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CONDITION MONITORING OF OFF-HIGHWAY TRUCK TIRES AT SUNGUN COPPER MINE 
USING NEURAL NETWORKS

MONITOROWANIE STANU TECHNICZNEGO OPON W CIĘŻKICH POJAZDACH  TERENOWYCH 
EKSPLOATOWANYCH W KOPALNI MIEDZI SUNGUN, PRZY UŻYCIU SIECI NEURONOWYCH

Maintenance cost of the equipment is one of the most important portions of the operating expenditures 
in mines; therefore, any change in the equipment productivity can lead to major changes in the unit cost 
of the production. This clearly shows the importance and necessity of using novel maintenance methods 
instead of traditional approaches, in order to reach the minimum sudden occurrence of the equipment 
failure. For instance, the tires are costly components in maintenance which should be regularly inspected 
and replaced among different axles. The paper investigates the current condition of equipment tires at 
Sungun Copper Mine and uses neural networks to estimate the wear of the tires. The Input parameters 
of the network composed of initial tread depth, time of inspection and consumed tread depth by the time 
of inspection. The output of the network is considered as the residual service time ratio of the tires. The 
network trained by the feed-forward back propagation learning algorithm. Results revealed a good coin-
cidence between the real and estimated values as 96.6% of correlation coefficient. Hence, better decisions 
could be made about the tires to reduce the sudden failures and equipment breakdowns. 

Keywords: Maintenance, Cost Optimization, Truck Tire, Artificial Neural Networks.

Koszty użytkowania sprzętu stanowią jedną z najpoważniejszych pozycji w zestawieniu kosztów 
eksploatacyjnych kopalni, dlatego też każda poprawa wydajności sprzętu powoduje w efekcie zmianę 
jednostkowego kosztu produkcji. Wyraźnie pokazuje to wagę i konieczność stosowania nowoczesnych 
metod eksploatacji w miejsce podejścia tradycyjnego w celu minimalizacji ryzyka wystąpienia awarii 
sprzętu. Przykładowo, opony są elementami kosztownymi w eksploatacji, wymagają regularnego przeglądu 
i ponownego mocowania na osi. W artykule przebadano stan techniczny opon w maszynach i urządzeniach 
eksploatowanych w kopalni miedzi Sungun. Przy zastosowaniu metod wykorzystujących sieci neuronowe 
określano zużycie opon.  Parametry wejściowe sieci to początkowa głębokość bieżnika, okres pomiędzy 
przeglądami, zużycie bieżnika do czasu przeglądu. Parametr wyjściowy to współczynnik określający 
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czas serwisowania opon. Sieć uczono przy użyciu algorytmu propagacji wstecznej z wyprzedzeniem 
(feedforward back-propagation algorithm). Uzyskane wyniki wskazują wysoką zbieżność pomiędzy 
wartościami rzeczywistymi a estymowanymi, współczynnik korelacji kształtuje się na poziomie 96.6%. 
Umożliwia to podejmowanie lepszych decyzji w odniesieniu do eksploatacji opon, tak by zapobiec nagłym 
uszkodzeniom i awariom sprzętu.

Słowa kluczowe: eksploatacja, optymalizacja kosztów, opona ciężarówki, sztuczne sieci neuronowe

1. Introduction 

The level of mine production extremely relates to mechanization of the equipment. The 
mechanization leads to higher production rate, lower mining costs and higher safety, (Hoseinie 
et al., 2011). Improvement of the equipment productivity needs to proper planning and applicable 
of the novel methods. The cost of tires would be considered as one of the most noticeable ele-
ments of the operating costs in any surface mining project. It is also important from safety point 
of view due to the fact that the tires are the main medium of the contact between the road and the 
machine, (Adetan et al., 2008). Additionally, it affects the fuel consumption rate. Hence a proper 
maintenance of the tires would lead to longer service life time of the tires and subsequently the 
higher safety and lower cost levels, (Michelin & Zingraff, 1996). 

This paper describes an intelligent method which has been developed for calculation of the 
residual life time of the tires of the mining dump trucks based on the wear rate of their treads.  
Following introduces the general features and structure of the tires as well as the effective factors 
on the wear rate of the tires. Then, section 3 describes the artificial neural networks (ANN) and 
its performance procedure. Afterward a case study describing the condition monitoring of the 
tires of the dump trucks at Sungun Copper Mine and its results is presented in section 4. Finally, 
section 5 concludes the research. 

2. Typical tire structure

Tires could be classified into Bias and Radial categories depending on the contact surface 
with the road and its thermal behavior. A typical tire structure has been shown in Fig. 1. Accord-
ingly the major components could be considered as:

• Tread: Provides the primary traction and wear resistance and protects the carcass under-
neath.

• Belt: Multiple, low angle, steel cord layers provide strength to the tire, stabilize the tread 
and prevent penetrations into the carcass.

• Sidewall: Provides protection for the ply and withstands flexing and weathering.
• Ply: The radial (90˚) ply transmits all loads, braking and steering forces between the 

wheel and the road and withstands the burst loads of the tire under operating pressure.
• Inner liner: A layer of rubber in tubeless tires specially compounded to prevent loss of air.
• Bead bundle: The steel bead bundle properly seats and seals the tire on the rim and 

maintains it in position.
• Apex: Rubber filler in the bead and lower sidewall area to provide progressive transition 

from the stiff bead area into the flexible sidewall.
• Chafer: A layer of hard rubber that resists erosion of the bead zone by the rim flange.
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In fact, the treads are the main comp onents of the tires that are always in a direct contact with 
the ground and designed in various size and configurations in order to provide proper traction 
under certain conditions, (Goodyear OFF-THE-ROAD TIERS 1996). Hence, the height of the 
remaining treads of the tires have been considered in this research as an appropriate parameter 
in estimation of the residual service life of the tires, (Michelin & Zingraff, 1996).

2.1. Effective factors on the wear rate of the tires

Effective factors on the wear rate of the tires are as following:
• Quality of the raw materials and production process: Tire manufacturing is a complicated 

process by using of more than 80 different raw ingredients, (Abou-Ali & Khamis, 2003). 
Therefore, quality and service lifetime of tires highly depend on the raw materials quality 
and the processing variables.

• Operating condition: Unfavorable climate conditions such as sunlight, water, heat etc. can 
lead to cracks in surface of the tire. Additionally, quality of the road surface is another 
effective factor in service lifetime of the tire, (Goodyear OFF-THE-ROAD TIERS, 1996). 
Similarly, the existing particles (soils and sediments) can also lead to more tire wear, 
(Wik & Dave, 2009). 

• Inflation pressure of the tire: Proper inflation pressure of the tires is a critical and essential 
factor in the optimization of the tire performance, safety and fuel consumption. Pressure 
gages should be used for measurement of the inflation pressure of the cool tires, (Dun-
lop, 2005). Normally tires are designed for a particular pressure and load which can be 
associated with the standard of the tire, air temperature and maximum load on the axle, 
(Goodyear OFF-THE-ROAD TIERS, 1996). Over-inflation can lead to the crack creation 
in the grooves; irregularly wear on the tire surface and increases the wear in the central 
part of the tire. Conversely, under-inflation affects the safety and service lifetime of the 

1. Tread 
2. Chipper
3. Apexes
4. Bead Bundle
5. Inner liner
6. Ply
7. Sidewall
8. Belt Package
9. Chafer

Fig. 1. A typical tire structure (Goodyear, 1996)
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tire as well as the increase in fuel consumption due to the more contact surface and fric-
tion with road. At the same time the risk of the blowout and unexpected losses in under-
inflated tires increases as the result of more contact surface with ground and cutting of 
the sidewalls of the tires. However, the tread wear will be lower in the central parts. Fig. 2 
shows the different conditions of the tire inflation, (Coast Tire & Auto Service, 2004). 

Fig. 2. Comparison of the tires at the over-inflation, proper inflation and under-infla tion conditions, 
(Coast Tire & Auto Service, 2004)

• Other elements: Consist of the improper implementation of the wheel balancing and 
wheel alignment, (Coast Tire & Auto Service, 2004).  Finally, the operator and her style 
of driving such as speed and acceleration can affect the wear rate of the treads, (Wik & 
Dave, 2009). To conclude, in order to decrease break downs and increasing of the service 
life time a regularly inspection of the tires should be accomplished by controlling of the 
inflation pressure and distinguishing of the defects. 

3. Artificial neural networks

Neural networks (McCulloch & Pitts, 1943), are a branch of artificial intelligence and 
inspired by the biological structure of the neural cells of the human brain for interconnecting of 
the basic components. It mimics the function of the neurons as the logic processing unit of the 
human brain. A typical biological neuron consisted of a cell body, a tubular axon and a multitude 
of hair-as dendrites in the human brain neural network, (Mehrotra et al., 1997).

The typical artificial network is usually composed of an input layer, one or more hidden 
layer, and an output layer. The multi-layer networks are extremely powerful. A good example is 
the multi-layer perceptron networks known as feed-forward back propagation (FFBP) networks 
with two layers (a sigmoidal initial layer is with Logsig transfer function and another linear layer 
with purelin transfer function). These networks can estimate any arbitrary function with the finite 
number of discontinuous points. Fig. 3 shows a typical artificial neural network composed of the 
input layer; 3 layers with the neurons, weights, bias and transfer functions and finally output of 
each layer, (Demuth, Beale et al. 2009). 
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3.1. Transfer functions

There are different types of transfer function which are usually chosen based on the required 
purposes. The non-linear transfer functions are composed of the Tansig and Logsig whereas linear 
transfer functions are composed of the Purlin and Poslin. Generally, the non-linear transfer func-
tions are used in the hidden layers and the linear transfer functions are utilized in the network 
output. Fig. 4 shows a non-linear transfer function, (Demuth et al., 2009). In general, the vector 
of output layer would be written as:

 a = f (W P + b ) (1)

where a is the network output matrix; f is the transfer function; W is the weight matrix; P is the 
input data matrix and b is the bias matrix, (Demuth et al., 2009). 

 Fig. 3. A typical ANN structure (Demuth, Beale et al. 2009)

Fig. 4 . Sigmoidal non-linear transfer function (Demuth, Beale et al. 2009)
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3.2. Training and validation of the model

Different algorithms have been proposed for training of the neural networks. However, 
the back propagation (BP) algorithm is the most widely used learning procedure for the neural 
networks (Rumelhart et al., 1986; Werbos, 1990; Zhu & Qi, 1997; De Jesus & Hagan, 2001; 
Wang et al., 2004; Al-Garni et al., 2006). In this algorithm, the network weights and biases are 
determined in steepest descent direction of the performance function using the mean squared er-
ror (MSE), (Demuth et al., 2009). This technique provides the most efficient learning results for 
multi-layer perceptron (MLP) neural networks, (Tawadrous & Katsabanis, 2007). Fig. 5 shows 
a typical performance procedure of a neural network.

Fig. 5 . Flowchart of neural network Algorithm that shows the typical performance procedure 
of a neural network

Input layer 

Output layer  

Hidden layer  

End of simulation  

4. Case study

4.1. Sungun Mine

Sungun copper deposit is the second largest copper mine in Iran. It is located on a hillside 
of a steep mountain between Sungun and Pakhir rivers in North-West of the country in East 
Azerbaijan province near to the border of Azerbaijan and Armenia and 130 km distance from 
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Tabriz, the capital of the province (Fig. 6). Geological reserve of the deposit is estimated as 828 
million tons with average copper grade of 0.62 percent. 

The first phase of the processing plant has been started the production in 2006 with the 
annual capacity of 7 million tons and planned to be expanded to 14 million tons in 2013. The 
mine has been designed in four push backs and it is planned to remove 50 million tons of rocks 
annually (ore plus waste) during the first 10 years of the mine life. Special circumstances have 
made the National Iranian Copper Company (NICICO) to deliver the mining operation to the 
domestic contractors. Currently two contractors are active in the mine site by employing a fleet 
of 20 Komatsu 100 ton trucks, 52 Komatsu 32 ton trucks, 11 Caterpillar 988 loader, 1 Liebherr 
17 cubic meter shovels, 8 Komatsu PC800 excavators and 9 drilling rigs. 

Fig. 6  . Location of Sungun mine (Google maps)

4.2. Data collection

Selection of the effective input parameters for estimation of the tire condition is very challeng-
ing, because most of the involving factors such as road condition, operator performance, inflation 
pressure etc. are very hard to quantify. However simplified modeling could be accomplished by 
assuming uniform operating condition, constant wear rate of the treads and continuous inspec-
tion of the inflation pressures. Therefore, three input parameters including initial tread depth, 
consumed tread depth by the time of inspection and life time of the tire by the time of inspection 
are selected as input parameters. The output of the network is considered as the residual service 
life time ratio of the tires. Study started by collecting of data and creation of a database for tire 
information of mining dump trucks of Sungun mine.

The data is collected from the performance of mining dump trucks during 2006 and 2009. 
Available data was limited to 56 tires from three different brands because of missing information 
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in the other tires and types. Then 47 data has been selected out of the mentioned 56 for train-
ing and validation of the network and 9 others have been separated for testing of the network 
(Table 1 and Table 2 respectively). The work started with random categorization of the 47 data 
set into two subsets for training (80%) and validation (20%) purposes. Training of the network 
continued as long as the network’s error to validation data is reduced. Testing data of the network 
has been done using simulation.

4.3. Network architecture

A feed-forward back propagation network has been selected for the study. It contains three 
input parameters, two hidden layers having 7 and 9 neurons respectively and an output layer 
having a single neuron. Transfer functions for the hidden and output layers have been chosen 
as Logsig (logarithmic sigmoidal transfer function) and Purelin (purely linear transfer function) 
respectively. Training of the network has been implemented by Levenberg-Marquardt algorithm 
which is the fastest method for training of the moderate sized feed-forward back propagation 
networks, (Gholamnejad & Tayarani, 2010).

TABLE 1

Dataset used for training and validation of the network

Initial 
tread,
(mm)

Inspection 
time
(Hr)

Consumed tread at 
the inspection time, 

(mm)

Residual 
life time 

ratio

Initial 
tread,
(mm)

Inspection 
time,
(Hr)

Consumed tread at 
the inspection time, 

(mm)

Residual 
life time 

ratio
66.5 8173 59.5 0.002 55 4374 39 0.278
54 2169 25 0.571 66.5 5534 41.5 0.325

66.5 4269 34.5 0.419 66.5 5377 44.5 0.250
66.5 4857 48.5 0.291 54 2169 27 0.575
49 4150 29 0.383 55 3931 37 0.235
55 3819 35 0.355 66.5 4275 39.5 0.409
55 4058 34 0.318 55 3931 41 0.184
49 3583 29 0.362 66.5 4814 35.5 0.333
72 5641 55 0.306 55 3950 36 0.212

66.5 4925 41.5 0.271 66.5 4725 34.5 0.353
54 3289 34 0.361 54 3158 34 0.425

66.5 4946 44.5 0.242 55 3921 37 0.258
66.5 4269 41.5 0.318 55 3921 41 0.169
55 4413 36 0.272 66.5 4241 35.5 0.414
54 1221 14 0.773 54 1809 22 0.680

66.5 5657 42.5 0.303 66.5 5399 37.5 0.382
55 4176 34 0.318 54 2205 25 0.626
55 4823 40 0.185 66.5 5534 43.5 0.258
55 4807 43 0.206 55 4886 33 0.238

66.5 4913 39.5 0.308 55 5129 41 0.162
55 4413 36 0.272 66.5 4455 40.5 0.321
49 4150 32 0.362 54 2413 24 0.571
54 3158 32 0.394 66.5 4872 41.5 0.334
54 2495 26 0.510 - - - -
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TABLE 2

Dataset used for simulation

Initial tread,
(mm)

Inspection time,
(Hr)

Consumed tread at the 
inspection time, (mm)

Residual life time 
ratio

54 1777 24 0.639
54 3118 27 0.139
54 2206 25 0.562
49 2206 19 0.526
54 2149 31 0.344
49 2211 21 0.386
54 1563 22 0.535
55 2140 22 0.561
55 661 12 0.778

4.4. Test and validation

Training as well as Testing and validation are accomplished by the mean squared error of 
the network output and target data as following:

 
 21

N
MSE t a

N
   (2)

where N is the number of data, t– is the target values and a is the network output, (Demuth et 
al., 2009). 

Results could be evaluated after generation of the network and its training and validation. 
There were 20 iterations to reach convergence and the 14th iteration was the last improved itera-
tion for which the values of mean squared errors were 0.00039, 0.0008 for training and valida-
tion respectively. The values of the coefficient of correlation for these stages were as 98.94, 98.8 
percentage respectively, (Fig. 7). 

V arious neuron and layer numbers have been analyzed to evaluate the selected network 
architecture. Table 3 shows the best results obtained by different neuron and layer numbers.

TA BLE 3

Best results of different layer and neuron numbers

Best training 
performance

Best validation 
performance

Number of 
neuron in 

layers

Training 
correlation 

%

Validation 
correlation 

%

Test 
correlation 

%

Best 
epoch

0.00096 0.0027 5,7 97.3 97.24 91.26 3
0.00086 0.0024 4,9 97.87 93.94 82.63 7
0.00092 0.00097 7,9,13 97.87 97.31 86.34 5
0.0014 0.0011 5,9,17 98.16 97.58 75.36 10
0.0007 0.0005 3,8,5,14 98.35 98.49 57.24 21
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Fig. 7. Correlation of the target and outputs during training and validation

Fig. 8. Comparison of the estimated and actual values
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Trained network simulation could be utilized for estimation of the residual service lifetime 
ratio of the tires. Trained network has been validated by comparison of the estimated and actual 
values of 9 independent data, Fig. 8. Fig. 9 shows their correlation which indicates some 96.6% 
of correlation between two values. 
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5. Conclusion

Considering the importance of the reliability of the tires in proper operation of the mining 
trucks and its effects on availability of the machine as well as the related costs, current study 
conducted on investigation of the condition of the haulage machines’ tires at Sungun Copper 
Mine. Study aimed to estimate of the service life time of the tires in order to prevent sudden fail-
ures. Results revealed that artificial neural networks could be effectively applied to the condition 
monitoring and life time estimation of the tires. For simplicity three input parameters including 
initial tread, inspection time and the consumed tread at the time of inspection have been consid-
ered for the network. Study showed that the lowest mean squared error occurs by considering 
of two hidden layers containing 7 and 9 neurons. The value of training mean squared error was 
equal to 3.9×10-4 in this case. Historical data has been used for training of the network and its 
efficiency has been validated by simulation of some other mutually independent data. Trained 
network could be used as a tool for estimation of the possible down time of tires and their required 
substitution time before the final failure. 
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