where the straight (15) in-
tersects with axis p.

The exact same procedure was then repeated to analyse results for the nitrogen-impregnated 
“Tumlin” sandstone and the remaining pore fluids i.e. distilled water and carbon dioxide. Each 
time the effective pressure equation was (15). Below – tab. 3 – presented are the α coefficient 
values in effective pressure equations (15) and effective pressure values p' returned by those 
equations for individual Rσ1–σ3 values and different pore fluids. Those quantities have been 
charted: α coefficient – fig. 6 and effective pressure values p' – fig. 7.

Obtained results prove that gas pore fluid causes the α coefficient to increase regularly in 
tandem with the differential strength limit (fig. 6). That rise is relatively insignificant for nitrogen 
and substantial for carbon dioxide. In case of both gases α values are greater than unity.

Provided the pore medium jest liquid, observed relationships show little regularity, the caveat 
being that if for distilled water an upward trend of the α is clear, this could could not be said for 
kerosene – α seems to be decreasing as the differential strength limit grows.

In case of effective pressure value p' (fig. 7) the case is clear and growing value of Rσ1–σ3 
translates into regular p' growth. That tendency is independent of the pore fluid type.

TABLE 3

The α coefficient and effective pressure value p' for different pore fluids and different values of Rσ1–σ3

Pore fl uid
kerosene nitrogen distilled water carbon dioxide

Rσ1–σ3 = 100 MPa
α 1,062 0,968 1,054 1,064

p' [MPa] 1,8 5,8 3,4 2,6
Rσ1–σ3 = 150 MPa

α 1,073 1,024 0,979 1,133
p' [MPa] 9,5 10,0 12,9 7,6

Rσ1–σ3 = 200 MPa
α 1,102 1,055 1,095 1,201

p' [MPa] 17,8 17,5 18,7 15,6
Rσ1–σ3 = 250 MPa

α 1,003 1,073 1,096 1,254
p' [MPa] 33,8 29,5 30,3 28,8

Rσ1–σ3 = 300 MPa
α 0,939 1,117 1,282 1,307

p' [MPa] 51,8 42,7 35,9 50,6
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Fig. 7. Effective pressure value p' for different values of Rσ1–σ3 and different pore fluids; “Tumlin” sandstone

Fig. 6. Value of the α coefficient for different values of Rσ1–σ3 and different pore fluids; “Tumlin” sandstone



1041

4. Experimental study. Discussion

4.1. The relationship between Biot’s coefficients 
and the type of pore fluid

The discussion concerning results of research into Biot’s coefficients should get off to a good 
start by concluding (see final passages of chapter 2.2) the type of pore fluid does not influence the 
Biot’s coefficient α2 derived using the formula (5). Bearing in mind this coefficient should describe 
how does pore pressure impact on volumetric strain of pore space is seems fair to assume volumetric 
strain of pore space does not depend on the type of pore fluid, but on the pore pressure.

This fails to hold in case of the coefficient α1 (formula (4)) which determines the impact of 
pore pressure on volumetric deformation of the entire medium. These results are even contra-
dictory to an extent. Values of α1 obtained for sandstone are slightly greater provided the pore 
fluid is an incompressible liquid than for compressible gas, however, the discrepancies – by 
our own admission – are not significant. On the other hand, results for the limestone indicate 
the opposite: relatively high (greater than for the sandstone) α1 value for gas and considerably 
smaller α1 for the liquid.

In accordance with (4) the α1 coefficient should decrease as the K modulus increases and 
increase as the KS modulus increases. We cannot rule out that during the compressibility test 
inside the sandstone specimen – pore space filled with liquid – closed cracks caused slippage 
(lubricating effect). This could consequently lead to higher strains and lower K module values. 
Ultimately the obtained α1 values were “too high” in relation to gas acting as pore fluid.

Furthermore the key factors determining values of K and KS moduli (and consequently 
of α1 as well) are: fill-up fraction of pore space with pore fluid and feasibility of filtering the 
fluid in the cavity. Consequently the conditions required to determine the KS modulus are: pores 
completely filled with fluid and its “speedy” filtration – required to maintain equal confining 
and pore pressures (see key paper by Gustkiewicz, 1989).

Measurements of kinetics whilst filling the pore space with gas and sorptive measurements 
(Dutka et al., 2008) carried out as part of preparations for compressibility tests proved that in 
case of sandstone specimen complete fill of pore space with inert gas (He) took just over 3 min. 
In case of absorbing gas (CO2) that time was longer i.e. approx. 50 min. until the state of sorption 
balance was reached (which took place far later than complete fill of pore space). 

In case of limestone helium was not used as the packing material, but filling 50% of pore 
space with CO2 took approx. 120 min. Interestingly, there were no sorptive effects taking place 
which could impact that process. Hence, firstly – in case of limestone there is no guarantee the 
entire specimen’s pore space was filled with pore gas, secondly – even if the entire pore space 
was filled with gas, the filtration processes are sluggish enough to make maintaining p = pp during 
the compressibility test impossible. Thereby the KS modulus could not be determined correctly. 
Note that if filling the limestone with gas was that difficult, filling it with liquid must have been 
more troublesome, ergo empirical KS values must have been weighed down with greater error 
than in case of gas used as pore fluid.

To summarise the above deliberations it is fair to say that dependence of Biot’s coefficient α1 
on pore medium is to a significant extent contingent on the structure and texture of analysed rock. 
In case of rock of high porosity where pore fluid filters easily, type of that fluid plays a lesser role, 
whereas in case of rock of low porosity coefficient values might diverge significantly depending 
whether gas or liquid was used as the pore medium.
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4.2. Impact of pore fluid type and phenomena taking place 
at the strength limit of rock on the effective pressure law

Results of carried out conventional triaxial compression tests concluded that for analysed 
sandstone the effective pressure law upon strength limit is a linear function of pore pressure pp (15). 
There are two key parameters in that equation: effective pressure value p' and slope of straight line 
α, but the α coefficient in this equation operates as "weight" determining impact of pore pressure 
on the ultimate effective pressure value. First Gustkiewicz et al. (2004) and then Nowakowski 
(2005, 2007) proved that if pore fluid causes other interactions than solely mechanical, then α 
might become greater than 1. A physiochemical phenomenon responsible for this is most probably 
the so-called Rehbinder effect (Rehbinder and Lichtman, 1957), where surface tension decreases 
as does the rock’s strength due to absorption of pore gas. The greater the amount of absorbed gas 
the greater the decrease in strength (see Hołda, 1990). Presented in fig. 6 relationships between 
differential strength limit Rσ1–σ3 and corresponding α values seem to suggest that if the pore fluid 
is an absorbing gas (carbon dioxide) then the above-mentioned situation occurs.

By analysing fig. 6 another observation can be made that if pore fluid is CO2 then the 
greater the Rσ1–σ3 the greater the α i.e. the impact of pore pressure is clearer. Reasons behind 
that phenomenon could be found in cracking pattern of tested material. According to common 
knowledge the differential strength limit increases as the confining pressure increases as well 
as the p – pp difference (Gustkiewicz, 1990). That increase is accompanied by gradual change 
in cracking pattern from brittle failure to ductile flow A brittle specimen usually cracks across 
a single plane i.e. where the specimen failure occurs. The specimen cracking in a ductile way 
on the other hand exhibits numerous parallel failure planes. This means that the total plane 
of new cracks occurring upon ductile failure is most probably much wider than during brittle 
cracking. Provided the conditions (6) are satisfied during the experiment, those cracks are filled 
with constant pressure pore gas and this in turn means greater non-inert surface, where sorptive 
processes can take place. Hence the impact of sorptive effects should prove considerable greater 
for higher Rσ1–σ3 values.

Note that presented in fig. 6 relationship between α and  Rσ1–σ3 obtained for nitrogen is 
equivalent to the same relationship for carbon dioxide even though nitrogen for sandstone should 
be an inert gas. It is not out of the question, that assuming nitrogen to be inert was an error, since 
the gas found in regular gas cylinders contains some water vapour, which is not inert. This would 
explain the qualitative similarity of given relationships for nitrogen and carbon dioxide, bearing 
in mind quantitatively the reaction of tested sandstone to nitrogen is considerably weaker.

In case where pore fluid was an inert liquid (kerosene), research results shown in fig. 6 sug-
gest α decreases as Rσ1–σ3 increases. The so-called dilatant strengthening could be the reason here 
(see Zoback & Byerlee, 1975). In this case it involves the rock specimen reaching its strength 
limit thus causing new cracks to appear. Consequently the volume of pore space increases caus-
ing pore pressure to drop. Should it fail to be compensated through filtration with external liquid 
(the conditions (6) could not be satisfied), the actual pore pressure will be lower than assumed. 
According to the effective pressure law this means the impact of pore pressure on Rσ1–σ3 is lower, 
hence α < 1. The higher the confining pressure the stronger the effect – as proved by Gustkiewicz 
(1990) – for shale from the "Nowa Ruda" hard coal mine.

It should be emphasized that dilatant strengthening is not observable for absorptive liquid 
– here distilled water. Gustkiewicz et al. (2003) tested the same "Tumlin" sandstone and proved 



1043

that water – non-inert substance – decreases strength of the rock compared to dry rock. On the 
other hand the strength of rock strongly depends on capacity of absorbed fluid and in case of 
water it depends on pore pressure to a negligible extent. Hence the slight impact of pore water 
pressure on differential strength limit, manifested by close to unity α coefficient.

Another key element of equation (15) is the so-called effective pressure value p'. During 
the aforementioned experiments the quantity has to be taken as the substitute confining pressure, 
which – in case of rock pp = 0 – returns the same Rσ1–σ3 value as the pair of non-zero pressures p 
and pp satisfying the equation (15). Presented in fig. 7 relationships suggest that the p’ quantity 
practically does not depend on the type of pore fluid. In other words: if pp = 0 then Rσ1–σ3 = const 
for given p' regardless of what medium fills the pore space.

Such foregone conclusion, however, would have been an error. Research conducted at the 
Laboratory of Rock Deformation of IMG PAN into impact of pore fluid type on differential strength 
limit have proved on numerous occasions that even at zero pore pressure the pore fluid itself can 
lower that limit, often to a little degree though (see e.g. Gustkiewicz et al., 2003; Gustkiewicz, 
1990). Pore fluid can reduce friction between failure surfaces thus increasing deformability of 
the rock. The aforementioned Rehbinder effect can also occur. It seems as if in the analysed case 
changes in Rσ1–σ3 caused by different pore fluids are small compared to irregularity of results caused 
by heterogeneity of tested material, hence the final form of relationships presented in fig. 7.

There are no doubts, however, over p' increasing simultaneously with increase in Rσ1–σ3. 
Basically, the differential strength limit of the specimen is greater the greater is confining pres-
sure applied to it. Thus, higher Rσ1–σ3 values are accompanied by higher p'.

Presented results were produced through research conducted within activities defined in the 
Charter of The Strata Mechanics Research Institute in Cracow financed by The Ministry of 
Science and Higher Education.
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