Theoretical and Applied Informatics
ISSN 1896-5334
Vol.23 (2011), no. 1
pp. 37-53
DOI: 10.2478/v10179-011-0003-y

Adaptive improvement of resource utilization in goal-oriented multi-user
systems

MACIEJ MLYNSKI

Association for Computing Machinery
maciej.mlynski@acm.org
Received 12 December 2010, Revised 1 February 2011, Accepted 9 March 2011

Abstract: The material presents a real problem inherent in the management of computer systems,
namely that of finding the appropriate system settings and thus being able to achieve the expected perfor-
mance. The material also presents a prototype which aims to adapt the system in such a way as to achieve
the objective, defined as the application efficiency. The prototype uses a resource-oriented mechanism that
is built into the OS Workload Manager and is focused on a proposed goal-oriented subsystem based on
fuzzy logic, managing resources to make the best use of them, and pursuing translation to the use of system
resources, including nondeterministic technology-related factors such as duration of allocation and release
of the resources, sharing the resources with the uncapped mode, and the errors of performance measure-
ment.

Keywords: adaptive performance improvement, heuristic algorithms, goal-oriented workload man-
agement

1. Introduction

Increasing volume and complexity of information systems currently in use requires
continuous improvement of the method of management of IT resources. This forces
scientists and architects to continue to work on new techniques that are more relevant to
current needs.

Increasingly popular technologies such as virtualization, cloud computing, and dy-
namic resource allocation methods, allow the use of adaptive methods for managing
resources. The ambiguity of measurements, overgrown possible parameters and the ex-
pectation of short response time to force scientists to the search for methods based on
artificial intelligence, or on heuristic, bio-inspired and genetic algorithms.

The problem of efficient resource management is not entirely new. In the paper [1]
the authors present the problems of decision-making, giving examples and stating that in

38

the 1970s these systems were based on decision-making spreadsheets, while during the
1980s optimization models were already being applied. In the 1990s decision-making
systems were enhanced through the use of artificial intelligence.

In 2000s saw a significant increase in the complexity of computer systems and exten-
sive use of virtualization mechanisms [14]. This resulted in work starting on the dynamic
allocation of resources to improve the utilization of computing servers. The problem of
resource management is closely linked to the computing environment, so work on this
topic will have to be constantly updated. This work relates to managing the resources of
the operating system z/OS (IBM Mainframe) [15], working in a distributed environment
[5], in a Grid environment [6], and dealing with scheduling policies [7].

Presented in this article is a continuation of a previous paper [8] in which the issue
was presented, a prototype solution for adaptive management of resources was proposed,
and the goal-oriented approach was outlined. The prototype solution presented in the
paper [8] was based on a knowledge base. Such a solution has its advantages and dis-
advantages. In some cases, for example, the program changes its characteristics when
executed, and it is also quite expensive to build a knowledge base.

The paper [8] suggested using heuristic algorithms to eliminate the costly process of
building a knowledge base. Application of heuristic algorithms in the management of
resources is also necessary in cases where the characteristics of the course program are
unknown. This was our motivation to continue the research, the current paper presents a
problem and a working prototype solution based on heuristic algorithms. The algorithms
which were presented here and the process of their description was inspired by the paper
[2, 3, 4], in particular, fuzzy logic defined by Professor Zadeh [2].

The environment used in the experiments is exactly the same as in the paper [8]. The
aim is not to add a new module to the operating system, but to use the built-in operating
system’s resource-oriented Workload Manager. On top of the subsystem a goal-oriented
module has been added [9], in such a way that it dynamically adjusts resources in order
to achieve better use of resources and achieve the objectives in advance of the expected
requirements of the run-time applications.

Section 2 presents related work. This section refers to an article about the goal-
oriented approach and heuristic algorithms. Similar work has addressed exactly the same
problem, i.e. translations from goal-oriented to resource-oriented using heuristic algo-
rithms could not be found. Section 3 describes the problem, while section 4 analyses it
more deeply. In this section, comparisons between solutions based on a knowledge base
and based on heuristic algorithms are presented. Each method has its own advantages
and disadvantages; depending on requirements both might be used successfully. The
methods using a knowledge base are perfect for solutions which have the same charac-
teristics in all conditions, whereas a dynamic and non-deterministic environment needs
more attention and, for this, algorithms which can deal with unclear information are

39

more welcome. Section 5 describes the evaluation of the heuristic algorithms proposed
for this problem. Section 6 presents the results of the experiments which were made
using the developed prototype. A summary can be found in section 7.

2. Related Work

Research on multiple scheduling on parallel and distributed computer systems has
been in progress ever since the computer systems have been developed. The research is
not yet finished, as it still needs to be improved and needs to use new methods according
to the environment in which the computer system is to be used. In [7] the authors devel-
oped a new method for goal-oriented job scheduling policies. The motivation for their
work was the fact that traditional job schedulers are configured with many parameters for
defining job or queue priorities. Using many parameters seems flexible, but, in reality,
tuning the values is highly challenging. To simplify resource management, the authors
[7] proposed goal-oriented policies which allow system administrators to specify high-
level performance goals rather than tuning low-level scheduling parameters. They used
first-come-first-served (FCFS)-backfill algorithms [16] as their baseline. Many papers
have proposed priority functions for improving FCFS-backfill, and some papers studied
the performance impact of giving more than one reservation [7]. The methods that have
been developed, such as large slow-down first (LXF)-backfill, which gives priority to the
job with the largest expansion factor, significantly improve the average slowdown and
average wait but give a worse maximum wait when compared with FCFS-backfill. The
work most relevant to [7] is [17] which proposes adaptive policies. Under these adaptive
policies, different backfill policies may be used during different periods of time.

In [5] the authors focus on multiple data center sites, with each handling work-
loads according to an enterprise-level strategy. The individual sites are federated and
autonomous. Each workload has a Service-Level Agreement (SLA). Developed in [5],
an analytical tool is capable of evaluating complex policies on a large-scale system and
permits independent policies for each site so that policy makers can quickly evaluate
several alternatives and their effects on the workloads before developing them.

In [7] two objective models are studied: Lexical and Eq-Tradeoff. Using the ob-
jective models, the authors [7] define a set of goal-oriented policies. In [5] the authors
superimpose a queuing network model on the finite state model to annotate the state tran-
sitions with their probability distribution functions. In [6] the authors apply the Kalman
filter and Savitzky-Golay smoothing techniques to train a sequence of confidence win-
dows and present a new adaptive hybrid method (AHModel) for load prediction guided
by trained confidence windows.

Several workload prediction methods measure mean-value or median performance,
or use auto-regression (AR), polynomial fitting, the Markov model, or seasonal varia-

40

tion to predict performance with various look-ahead times [6]. The research projects
presented in [5, 6, 7] are based mostly on theoretical foundations. Also, scientific work-
loads do not take into account the exact characteristics of applications used in real-live
environments widely found in commercial institutions such as banks, insurance or tele-
com companies. Before introducing the suggested algorithms, some modifications to the
operating systems are required.

The research presented in this article is based on what has already been implemented
in operating systems’ resource-oriented mechanisms which are working well. The prob-
lem is how to translate a goal-oriented approach into resource-oriented policies. In [10]
an analysis was presented in which an application’s performance could be influenced by
the operating system’s internal processes such as memory swapping, re-paging, or I/O
threshing. In [11] the author show that incorrect setting of class assignment rules and
policies can lead to low global system efficiency. In [12] the author demonstrates similar
issues with a partition-load manager and a micro-partitioning environment.

Some similarities to this research can be found in [15], but the authors of [15]
based their work on a different environment and pretended to change the implemented
resource-oriented Workload Manager into a goal-oriented one internally in the operating
system. This concept can cause the operating system to be dedicated only to a narrow
area of applications with performance characteristics that are suitable to the Workload
Manager implementation.

The concept of our work is to use artificial intelligence to perform dynamic goal-
oriented workload operations. By “artificial intelligence” we understand that heuristic
algorithms are proposed, some of them being well defined such as Fuzzy Logic [2], dy-
namic optimizations [1], or evolutionary computation [4]. In [3] the authors noted that
most applications of evolutionary algorithms (EA) deal with static optimization prob-
lems. However, in recent years there has been a growing interest in time-varying (dy-
namic) problems, which are typically found in real-world scenarios.

In this article we propose to use existing built-in operating system workload mech-
anisms and to use their control modules, based on heuristic algorithms, to translate the
goal-oriented approach into their policies.

3. The goal-oriented approach

The Workload Manager system is divided into N classes. Each class might contain
its own programs. The programs can vary its characteristics in different classes and can
be assigned to several classes at the same time. Individual classes can contain different
programs. Each class can be adjusted according to its own set of parameters, such as
hard maximum of memory consumption, hard maximum of processor utilization, and
hard maximum of utilization of the I/O channels.

41

Classes can have more parameters, such as a hard, as well as soft, minimum of
utilization of the resources. “Soft” means that the value may be exceeded if the other
classes do not use their computing power. Due to the complexity of the problem we
propose to control the use only of the hard maximum value for systems of I/O, CPU
and memory. These simplify the nature of the tests, but the results are also accurate for
complex systems.

A workload management tool’s built-in operating system is usually resource-
oriented [9]. In this approach each class of resources is focused on resource allocations
dependent on the amount of resources already used by the class. In Workload Manager
in AIX, low level functions allocate the resources depending on the class’s utilization
[9]. The utilization is calculated online. Each class has its own color. Red means that
it is fully utilized and does not need resources, whereas white means that it does need
more resources. During process creation, the operating system is deciding whether the
new resources should be allocated or not. The online class coloring effectively improves
the managed workload decision process. To avoid killing the processes, in case of the
need to reduce resources, priorities are decreased for all processes classified according
to the particular class.

This mechanism concerns the amount of resources allocated to particular classes. In
dynamic systems, the characteristics of the application change depending on external
conditions. The resource-oriented mechanism can cause problems in that even when the
resources are allocated properly, the application’s response time is not good enough. In
that case the resources must depend on the response time. The problem is how to find
the function for translation between response time (objective) and the proper amount of
resources needed to match the objective.

Fig. 1 shows a diagrammatic view of the problem. On the left we have the sys-
tem resources allocated to the Workload Manager classes. Each class can be created,
deleted and reconfigured online. Processes that are allocated to particular classes are
assigned by previously defined class assigned rules, which can also be reconfigured on-
line. Some processes can be allocated to pre-defined system classes such as System,
Shared or Unmanaged. The class contains processes that are responsible for memory
re-paging, filesystem caching or scheduling. Resources allocated to this class can also
have an impact on overall system efficiency. Some groups of resources are also shared
between classes, for memory pages allocated to Virtual Memory Manager (VMM).

The efficiency on this diagram, termed Eff, is defined as application efficiency. Work-
load Manager cannot measure the efficiency of an application automatically. This is done
by a user-defined procedure that is dependent on the application’s characteristics.

Each of the applications, installed in their respective classes, has its own character-

istics measured as Eff N, defined as performance. The performance for each application
can be defined separately, but it is measurable on each occasion. This may be the num-

42

Max 1 Eff1
—te— Class 1 ——
—PRUCESORS>

Max 2 T2
—— Class 2 -

Max N EffN
e Class N —
—PROCESSORS

Fig. 1. Schema of the goal-oriented approach. Classes in Workload Manager in AIX operating systems are
resource-oriented. The functions Eff(1,N) and W are goal-oriented

ber of transactions processed per unit of time, records in a database, or response time to
database queries.

The entire automatic steering mechanism is controlled by the imprecisely defined
function W which controls that server is used as best as possible. One of the assump-
tions is to use a server that is as efficient as possible. Requirements for Eff I Eff N
may change over time, since they are generally understood to change according to user
requirements.

The problem is how to choose the parameters Max I Max N, so that the user’s
requirements are met. Parameters Max [... Max N define the capacity of the server,
but performance depends on many parameters. Sometimes increasing the amount of
resources does not improve application performance.

Finding the parameters must also be realized in a short time, but the value of the
efficiency Eff I Eff N is not necessarily precise and may be adjusted later if neces-
sary. It is possible to introduce a parameter to the system saying that the class is now
desirable to use. For instance, assigning 20% of memory consumption does not have the
immediate result that the application will use this amount of memory. Processes must
be previously expropriated. In workload management solutions in operating systems,
in order to reduce resources, the process priority is decreased or the scheduling priority

43

significantly changed by increasing penalty points or increasing the time during which
the penalty for using a processor will be canceled.

In [11] the authors set up Workload Manager by using an ad-hoc method, while in
[8] the knowledge base was created by using most of the combinations, because the
parameters in Workload Manager can be of every permutation. Our approach was to
eliminate any combination where utilization of the system can be limited by Workload
Manager. Anything sought from the set of parameters can be excluded where the value:

N
> Maz;1/0 # 100%,
i=1

N
Maz; M EM # 100%, (D
i=1

N
> Maz;CPU # 100%
=1

The scenario under consideration was to store all these parameters in the knowledge
base. By contrast, such a scenario is not suitable for real applications because it requires
an examination of their characteristics in all permutations of settings. There is also a
problem with this solution, in that the time needed just to generate all the permutations
for a few classes could be extensive. It was therefore sensible to use heuristic algorithms.

4. A workload-prediction solution

The considered case of resolution was a B50 pSeries machine with one processor,
PowerPC_604e, 375 MHz, 1024 MB RAM, and two internal SCSI drives on the SCSI
controller Wide/Fast-20. The server configuration was selected because of needs to have
a better possibilities to measure a program execution time. The advantage of this solution
is that, with such a slow processor, the speedup of the test program is more apparent.

Actually, we do not know if the application performance is proper, or if the perfor-
mance is impaired by stabilizing Workload Manager. The tested solution assumes that
waiting about five seconds makes the measurement stable. A real environment should
be explored in which the application performance is changing and where the next sev-
eral measurements give the same results, only assuming that it is the correct application
performance under the given working conditions and Workload Manager settings.

The average time necessary to set up these classes is the time required to build
a knowledge base and the time to read the approximated values.

However, as well as attempting to find the settings for the CPU, it would also be
necessary to find the settings for memory and I/O channel bandwidth. Equation 2 should
be used to estimate the number of combinations for Workload Manager:

K, = 1iCPU, x iMEM,x iWe/Wy,*.. x iX, 2)

44

The parameters are defined as follows:

The total number of combinations,
Kn where n is the number of classes.
iCPU., Number .of combinations to the limits of the processors,
' where n is the number of classes
iMEM, Number .of combinations to the limits of memory,
where n is the number of classes.
iWe/Wy Number .of combinations to limit the I/O channels,
n where n is the number of classes (We/Wy means 1/O).
ix Number of combinations of additional settings,
" where n is the number of classes.

Below are a few examples of how much iterations must be used in case of needs of
using methods with knowledge base:

Example 1. Number of combinations for three classes (app, prod24, prod) in the
areas of hard limits on the maximum utilization of processors, memory, and examples of
I/O. K,, =4851 * 4851 * 4851 = 114 154 707 051

Example 2. Number of combinations for two classes (app, prod) in the area of I/O
and additional system settings. For instance, two-state characteristics of a file system
such as CIO (Concurrent I/0) would be as follows: K, =97 *97 *2 =18 818

Example 3. Number of combinations for three classes (app, prod24, prod) in the
areas of hard limits on the maximum utilization of processors, memory, and examples
of 1/0, and the twelve-setting performance applications K, = 4851 * 4851 * 4851 * 12
=1,369,856,484,612

In Example 3, if we get a stable measurement lasting 20 seconds, then the time to
build a knowledge base would take approximately: T ~1,369,856,484,612 * 20 sec. =
27,397,129,692,240 sec. = 7,610,313,803.4 hours = 317,096,408,475 days = 864,022.9
years

To prove how the efficiency of the application is dependent on the limits, some tests
must be undertaken. Fig. 2. and Fig. 3. show the relationship between setting limits
and the Workload Manager application performance. Workload Manager settings are
measured in terms of % CPU utilization. Application performance is measured as the
duration of the short program — measured in seconds.

Fig. 2. and Fig. 3. show that application performance is not closely linked to the
Workload Manager settings. The Workload Manager settings are marked on the graph
as straight lines whereas the application efficiency is not linear.

In Fig. 2 the first WLM_PROD_Setting is set to 1. The Efficiency_PROD value
changes anyway. The line is high, because the response time in this case is long.
The class is low on resources (1% CPU), so the response time is the longest of all
the rest of the program execution times, at approximately 40-60 seconds. In Fig. 3,

Response time in sec.

CPU

%

Response time in sec.

% CPU

—¢o—Efficiency_APP —8— Efficiency_ PROD24 —— Efficiency_PROD

80,00
70,00
60,00
50,00 T
40,00
30,00
20,00
10,00
0,00

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97
Step #

—o—WLM_APP_Setting —— WLM_PROD24_Setting —&—WLM_PROD_Setting

120

100

80
60
40

20

1 4 71013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97
Step #

Fig. 2. Application efficiency — first one hundred samples

—o— Efficiency_APP —g—Efficiency PROD24 —a— Efficiency_PROD

l!'ll :

P PR VAT :
!f'lrﬂﬂﬂn‘l‘d'drﬂlh‘!lj!

1 5 9 13 17 21 25 28 33 37 41 45 49 53 57 61 6 69 73 77 81 8 89 93 97 101
Step #

—o—WLM_APP_Setting —s— WLM_P ROD24_Setting —a— WLM_PROD_Setting

120

100

Adidkd Adddd

80

60

40

1 5 9 13 17 21 25 29 B 37 41 45 49 53 57 61 65 63 73 77 81 8 89 93 97 101
Step#

Fig. 3. Application efficiency — last one hundred samples

45

46

WLM_PROD_Settings change slowly from 90-100%, but the changes of settings of the
two other classes are very frequent.

The programs and scenarios in the experiments in this paper were specially prepared
to show the dependency and to enable any research to be possible, because for the re-
search we needed to have a repeatable environment. In [10] the author presented a real
problem based on a production banking environment based on Oracle databases. Highly-
loaded and missing critical systems have some other characteristics which can have also
influences here. In production databases most data are stored in Unmanaged and System
classes.

5. Heuristic algorithm

While we were studying the problem as experienced and developing our proposed
prototype we were not decided on which heuristic algorithm could be used. We first
went through the requirements and the expected results. In [2] the authors defined a
class of computation techniques named evolutionary computation (EC). The best known
algorithms in this class include genetic algorithms, evolutionary programming, evolu-
tionary strategies, and genetic programming [2]. Based on this statement and described
in the framework of [2], we went through a process of definition of our own heuristic
algorithm for the previously described problem. The most important components of any
heuristic method are:

a) The creation of a data structure describing the feasible solution; a vector of num-
bers, or some other data structure.

b) The creation operators transform one solution into another.

c) The creation of an evaluation function, which is a measure of the quality of the
solution.

With these ingredients ready, it would be easy to implement most of the heuristics.
The definitions of these above components are as follows:

Ad. a) The data structure describing a feasible solution is a set of permutations of
Workload Manager settings. In our case, for the three classes for example, it would be:

<setting values WLM>, -> <application performance>
90, 5,5,90,5,5,90,5,5,-> performance

89, 6,5,90,5,5,90,5,5,—> performance
88, 7,5,90,5,5,90,5,5,—> performance
87, 8,5,90,5,5,90,5,5,-> performance
86, 9,5,90,5,5,90,5,5,—> performance
85,10,5,90,5,5,90,5,5,—> performance
84,11,5,90,5,5,90,5,5,-> performance

47

They are, therefore, the total number of ranges 1 — 100 for classes of the Workload
Manager, or another, but the known range of the set of additional system settings. Max-
imum and minimum application performance is also well known. Typing unrealistic
values to the algorithm will not switch to starting the process of changing the system
parameters. For the experimental environment we used rules that were as simple as pos-
sible. In production and real-time environments the rules must consider elements like the
Unmanaged classes or time for relocating resources. In Workload Manager, inside the
operating system, this can be acceptable, but in the case of using the developed proto-
type in the virtual environment described in [12], such as micro-partitioning, PowerVM,
PartitionLoad manager, or PartitionMobility, the time for resource reallocation is much
more critical.

In our lab environment, the developed operators for the heuristic algorithm are as
follows:

IF performance IS very poor THEN significantly increase
the resources, reducing other resources

IF performance IS poor THEN Increase resources,
reducing other resources

IF performance IS good THEN do not manipulate

The performance for one class may be appropriate, while the performance for other
classes may be weak or very weak. Increasing resources may also in some (admittedly
very rare) cases reduce performance, whence an additional rule should be added to re-
strict the increase in amount of the resources. This is a modification of the standard
Fuzzy Logic rules defined by Professor Zadeh. The limit when a new resource should
not be added is dependent on dynamic factors that depend on server architecture, applica-
tion characteristics and some other unknown factors. As described in [12] the hardware
architecture can be changed online. A correlation between the changes and the modified
Fuzzy Rules must be defined. This is a topic for future research on this subject. In this
article we have focused on a definition of the source of the problem. We are using the
Fuzzy Rules in as simple a form as possible for that reason.

Ad. b). All vectors <wlm settings>, <application efficiency> can be found by
successive trials. However, the action is often laborious and not feasible in real environ-
ments, such as when an amount cannot be credited to one’s customer in
a banking system. The main objective of the heuristic algorithm is, therefore, to find
assignments <wlm settings>> that are unknown to the known <application efficiency>.

Ad. c¢) The evolutionary function is <application efficiency> which may approach
to the given exact value of such a execution of indicated procedure or stored procedure
in given time, or approach to some approximation such as the number of simultane-
ously working users while the built-in procedure is performed with a median time of

48

10 seconds. The number of simultaneously working users can depend also on external
circumstances or might be given in certain parameters like vary from 1000 to 1100. In
this paper, the evolutionary function was defined as the duration of the execution of the
short program, measured in seconds.

6. Results of the experiments

Fig. 4 presents the prototype. Each of the Workload Manager classes has its own
methods for measuring the local application efficiency described as Eff I, Eff 2, and Eff 3.
Function W controls the server utilization. Incorrect settings for local classes can result
in the server not being fully utilized. Function W is for controlling the incorrect behavior.
All measurements are collected by Analyzer, which is based on Fuzzy Rules and has
capabilities for deciding whether and how the workload classes can be reconfigured. The
reconfiguration is done by executor, which is able to set the correct resource-oriented
rules for the Workload Manager subsystem.

Fig. 5 shows the results from use of the proposed method. On the horizontal axis is
the time duration of the exercise experiments. On the vertical axis is shown the setting
of Workload Manager classes as a percentage of CPU utilization. The lines are marked
ParamAPP, ParamPROD24, and ParamPROD. The vertical axis shows the application
performance - measured as the duration of the program.

— —» WLM/APP Eff1

\ 4

WLM/PROD24 F———»{ Eff2

//
WLM/PROD — 0 A @

B ‘—{ Analyser

/

) J

Fuzzy Rules

Fig. 4. Prototype based on Fuzzy Logic

Shorter duration of the program means his better efficiency. In Fig. 5 parameters
GAPP, GPROD24 and GPROD:; described also as the expected execution time for the

49

= PerfApp

—+—GAPP

[948807 [911820z m roLBEnz 918802
: Evsicoz E #5126°02 E ¥6:48:02 P5UE0T
! . wmm 1207 Feeueoz Ecgizgior £8802
18 £ E £
—A“! ELhig0g Ehdeoe m:mmow LLiig0T
i Fososoz P 050802 F 05080 059802
] Eogosoz F osioei0z i E 08:08:02 0E9802
E soos0z f 60:98:02 F 60:9€.02 609202
i bovsene E sriseioc Farseo SH6E07
...- aziesnz 87:5£:0C 82620 o 8T:SE0T
b B E Joseoz E l0:5e°02 |] Flose 0 2 108807
— i ELrveo ELrae 0 m 1FFE0T
WR%DN = WR ¥e'0C e L] WE ¥€.0C o LTHE0T
b siosee W Faoreo 2 ™ PLOVEDRT + 104802
E s 5 Fireeoe 3 WE £E°02 w LFEE0T
Foims + wmmmmom " + o m BTEE 0T
foanos: 5 £ Boge 0 m g oo m £ 80’2207
: A m E o5esi0z i £ einsi0e s 0878102
E T F zeizeior 2 — E CETEOT . ZETE0T
patatam. 0 Eslzeoz + Eeveeor 4 £1Z802
ki + 13 Fouen | Fosle0z W 5611802
- b R —M Eeeileoz F 8E:1E0C g 8ELE0T
g B 1 Fozieoz E0ziE0 T 071807
o E oce0z 8 fioieoz = Eloiene $ Loilg0z
| roLeoz b E svosoz [edee SFOE0E
Rl Eizogoz E L20e02 180T
E szozoz F oos0c F 60 0E0¢ 600802
 60:0£02 M Fecerior E e5i6T0 £5562:02
F esi62:02 E asezor BT F 9s67.0¢
E osi67:07 -u E s16zi02 R F6l6z0¢
61:62:02 T Z0'62:0C NN MM MM .\.. Z062:02
L f zosz0z T A4 T i i F 1wsz0z
d F rvazoz SERgEE R EEERRER FESRRES
0o w o 295 U] 2w} asuodsay "D9S Ul ewl esuodsay NdD 2U3 40 % Pasn

Time
Fig. 5. Application efficiency

50

program is the aim of the efficiency. The actual performance of the examined program
in Fig. 5 is described as PerfAPP, PerfPROD24 and PerfPROD. Fig. 5. shows scaled
application performance. For better visibility, Perfx and Gx values have been multiplied
by two. In Fig. 5 ParamAPP and ParamPROD?24 have the same values.

As the chart on Fig. 5 shows, finding values close to those expected was fairly
quick — much faster than building a knowledge base. Adding more complex decision
rules should improve the accuracy and appropriateness of solutions, and help regulate
the boundary condition. Despite the elements which can still be improved (a prototype
was presented, and not a ready-made solution), the method using fuzzy logic gives very
good results in the regulation of the parameters of Workload Manager.

Tab. 1 shows comparison between the two methods. The three left columns is
about Methods with knowledge base, described in [8], and the three right columns about
heuristic algorithm described in this paper.

Tab. 1 shows that the time it takes to find the performance is the time to generate the
permutations, plus the time to measure the application performance, and the time needed
to stabilize the environment. Stabilizing the environment is desirable so that, after the
changes to the Workload Manager, it must then dispossess the resources so as to achieve
the expected state. Stabilizing can be faster if the changes are close to each other, but
slower when the changes are far away.

The number of permutations in Tab. 1 was reduced by combination where the ex-
pected occupancy of resources was other than 100%. We can also consider the possibility
of eliminating the boundary conditions, assuming that the class of occupancy of less than
5%, for example, may be unstable.

Method with knowledge base Heuristic algorithm
The time needed The time needed
Number | to find the '[t‘ll:: eaverage Number | to find the 'lt’il:seaverage
of per- performance . of per- performance
mutations | of applications in retgu1re(ll for mutations | of applications in ?lf edled to set
any combination setting classes any combination € class
Iclass [100 100*TS Not measured [100 ~ 2sec. ~ 2sec.
2classes|97 ## 97*TS Not measured |97 ~ 2sec. ~ 2sec.
3classes|4851 4851*TS ~ 5days $# 4851 ~ 2sec. ~ 2sec.
4classes| 156849 156849*TS Immense $$ 156849 Not measured Not measured

TS = 20 sec. for stabilization + measurement time for Application response measurement
— In theory 99
88 — In theory, about 36 days
$# — About 5 days to create a knowledge base + 0.07 seconds to read data

Tab 1. Comparison of the two solutions. The data named “methods with knowledge base” are based
on [8] while the “heuristic algorithm” data are described in this paper

51

7. Summary

Presented in this article is a prototype solution, based on fuzzy logic, to eliminate the
process of building a knowledge base. The prototype for adaptive workload management
based on the knowledge base was based on the prototype presented in the [8]. After
creating the rules for decision making, finding the Workload Manager settings took two
seconds. This is a good result, since the time needed for construction of the knowledge
base for the three classes is approximately five days.

A continuing problem is the dynamic creation of decision rules in the case of adding
or removing classes, or a substantial change in the characteristics of the application. The
presented solution has not been tested for applications that have certain properties to
adapt to the environment. Such behavior could impede the smooth finding of the correct
settings for Workload Manager.

Problems with workload management at the operating system level are complex.
On the one hand, the algorithms should be accurate for the hardware architecture and
application, on the other hand the algorithm must be quick. Any latency, even of mil-
liseconds, can causes huge performance degradation. Introducing a heuristic algorithm
for this purpose seems to be the natural way to resolve the problem of balancing accuracy
and efficiency.

Sections 4 and 5 of this article describe the need for modification of the Fuzzy Logic
rules defined in [2]. It is not enough to create rules and use them over a long period of
time. The rules must be automatically modified, depending on environmental conditions
and specific requirements for the expected efficiency.

In [13] the authors described Service Oriented Architecture, which is still new and
not clearly defined. The architecture is suitable for targeting operations which are tak-
ing place in ICT departments in commercial companies right now. The architecture is
dependent on services which must be provided with defined quality. An element of that
quality is the response time. How to measure the response time is still not clearly de-
fined, but the definition is required in order to have proper workload management at the
operating system and hardware level. We plan to explore the measurement techniques
including commonly used for measure customer satisfactions and defects from business
point of view like Six Sigma (606).

Current techniques of resource allocation and dynamic changes in system architec-
ture offer new opportunities for the development process. In the paper [12] examples
were given where even small changes in hardware architecture have a significant impact
on application performance. The application of heuristic methods for addressing the
virtual environment is another field in this area in which work will continue.

52

10.

11.

12.

13.

14.

References

. Z. Michalewicz, M. Schmidt, M. Michalewicz, C. Chiriac: Case Study: An Intelligent
Decision-Support System, IEEE Inteligent Systems, Vol. 20, No. 4, 2005.

L. A. Zadeh: Fuzzy Logic, Neutral Networks, and Soft Computing, Communications of
the ACM, Vol. 37, No. 3, 1994.

. R. K. Ursem, T. Krink, M. T. Jensen, Z. Michalewicz: Analysis and Modeling of Control
Tasks in Dynamic Systems, IEEE Transactions on Evolutionary Computation, Vol. 6,
No. 4, pp. 378-389, 2002.

Z. Michalewicz: Heuristic Methods for Evolutionary Computation Techniques, Journal of
Heuristics, Vol.1, No.2, pp. 177-206, 1995.

. M. Srivatsa, N. Rajamani, M. Devarakonda: A Policy Evaluation Tool for Multisite Re-
source Management, IEEE Transactions on Parallel and Distributed Systems, Vol. 10,
No. 10, 2008.

Y. Wu, K. Hwang, Y. Yuan, W. Zheng: Adaptive Workload Prediction of Grid Perfor-
mance in Confidence Windows, IEEE Transaction on Parallel and Distributed Systems,
On-Line, 20009.

. S. Chiang, S. Vasupongayya: Design and Potential Performance of Goal-Oriented Job
Scheduling Policies for Parallel Computer Workloads, IEEE Transactions on Parallel and
Distributed Systems, Vol. 19, No. 12, 2008.

. M. Mlynski: Automatic Adjustment of the Settings of Workload Manager for Adaptive
Performance Management, Theoretical and Applied Informatics, Vol. 21, No. 1, pp. 37-
56, 2009.

M. Mlynski: Dynamic Resources Allocation in AIX 5L, XII Conference on Real Time
Systems, WKL, pp. 247-256, 2005.

M. Mlynski: Analysis of Using an AIX Dynamic Resource Allocation Mechanism to De-
scribe a Utility Level of Server in Oracle Data Bases Environment, ZN Pol. Sl. s. Infor-
matica, Vol. 26, No. 3 (64), Gliwice, 2005.

M. Mlynski, P. Rumik: Examination of Usefulness of Workload Manager in AIX 5L to
Improve Efficiency of Application in MySQL Data Base, 11 Conference on Databases,
Applications and Systems. WKL, 2006.

M. Mlynski: The Influence of the IBM pSeries Server’s Virtualization Mechanism on Dy-
namic Resource Allocation in AIX 5L, Scalable Computing: Practice and Experience,
Vol. 10, No. 2, pp. 189-199, 2009.

N. Alur, M. Mlynski, S. Balakrishnan, O. Shure, Z. B. Cong: SOA Solution Using IBM
Information Server, IBM International Technical Support Organization, San Jose (USA),
IBM Press, 2007.

C. Matthys, M. Mlynski, N. Tollet, G. Barbati, H. Chauhan, B. Dierberger, R. Marchini,
H. Wittmann: Planning, Installing and Using the IBM Virtualization Version 2.1, IBM
International Technical Support Organization, Poughkeepsie (USA), 2006.

53

15. J. Aman, C. K. Eilert, D. Emmes, P. Yocon, D. Dillenberger: Adaptive Algorithms for
Managing a Distributed Data Processing Workload, IBM Systems Journal, Vol. 36, No. 2,
p. 242, 1997.

16. D. Lifka: The ANL/IBM SP Scheduling System, Proc. First Job Scheduling Strategies for
Parallel Processing (JSSPP °95), Apr. 1995.

17. B. Lawson and E. Smirni: Self-Adaptive Scheduler Parameterization via Online Simula-
tion, Proc. 19th IEEE Int’l Parallel and Distributed Processing Symp. (IPDPS °05), Apr.
2005.

Adaptacyjne polepszanie wykorzystania zasobéw informatycznych
w wielouzytkownikowych systemach komputerowych

Streszczenie

Artykut przedstawia realny problem wystgpujacego w zarzadzaniu systemami in-
formatycznymi polegajacy na dynamicznym znajdowaniu odpowiednich ustawien sys-
temu, dzigki ktérym mozna osiagnaé oczekiwana wydajnos$¢ aplikacji. Utrudnieniem
jest kryterium, gdzie rozpatrywana, oczekiwana wydajnos¢ aplikacji réwniez zmienia
si¢ dynamicznie.

Artykut przedstawia takze prototyp, ktérego celem jest adaptacja systemu w taki
sposob, aby osiagnac cel, zdefiniowany jako wydajnos¢ aplikacji. Prototyp wykorzys-
tuje zorientowanego na zasoby (ang. resource-oriented) wbudowanego w system ope-
racyjny zarzadcg obciazeniem (ang. Workload Manager), oraz zorientowany na cel (ang.
Goal-oriented) autorski podsystem bazujacy na logice rozmytej. Opisany autorski pro-
gram gospodaruje zasobami informatycznymi tak, aby jak najlepiej je wykorzysta¢ oraz
realizuje translacje zdefiniowanego celu na zajgto$¢ wykorzystywanych zasobdw syste-
mowych z uwzglednieniem niedeterministycznych wspétczynnikéw zwiazanych z tech-
nologig takich jak czas na alokacjg i zwalnianie tych zasobdw, ich wspétdzielenie, oraz
btedy pomiaréw wydajnosci.

Wyniki badan pokazuja, ze dzigki zastosowaniu prototypu mozliwa jest dynamiczna
zmiana celu okreslonego jako czas odpowiedzi aplikacji a czas znalezienia odpowied-
nich parametréw miedci si¢ w akceptowalnych granicach mierzonych w sekundach.
W artykule przedstawione jest takze poréwnanie przedstawionego prototypu z podob-
nym, bazujacym na koncepcji bazy wiedzy.

