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Control parameters for the quantum Deutsch algorithm
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Abstract: An example of two-qubit scenario for finding an optimal control parameters on a spin chain
to implement the quantum Deutsch algorithm is provided. Two cases are studied in this paper: two-qubit
and three-qubit systems. The latter case is used to study the impact of interaction with an environment on
the outcome of the algorithm.
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1. Introduction

The goal of this work is to analyse influence of environment on implementation on
a Heisenberg spin chain of the quantum Deutsch algorithm. A toy model of interaction
is proposed. Its application shows the importance of considering external interactions
when implementing quantum algorithms.

The paper is organised as follows. In section 2 some mathematical preliminaries
needed to understand the work are presented. In section 3 the idea of the Deutsch al-
gorithm is presented. Section 4 contains detailed description of the simulated system.
Section 5 contains results from numerical simulations preformed on the proposed sys-
tem. In section 6 the final conclusions are drawn.

2. Preliminaries

A qubit is an elementary unit of information in quantum computation. Its state is
defined as a normalised vector in a two-dimensional Hilbert space

|ψ〉 = α|0〉+ β|1〉, (1)
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where vectors |0〉 and |1〉 form the so called computational basis, |α|2 + |β|2 = 1 and
α, β ∈ C. Their explicit form is

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
. (2)

Numbers |α|2 and |β|2 denote probabilities of finding the qubit in state |0〉 or |1〉 respec-
tively when measured in computational basis.

If the system is composed of two or more qubits, its composite state is the tensor
product of all qubits forming it. For a two qubit system where one is in state |ψ〉 and the
other in state |φ〉, the state of the entire system is

|ξ〉 = |ψ〉 ⊗ |φ〉 = |ψφ〉, (3)

the latter part of equation (3) is a shorter version of the notation.
Operations on qubits are realised through unitary matrices, called quantum gates.

An example of such gate acting on a single qubit is the quantum not gate. One has

NOT |0〉 = |1〉, NOT |1〉 = |0〉. (4)

Another example is the Hadamard gate H , which does not have a classical analogue

H|0〉 =
|0〉+ |1〉√

2
, H|1〉 =

|0〉 − |1〉√
2

. (5)

There also exists a number of gates acting on two qubits. One important example is the
controlled not gate [1], usually denoted CNOT . It applies the NOT operation to the
second qubit if and only if the first qubit is in |1〉 state. All possible results of applying
this gate are summarised in equations (6)–(9)

CNOT |00〉 = |00〉, (6)

CNOT |01〉 = |01〉, (7)

CNOT |10〉 = |11〉, (8)

CNOT |11〉 = |10〉. (9)

Systems referred to as spin chains [2] and spin graphs [3] are currently deeply stud-
ied in terms of implementing quantum algorithms. Time evolution of such systems is
described by Schrödinger’s equation:

H|ψ〉 = i}
∂|ψ〉
∂t

, (10)
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where } is the Dirac constant. For simplicity a system of units is chosen in which } = 1.
H is a Hermitian matrix, the Hamiltonian of the system.

It can be shown from (10) that the time evolution is governed by

|ψ(t)〉 = e−iHt|ψ(0)〉. (11)

It is a well known fact that if H is hermitian, then e−iH is unitary [4], so one can define
a time evolution operator U = e−iHt.

To implement a quantum algorithm, one can construct a Hamiltonian consisting of
two terms

H = H0 + Hc, (12)

where H0 is called the drift Hamiltonian and can be obtained using the Heisenberg model
of interaction between qubits [5]. Hc is the control Hamiltonian, which describes inter-
action with external factors like laser or radio pulses. Depending on the type of inter-
action described by H0 the model is called either a spin chain or a spin graph. If one
includes only the nearest neighbour interactions the system is called a spin chain. If a
given qubit interacts with, in general, all the other qubits, the system is called a spin
graph.

The drift Hamiltonian of Heisenberg spin chain of length N is given by:

H0 = J
N−1∑

i=1

Sx
i Sx

i+1 + Sy
i Sy

i+1 + Sz
i Sz

i+1, (13)

where
Sk

i = 1l⊗i−1 ⊗ σk ⊗ 1l⊗N−i, (14)

where σk are the Pauli matrices given by σx = ( 0 1
1 0 ), σy = ( 0 −i

i 0 ), σz = ( 1 0
0 −1 ).

3. Algorithm

The algorithm was first proposed in 1985 by David Deutsch [6]. The problem is
as follows. Suppose one has a black box, usually called the oracle, that calculates a
function f : {0, 1} → {0, 1}. In order to check if the function is constant (f(0) = f(1))
or balanced (f(0) = f(1)). In the classical case it is needed to ask the oracle twice to
determine to which of the classes f belongs. In the quantum case it is sufficient to ask
the oracle only once.

The algorithm is as follows:

1. Prepare a state: |Ψ〉 = |0〉 ⊗ |1〉,
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2. Apply the Hadamard gate H⊗2 to the state |Ψ〉 what yields

|Ψ1〉 =
|0〉+ |1〉√

2
⊗ |0〉 − |1〉√

2
. (15)

3. Apply a unitary gate Uf : |x〉 ⊗ |y〉 → |x〉 ⊗ |f(x) ⊕ y〉 to the state |Ψ1〉 what
gives

|Ψ2〉 =

{
± |0〉+|1〉√

2
⊗ |0〉−|1〉√

2
if f is constant,

± |0〉−|1〉√
2

⊗ |0〉−|1〉√
2

if f is balanced.
(16)

4. Apply H ⊗ 1l to the state |Ψ2〉 what gives:

|Ψ3〉 =

{
±|0〉 ⊗ |0〉−|1〉√

2
if f is constant,

±|1〉 ⊗ |0〉−|1〉√
2

if f is balanced.
(17)

5. Measure the value of the first qubit. If the outcome is |0〉 then the function is
constant, if the outcome is |1〉 the function is balanced.

The quantum circuit for the algorithm is shown in Figure 1. Gate Uf implementing

Fig. 1. Quantum circuit for the Deutsch algorithm.

function f is one of the following:

Uf = CNOT, (18)

Uf = 1l⊗ 1l, (19)

Uf = 1l⊗NOT, (20)

Uf = (1l⊗NOT )CNOT. (21)

So the total unitary evolution of the system is described by one of the four gates:

UT = (H ⊗ 1l)CNOT (H ⊗H), (22)

UT = (H ⊗ 1l)(1l⊗ 1l)(H ⊗H), (23)

UT = (H ⊗ 1l)(1l⊗NOT )(H ⊗H), (24)

UT = (H ⊗ 1l)(1l⊗NOT )CNOT (H ⊗H). (25)
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4. System and simulation

The control part of the Hamiltonian given by (12) is chosen to be

Hc(t) = hx(t)Sx
1 + hy(t)S

y
1 . (26)

Fig. 2. Spin chain for the quantum Deutsch algorithm.

Hereafter parameters hx,y, are called controls and are chosen to be piecewise con-
stant. Additionally, they are applied in sequence, so for t = 0 we have Hc(0) = hx(0)Sx

1

which is kept constant until t = ∆t. Next, for t = ∆t we have Hc(∆t) = hy(∆t)Sy
1

and so on. Full evolution of the system, schematically depicted in Figure 2 is described
by a unitary matrix U , of the form:

U =
L−1∏

n=0

e−i∆t(H0+Hc(n∆t)) (27)

= e−i∆t(H0+Hc((L−1)∆t)) . . . e−i∆t(H0+Hc(0)) (28)

= U((L− 1)∆t) . . . U(∆t)U(0), (29)

where L if the total number of controls.
The goal is to find such sequence of controls that maximizes gate fidelity

F =
1

2N
|U †

T U |, (30)

where UT is the target gate, given by one of the equations (22), (23), (24) or (25) and †

denotes the hermitian conjugate of matrix U .
After the best sequence of control parameters for given L was found, the same para-

meters were applied to a system with an additional qubit. A schematic representation of
this system is shown in Figure 3. In this case, the third qubit was modeling the interac-
tion of the two-qubit system with an environment.

Fig. 3. Spin chain for the quantum Deutsch algorithm and simulated environment.
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5. Results

The following parameters were used in the numerical simulation: J = 1 and
L∆t = 3. In the case of three-qubit simulation, the additional qubit was coupled to
the second qubit with a coupling constant J = 1.

Results obtained from numerical experiments are shown in Figures 4, 5. The pro-
cedure for obtaining data points was as follows. For each L there were made 100 op-
timizations using scipy.optimize [7]. Python module. After this steps, the result
with the highest fidelity was chosen as the data point.

Fig. 4. Dependence of fidelity on number of control steps.

6. Conclusions and future work

Figures 4 and 5 show the results of numerical simulations. They show results only
for even number of controls. They show that for L = 12 the Deutsch algorithm is
implemented with very high fidelity. Adding additional control steps does not seem to
have a significant impact on the quality of the algorithm. Also the tables show that it is
almost certain that the algorithm will yield the correct result.

Adding a third qubit, of which the implementation of the algorithm is unaware, has
drastic impact on the results. Probabilities of obtaining correct results from the algorithm
we between 0.25 and 0.89 with a mean value around 0.5. Adding more control steps did
not improve the situation. So, adding an “environment” renders the algorithm useless.

Further work may include changing the coupling constant between the second and
third qubit, or maybe even changing the entire system into a spin graph, where both
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Fig. 5. Dependence of probability of the correct outcome on number of control steps (two qubits).

qubits interact with the “environment”. It may be possible to find such values of J13 and
J23 that the algorithm will be stable, what is suggested by [8].
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Parametry kontrolne dla kwantowego algorytmu Deutscha

Streszczenie

Przedstawiono przykład dwu-kubitowego znajdowania optymalnych wartości kon-
trolnych łańcucha spinowego implementującego kwantowy algorytm Deutscha. W tym
artykule rozważane są dwa przypadki: systemy dwu-kubitowe i trój-kubitowe. Ostatni
przypadek jest użyty do zbadania wpływu oddziaływania ze środowiskiem na wynik
algorytmu.


