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FINDING THE BEST-FIT POLYNOMIAL APPROXIMATION IN EVALUATING DRILL DATA: 
THE APPLICATION OF A GENERALIZED INVERSE MATRIX

POSZUKIWANIE NAJLEPSZEJ ZGODNOŚCI W PRZYBLIŻENIU WIELOMIANOWYM 
WYKORZYSTANEJ DO OCENY DANYCH Z ODWIERTÓW – ZASTOSOWANIE UOGÓLNIONEJ 

MACIERZY ODWROTNEJ

In mining, various estimation models are used to accurately assess the size and the grade distribution 
of an ore body. The estimation of the positional properties of unknown regions using random samples 
with known positional properties was first performed using polynomial approximations. Although the 
emergence of computer technologies and statistical evaluation of random variables after the 1950s rendered 
the polynomial approximations less important, theoretically the best surface passing through the random 
variables can be expressed as a polynomial approximation. In geoscience studies, in which the number 
of random variables is high, reliable solutions can be obtained only with high-order polynomials. Finding 
the coefficients of these types of high-order polynomials can be computationally intensive. In this study, 
the solution coefficients of high-order polynomials were calculated using a generalized inverse matrix 
method. A computer algorithm was developed to calculate the polynomial degree giving the best regression 
between the values obtained for solutions of different polynomial degrees and random observational data 
with known values, and this solution was tested with data derived from a practical application. In this 
application, the calorie values for data from 83 drilling points in a coal site located in southwestern Turkey 
were used, and the results are discussed in the context of this study.
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W górnictwie wykorzystuje się rozmaite modele estymacji do dokładnego określenia wielkości 
i rozkładu zawartości pierwiastka użytecznego w rudzie. Estymację położenia i właściwości skał w nie-
znanych obszarach z wykorzystaniem próbek losowych o znanym położeniu przeprowadzano na początku 
z wykorzystaniem przybliżenia wielomianowego. Pomimo tego, że rozwój technik komputerowych 
i statystycznych metod ewaluacji próbek losowych sprawiły, że po roku 1950 metody przybliżenia wie-
lomianowego straciły na znaczeniu, nadal teoretyczna powierzchnia najlepszej zgodności przechodząca 
przez zmienne losowe wyrażana jest właśnie poprzez przybliżenie wielomianowe. W geofizyce, gdzie 
liczba próbek losowych jest zazwyczaj bardzo wysoka, wiarygodne rozwiązania uzyskać można jedynie 
przy wykorzystaniu wielomianów wyższych stopni. Określenie współczynników w tego typu wielomia-
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nach jest skomplikowaną procedurą obliczeniową. W pracy tej poszukiwane współczynniki wielomianu 
wyższych stopni obliczono przy zastosowaniu metody uogólnionej macierzy odwrotnej. Opracowano 
odpowiedni algorytm komputerowy do obliczania stopnia wielomianu, zapewniający najlepszą regresję 
pomiędzy wartościami otrzymanymi z rozwiązań bazujących na wielomianach różnych stopni i losowymi 
danymi z obserwacji, o znanych wartościach. Rozwiązanie to przetestowano z użyciem danych uzyska-
nych z zastosowań praktycznych. W tym zastosowaniu użyto danych o wartości opałowej pochodzących 
z 83 odwiertów wykonanych w zagłębiu węglowym w południowo- zachodniej Turcji, wyniki obliczeń 
przedyskutowano w kontekście zagadnień uwzględnionych w niniejszej pracy.

Słowa kluczowe: przybliżenie wielomianowe, dane z otworów, model estymacji, wartości opałowa węgla 

1. Introduction 

Mathematical and statistical approximations are used to determine the size and grade distri-
bution of ore bodies that are detected during preliminary surveys. In the mining industry, which 
involves more risks than other sectors, it is very important to accurately approximate the size 
and location of an ore body located below ground. At present, many estimation models exist to 
determine the nature and grade of an ore. In these models, the estimations are based on functions 
developed using random variables obtained in drilling tests. Among these methods, geostatistics 
and inverse distance weighting are commonly used. In the geostatistical method, the regional 
variance in the observational data is evaluated statistically, whereas in the inverse distance weight-
ing method, the evaluation is based on the relationships among the positional properties of the 
observational data. On the other hand, Soltani and Hezerkhani (2009) studied on drillhole location 
optimization for ore body modelling and intended to increase geostatistic estimation accuracy.

Howarth (2001) reviewed the approximation methods used in geoscience in detail, giving 
an account of the historical development of this field and the methods employed. According 
to Howarth, data analysis on modern geosciences began with the work of Hutton in the 18th 
century and this analysis continues today. Early pioneering studies involved the estimation of 
the Earth’s magnetic field lines and the methods used were an inspiration for later studies in 
a variety of disciplines. One of these studies was by Krumbein (1952, 1956), who used the 
method of polynomial approximation in the mapping of asymmetric regional variations. The 
aim of this method was to differentiate large-scale regional variations from small-scale localized 
deviations and thereby determine the directions and behaviors of both the general variations and 
local anomalies. Krumbein (1956) called his approximation method the “trend surface” method. 
In this method, the positional values (coordinates) of the random observations are expressed as 
the variables of a polynomial, whereas the observations are expressed as the values of random 
samples at a given position. Krumbein (1959) and Oldham and Sutherland (1955) defined the 
trend surface by using a functional description as a basis: 

 X = t + є (1)

Here, X is the observed data for given spatial coordinates, i.e., north (x) and east (y) posi-
tional properties, and t is a polynomial function created by the use of coordinates as defined by 
the trend surface fitting method (Howarth, 2001): 

 t = A00 + A10x + A01y + A20x2 + A11xy + ... + Anmxnym (2)

where є is a constant described for random error that is often neglected in estimation models.
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It is thus necessary to determine the A coefficients to solve these approximation problems. 
Generalized inverse matrix operations can be used for the solution of unknown coefficients, but 
the size of the matrix and the inverse matrix operation requires excessive computer capacity. 
More specifically, these operations require the numbers associated with the coordinates to be 
raised to high-order powers, as well as the solution of the inverse matrix operation itself, which 
renders the task of determining these coefficients difficult (Karakus et al., 2011). Dwyer and 
Waugh (1953) were the first researchers to note this difficulty. Other authors have reported that 
the errors associated with these calculations result in approximation with low regression coef-
ficients (Norcliffe, 1969; Tinkler, 1969; Chayes, 1970; Howarth, 2001,).

The fact that the averages of the values calculated by polynomial regression methods are 
fairly similar attracted the early attention of statisticians, and the concept of moving averages 
was then investigated (Krendall, 1946; Wold, 1949; Potter, 1955; Schlee, 1957; Pelletier, 1958). 
These studies were performed in diverse fields; perhaps the most interesting study was that of 
Krige (1960), whose research focused on gold reserves. Matheron (1962, 1963, 1965), who drew 
on the work completed by Krige and others, subsequently published the seminal principles of 
geostatistics, which entailed a group of statistical estimation methods. Wang and Zhang (1999) 
compared the kriging and trend surface analysis methods; they selected a fifth-degree polynomial 
to determine regional variations in heavy metal content and found that lateral variations could 
be detected using the kriging method. 

The aim of this study was to determine the best-fitting degree for a polynomial function in 
a polynomial approximation method that uses random variables. In previous trend surface map-
ping studies, the best way to select the degree of the approximating polynomial has not always 
been clear; likewise, which coefficients best estimate the constructed trend surface is often 
unclear. The consequent ambiguity regarding estimation power in practical applications leads to 
the erroneous interpretation of the results of polynomial approximation methods. In this study, 
the mean values obtained from 83 drilling sites in a coal seam were used to perform surface fit-
ting with polynomials of varying degrees, and the results of these approximations are discussed.

2. The theory of bivariate polynomial approximation

An approximation problem (function) with the goal of estimating a value at a point in 
a region of interest with minimum error using randomly positioned samples is referred to as 
the problem of finding the best-fitting function. The most commonly used approximation func-
tions in engineering and scientific applications are polynomial functions. One reason for this 
popularity is the fact that every analytical function can be expanded as a Taylor series at a given 
point. 

In this study, a finite number of observational data at known positions (north = x, east = y) 
were used to evaluate the solutions of bivariate polynomial approximations. The polynomial ap-
proximation was chosen here rather than the intermediate value theorem for polynomials because 
the number of data points is very high, and the data points are randomly distributed throughout 
the studied region. To illustrate, assume that we have a number k of different sampling points 
(xi, yi), 1 ≤ i ≤ k defined on the x-y plane, all belonging to the unknown function z = f (x, y). The 
function  z = f (x, y) thus defines a surface in the sampling space (in three dimensions). The 
purpose here is to determine the bivariate polynomial function that reproduces the data with 
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minimum error and/or estimates the value of ẑ ≈ f (x̂, ŷ) with minimum error at a point (x̂, ŷ) that 
is not given in the dataset: 

 f (x,y) ≈ p(x,y)

The bivariate polynomial, written in terms of powers of x and y (xmyn) and having a degree 
of m + n, is defined as
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The rank of the linear equation (4) is (m + 1)(n + 1), and the system (4) cannot be solved 
because the data differ from each other. The best approximated solution to the unsolvable linear 
equation system (4) is obtained by determining the vector a and using the method of least squares. 
The equation normal to (4) is obtained as follows:

 UTUa = UTb (5)
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Equation (5) has (m + 1)(n + 1) unknowns. U TU is a square and symmetric matrix and has 
a rank(U TU) = (m + 1)(n + 1).The only solution to the normal equation (5) is obtained as

 a = (U TU )–1 U Tb (6)

Here, the matrix (U TU )–1 U T is the Moore-Penrose g-inverse matrix of U and is denoted 
U+ = (U TU )–1 U T. The coefficients to be obtained from (6) represent the optimal approximated 
solution to (4) and are the coefficients of the polynomial (1). The bivariate polynomial verifying 
the observational data with minimum error is calculated. 

3. Methods

The coefficients of the polynomial were calculated using the generalized inverse matrix 
solution defined above. A computer program was written in Visual Basic for this solution. The 
general algorithm of this program is illustrated in Figure 1. First, the random observational values 
were read from a data file, and the position of each drilling site (the x-y coordinates) and values 
to be modeled (calorie and ash) were assigned to variables. Then, using the position variables 
of the drilling sites and setting the degree of the polynomial equal to the maximum number of 
drilling points, the mathematical problem was constructed. For points in the data file with known 
values, the estimation was performed using the coefficient vector obtained after solving the prob-
lem. A linear regression was performed between the original and estimated values of n drilling 
points, and the best polynomial degree was determined. This operation was repeated from the 
smallest to the highest possible (n – 1) polynomial degree, and the degree with the maximum 
linear regression value was displayed on the screen. 

4. Analysis

We tested the developed solution algorithm using data from 83 drilling points in the Afsin-
Elbistan coal basin in Turkey. The drilling sites were randomly located in an area 2,050 m long 
on the east-west axis and 2,315 m long on the north-south axis (Fig. 2). The problem defined 
above was constructed and solved for the average calorie values of the drills that were used as 
coal cutters. 

Using the computer program we developed, the approximation surface coefficients of the 
calorie values of the drilling sites were solved for various polynomial degrees. The general 
statistical evaluations of the raw calorie values and the calorie values estimated with different 
polynomial degrees are listed in Table 1. Here, the mean calorie values remained constant as the 
polynomial degree decreased, but the normal distributions and standard deviations progressively 
deviated from the raw calorie values (Fig. 3). In this case, as the polynomial degree decreased, the 
surface obtained did not include regional anomalies and thus led to surfaces that can be interpreted 
differently. To allow comparison with previous studies, the polynomial degrees selected were 
2, 3, 4, and 8 (where the m and n values are the same). Additionally, we evaluated the powers 
m = 5 and n = 12, which represented the closest surface to the original calorie values determined 
using the developed algorithm solution that resulted from our analysis.
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Fig. 1. The computer algorithm to determine the highest polynomial approximation degree
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TABLE 1
General statistical evaluation

Raw Calorie 
Values

Estimated 
values 

m = 2, n = 2 

Estimated 
values 

m = 3, n = 3

Estimated 
values 

m = 4, n = 4

Estimated 
values 

m = 8, n = 8

Estimated 
values* 

m = 5, n = 12
N 83 83 83 83 83 83

Mean 1,196.2 1,196.2 1,196.2 1,196.2 1,196.2 1,196.2
Standard 
deviation 138 92.5 101.8 105.5 129.1 130.5

Minimum 765 884.6 883.7 859.6 786.7 749.4
Maximum 1,427 1,346.2 1,382.7 1,404.9 1,426.6 1,423.2
Skewness -0.81 -0.89 -0.92 -0.89 -1.06 -1.07
Kurtosis 1.08 1.09 1.61 1.30 1.74 1.87

* The powers of the best-fitting approximation surfaces.

Fig. 2. Locations of the drilling tests used to provide the random data
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Fig. 3. General statistical evaluation of the calorie values obtained in 83 drilling tests. (a) Raw calorie value; 
(b) m = 2, n = 2; (c) m = 3, n = 3; (d) m = 4, n = 4; (e) m = 8, n = 8; (f) m = 5, n = 12; 

the best-fitting approximation surface was obtained at this degree
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Regression analysis was performed to assess the statistical relationship between the es-
timated values obtained using the solution vector and the raw data. As shown in Figure 4, the 
degree of the polynomial with the largest coefficients was n = 8 and m = 8 for the case where 
(m + 1)(n + 1) < 83, which defined the upper limits for m and n using drilling data from 83 points. 
Theoretically, the surface most accurately representing the raw data should be obtained with this 
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Fig. 4. Regression analyses. (a) m = 2, n = 2; (b) m = 3, n = 3; (c) m = 4, n = 4; (d) m = 8, n = 8; 
(e) m = 5, n = 12; the best-fitting approximation surface was obtained at this degree (R2 = 0.91)
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polynomial degree. However, the results of our analysis revealed that the closest surface to the 
raw data approached the degrees of n = 5 and m = 12. 

To verify the regression analysis, contour maps were produced from the raw and estimated 
calorie values using the triangulation method. Figure 5 shows the contour curves drawn with 
the values estimated using the same position coordinates; the surface closest to the raw data is 
situated at the polynomial degrees m = 5 and n = 12, where the highest regression coefficient 
was found. However, in the estimation of intermediate values using the solution coefficients, 
errors may arise, especially outside the region defined by the drilling locations. Furthermore, 
there were significant differences between the surfaces obtained at lower polynomial degrees 
and those obtained using the raw data (Figure 4, a–c). Therefore, lower-degree polynomial ap-
proximations should not be used, especially for the analysis of large datasets. 

5. Results and Discussion

Mathematical estimation methods have a long history in modern geoscience research, and 
the shortcomings of polynomial approximation methods paved the way for pioneering work in 
geostatistical methods. The rising popularity of modern geostatistics has limited research on poly-
nomial approximation methods and their applications. In this study, we investigated the solution 
to an estimation problem constructed from the positional properties of random variables using 
a polynomial approximation method. To determine the solution coefficients, a Moore-Penrose 
generalized inverse matrix solution was used, and a computer program was written to test the 
results obtained with different polynomial degrees. Drilling data from a coal basin were used in 
this test case, and the calorie values of this coal seam were selected as the variables. Based on 
our analysis, the following results were obtained: 
 i) The Moore-Penrose generalized inverse matrix solution can be used in approximation 

methods for nonlinear systems. However, this method can be diffi cult because the solution 
of high-ranking matrix operations is limited due to the large size of the dataset. Another 
limitation is that the degree of the polynomial used in the estimation process is determined 
by the number of data points. Additionally, in studies with an insuffi cient number of samples, 
the polynomial degree is small, and the solution for the resulting approximation surface may 
be misleading. Generalized inverse matrix methods are commonly used in the numerical 
analysis of nonlinear systems with polynomial approximations. However, no method has 
been developed to determine the degree of the polynomial that is most accurate in these 
approximation solutions. In this study, a computer program was developed to evaluate every 
possible degree of the approximating polynomial to yield the best approximation, and the 
program was tested in the analysis of drilling data. To determine the closest approximation 
model, linear regression was performed between the solution coeffi cients calculated as 
a function of polynomial degree and the raw data.

 ii) In theory, the surface most closely representing a domain of random variables is expected 
to occur at the polynomial degree equal to the number of data points. However, due to the 
structural irregularities encountered in geoscience applications, the solution providing the 
best approximation may be found at a different polynomial degree. This study found that, 
in the analysis of calorie values from the drilling data, the most accurate regression of the 
approximation surface was obtained at the polynomial degrees n = 5, m = 12. This result 
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Fig. 5. Triangulated contour maps. (a) Raw calorie values; (b) m = 2, n = 2; (c) m = 3, n = 3; 
(d) m = 4, n = 4; (e) m = 8, n = 8; (f) m = 5, n = 12; the best-fitting approximation surface was obtained 

at this degree (R2 = 0.91)
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suggests that, as is often the case in geoscience, the location-dependent directional changes 
of random samples can determine the degree of the polynomial in the application of a po-
lynomial approximation method. 
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