
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.24 (2012), no. 1
pp. 33–66

DOI: 10.2478/v10179-012-0003-6

Foundation for Equivalences of BPMN Models

VITUS S.W. LAM

Computer Centre, The University of Hong Kong,
Pokfulam Road, Hong Kong.

vitus.lam@ieee.org

Received 28 January 2012, Revised 15 February 2012, Accepted 24 February 2012.

Abstract: Business Process Modelling Notation (BPMN) is a visual specification language without
well-defined concepts for equivalences. This necessitates the establishment of fundamental notions that
underpin the equivalences of BPMN processes. The main body of the paper is centered around the princi-
ple of substitutibility in which different types of equivalences of BPMN processes are formally described.
Additionally, these results provide a basis for defining the behavioural equivalence of BPMN models. Our
research investigation contributes to the field of business process management by developing a tight con-
nection between BPMN and its associated equivalence notions.

Keywords: BPMN, process equivalence, model equivalence, equivalence classification

1. Introduction

Business Process Modelling Notation (BPMN) [1], Unified Modelling Language
(UML) activity diagrams [2], Business Process Executable Language (BPEL) and Web
Services Choreography Description Language (WS-CDL) are notable emerging stan-
dards in the domain of business process management. Both BPMN and UML activity
diagrams, maintained by the Object Management Group, are visual modelling languages
for documenting, specifying and designing business processes. BPEL is an XML-based
orchestration language, whereas WS-CDL is an XML-based choreography language.
They are managed, respectively, by Organization for the Advancement of Structured In-
formation Standards (OASIS) and World Wide Web Consortium (W3C). Unlike BPMN
and UML activity diagrams that are graphical modelling languages, BPEL and WS-CDL
are text-based modelling languages. In addition, BPEL is executable, whereas BPMN
and UML activity diagrams are non-executable.



34

During the construction of business process models, a key aspect is to determine
whether a business process model is a substitute for another business process model re-
gardless of their physical representations. An important motivation for the replacement
of the original business process model is to reduce design complexity through the use
of an equivalent model with a more compact representation. As BPEL and WS-CDL
are intended to be used by programmers rather than business analysts for capturing the
design of business processes, this leads to theoretical and practical challenges for de-
veloping sound theories about the equivalence checking of models targeted at BPMN
and UML activity diagrams in lieu of the two text-based modelling languages. In our
prior works [3] and [4], a variety of equivalences for BPMN processes and UML activity
diagrams are examined. This work is considered as part of a series of research studies
with regard to the behavioural equivalences of workflow models. In particular, addi-
tional equivalence notions of BPMN processes other than those covered in [3] as well as
behavioural equivalence of BPMN models are explored.

The rest of this paper proceeds as follows. Section 2 describes related studies in the
area. A review of the notational elements of BPMN is presented in Section 3. Section 4
introduces a foundation for BPMN that serves as an underlying model for defining when
BPMN models are equivalent. Section 5 deals with the equivalences of BPMN processes
as well as the behavioural equivalence of BPMN models. A practical application of the
various types of equivalences is illustrated by means of a concrete example. Section 6
concludes the paper and points to promising areas for future work.

2. Related Work

A critical review of the literature is given in this section. We begin by consider-
ing studies related to the simulation, analysis and verification of business processes
modelled as BPMN 1.0 [5]. The techniques adopted by these attempts fall into two
main categories: process-algebraic techniques and graphical-based techniques. The π-
calculus [6, 7, 8] and Communicating Sequential Processes (CSP) [9] are utilized in the
process-algebraic approaches, whereas Petri-nets and Colored Petri-nets are employed
in the graphical-based methods.

Bog et al. [10, 11, 12, 13] propose an approach to encode BPMN models in the
π-calculus. An automated tool PiVizTool [10, 11, 12, 13] is then used for simulating
and analyzing the associated π-calculus specifications. Dijkman et al. [14] advocate
the analysis of BPMN models with ProM framework by transforming them into Petri
nets. Through the definition of a semantic mapping between BPMN and CSP, Wong and
Gibbons [15, 16] analyze the compatibility between BPMN processes by means of the
Failure-divergence Refinement (FDR) model checker [17]. They provide an extension
of previous endeavour in [18, 19] by developing a relative-time semantic model on the
basis of CSP.



35

Puhlmann [20] converts BPMN models into the π-calculus in order to check the va-
lidity of the models by using the Advanced Bisimulation Checker (ABC) [21]. Ou-Yang
and Lin [22] present a two-step transformation in which BPMN models are translated
into BPEL4WS and BPEL4WS into Colored Petri-net XML (CPNXML). A verification
of various properties is then carried out with CPN tools [23]. To verify the correctness of
BPMN models, Raedts et al. [24] make use of Petri nets as an intermediate representa-
tion when formalizing BPMN models as mCRL2. As opposed to these research studies
that emphasize the simulation, analysis and verification of BPMN, the primary focus
of our work is on developing a theoretical framework for the equivalences of BPMN
processes and diagrams. Besides, our formalization is concerned with BPMN 1.2 in lieu
of BPMN 1.0 and covers all graphical constructs of BPMN 1.2.

In what follows, we offer a review of previous contributions that are related to the
study of equivalence checking in the context of business modelling. Equivalences of
UML statechart diagrams comprising isomorphism, strong behavioural equivalence and
weak behavioural equivalence are formally specified in terms of structural congruence
and open bisimulations in [25]. Gruber and Eder et al. [26, 27] systematize different
types of semantics-preserving transformations of workflows. Our work is distinguished
from these studies [26, 27] in two respects. Firstly, we examine the equivalences of
BPMN processes and diagrams in lieu of structured workflow graphs. Secondly, we pro-
pose several BPMN specific equivalences that allow us to substitute one BPMN process
for another BPMN process repeatedly. In [4], we discuss a methodological framework
for categorizing various kinds of equivalences for UML activity diagrams. A founda-
tional theory for the equivalences of BPMN 1.1 processes is delineated in our prior
work [3]. This paper goes one step further by establishing a formal basis for the equiva-
lences of BPMN 1.2 models.

3. Graphical Syntax and Execution Semantics of BPMN

This section, which the diagrams are adapted from [3], intends to give a brief intro-
duction to BPMN 1.2. We refer the reader to [1] and [28] for further reading on this
subject.

The four kinds of graphical elements in BPMN are flow objects, connecting objects,
artifacts and swimlanes. The flow objects as depicted in Figure 1 are divided into three
types: events, activities and gateways. The start of a process is represented by a start
event in which a token is created. A none start event signifies either the event type is
undefined or the commencement of a subprocess. The receipt of a message, the occur-
rence of a particular date and time, the holding of a condition and the receipt of a signal
are denoted by a message start event, a timer start event, a conditional start event and a
signal start event, respectively. A multiple start event can be triggered by more than one
start events.



36

Fig. 1. BPMN notational elements

The end of a process is notated as an end event in which a token is consumed. A none
end event symbolizes either the event type is undefined or the end of a subprocess. The
sending of a message to another participant, the generation of an error, the cancellation of
a transaction subprocess, the triggering of a compensation, the broadcasting of a signal
and the immediate termination of a process as well as its subprocesses are rendered by
a message end event, an error end event, a cancel end event, a compensation end event,
a signal end event and a terminate end event. A multiple end event can throw more than
one end events.

The occurrence of an event during the execution of a process is represented as ei-
ther a catch intermediate event or a throw intermediate event. A catching none inter-
mediate event, a catching message intermediate event, a catching timer intermediate
event, a catching conditional intermediate event, a catching signal intermediate event
and a catching multiple intermediate event are defined in a similar way as a none start
event, a message start event, a timer start event, a conditional start event, a signal start



37

event and a multiple start event. In the same spirit, a throwing message intermediate
event, a throwing compensation intermediate event, a throwing signal intermediate event
and a throwing multiple intermediate event are similar to a message end event, a com-
pensation end event, a signal end event and a multiple end event. A catching error
intermediate event, a catching cancel intermediate event, a catching compensation inter-
mediate event, a catching link intermediate event and a throwing link intermediate event
indicate the catching of an error, the catching of a transaction cancellation, the catching
of a compensation event, the receipt of a link event and the sending of a link event.

An activity is either a task or a subprocess. There are three kinds of task markers:
loop, multiple instance and compensation. Similarly, the subprocess markers are divided
into five categories: collapsed subprocess, loop, multiple instance, ad hoc and compen-
sation. A task is atomic, whereas a subprocess is decomposable. Depending on whether
the details of a subprocess are hidden or not, a subprocess is classified as a collapsed
subprocess or a expanded subprocess. A transaction is a subprocess whose enclosed
activities are either completed or reverted.

A data-based exclusive decision gateway sends a token along one of the mutually ex-
clusive outgoing sequence flows according to which conditional expression holds (Fig-
ure 2). A data-based exclusive merge gateway emits a token on the outgoing sequence
flow whenever a token is received from one of the incoming sequence flows. An event-
based exclusive decision gateway offers a token to each of the mutually exclusive out-
going sequence flows based on the receipt of an event. An event-based exclusive merge
gateway passes any received token to the outgoing sequence flow.

Fig. 2. BPMN notational elements (continued)



38

An inclusive decision gateway activates multiple outgoing sequence flows by gener-
ating a token on all outgoing sequence flows in which the associated conditional expres-
sions hold. An inclusive merge gateway blocks until all the expected tokens are arrived
before a token is sent on the outgoing sequence flow. A complex decision gateway and a
complex merge gateway decide, respectively, the collection of outgoing sequence flows
that are activated and the set of incoming sequence flows that tokens are expected de-
pending on an expression. A parallel fork gateway splits a process flow by sending
tokens on all outgoing sequence flows. A parallel join gateway merge process flows by
waiting until a token is arrived from each incoming sequence flow.

As shown in Figure 3, there are three types of connecting objects: sequence flows,
message flows and associations. A sequence flow connects two flow objects in a process.
A normal flow refers to a flow that passes over a set of gateways, whereas an uncontrolled
flow does not include any gateways in between the start event and the end event. A
conditional flow is a sequence flow that contains a conditional expression. A default
flow is selected only if the conditional expressions of all the other sequence flows do not
hold. A message flow specifies the interaction between two participants. An association
links up a flow object with an artifact. A directed association is used for defining a data
object is an input or output of an activity. An (non-directional) association connects a
text annotation with a flow object.

Fig. 3. BPMN notational elements (continued)

The three standard artifacts in BPMN as delineated in Figure 4 are data objects,
groups and text annotations. A data object, which does not affect the flow of a process,
stands for data or document. It is the input and output of an activity. A group is a
graphical element for highlighting a group of notational elements. A text annotation
furnishes further description on a process or notational element.

A pool, which symbolizes a participant, is a container of a process. Each pool con-
sists of one or more lanes in which there is a unique name for each lane. A lane provides
a mechanism for grouping the notational elements of a process.

4. Formal Definitions for BPMN

BPMN is described in narrative form using informal English in [1]. This section
takes on the challenge of providing a mathematical model for BPMN 1.2. It builds upon



39

Fig. 4. BPMN notational elements (continued)

the mathematical definitions advocated in [3]. Definitions 1–16 are an adaptation of
the ones presented in [3]. Definitions 17–36 attempt to extend our previous work by
incorporating lanes, pools and business process diagrams into the model. The results of
this section provide the formal rigour necessary for studying the equivalences of BPMN
models.

We start by giving three definitions that capture the concepts of start events, inter-
mediate events and end events from a formal perspective. With the presence of these
definitions, a formalization of the notion of events is then introduced.

Definition 1 (Start-event Tuple) A start-event tuple is a 6-tuple ΩSE = (FNone
SE , FMsg

SE ,
FTimer

SE , FCond
SE , F Sign

SE , FMulti
SE ) where FNone

SE , FMsg
SE , FTimer

SE , FCond
SE , F Sign

SE and FMulti
SE

are sets of none start events, message start events, timer start events, conditional start
events, signal start events and multiple start events for catching the event triggers.

A start-event tuple contains six kinds of start events comprising none, message,
timer, conditional, signal and multiple.

Definition 2 (Intermediate-event Tuple) An intermediate-event tuple is a 15-tuple ΩIE

= (FNone
IE , FMsg

IE , FMsg
IE , FTimer

IE , FErr
IE , FCncl

IE , FCmpen
IE , FCmpen

IE , FCond
IE , FLink

IE , FLink
IE ,

F Sign
IE , F Sign

IE , FMulti
IE , FMulti

IE ) where

— FNone
IE , FMsg

IE , FTimer
IE , FErr

IE , FCncl
IE , FCmpen

IE , FCond
IE , FLink

IE , F Sign
IE and FMulti

IE are
sets of none intermediate events, message intermediate events, timer intermediate



40

events, error intermediate events, cancel intermediate events, compensation inter-
mediate events, conditional intermediate events, link intermediate events, signal
intermediate events and multiple intermediate events for catching the event trig-
gers; and

— FMsg
IE , FCmpen

IE , FLink
IE , F Sign

IE and FMulti
IE are sets of message intermediate events,

compensation intermediate events, link intermediate events, signal intermediate
events and multiple intermediate events for throwing the event triggers.

In BPMN, there are ten kinds of intermediate events for catching the event triggers
and five types of intermediate events for throwing the event triggers. The notion is
captured formally in form of an intermediate-event tuple.

Definition 3 (End-event Tuple) A end-event tuple is a 8-tuple ΩEE = (FNone
EE , FMsg

EE ,

FErr
EE , FCncl

EE , FCmpen
EE , F Sign

EE , FTerm
EE , FMulti

EE ) where FNone
EE , FMsg

EE , FErr
EE , FCncl

EE ,

FCmpen
EE , F Sign

EE , FTerm
EE and FMulti

EE are sets of none end events, message end events,
error end events, cancel end events, compensation end events, signal end events, termi-
nate end events and multiple end events for throwing the event triggers.

An end-event tuple divides end events into the following categories: none, message,
error, cancel, compensation, signal, terminate and multiple.

Definition 4 (Event Tuple) Suppose ΓSE = {None, Msg, Timer, Cond, Sign,
Multi}, ΓEE = {None, Msg, Err, Cncl, Cmpen, Sign, Term, Multi}, ΓIE =
{None, Msg, Timer, Err, Cncl, Cmpen, Cond, Link, Sign, Multi}, ΓIE =
{Msg, Cmpen, Link,Sign,Multi}, F SE =

⋃
i∈ΓSE

F i
SE, FEE =

⋃
i∈ΓEE

F i
EE, F IE =⋃

i∈(ΓIE∪ΓIE) F i
IE, FE =

⋃
i∈{SE,EE,IE} Fi, SAtt

E is a set of event attributes and SAttV
E is

a set of event attribute values. An event tuple is a 4-tuple ΩE = (ΩSE, ΩIE, ΩEE, ΦAtt
E )

where

— ΩSE is a start-event tuple;

— ΩIE is an intermediate-event tuple;

— ΩEE is an end-event tuple; and

— ΦAtt
E : FE × SAtt

E → SAttV
E relates an event and an event attribute to an event

attribute value.

F SE, FEE and F IE are sets of start events, end events and intermediate events. We
define a function ΦAtt

E which returns the event attribute value for a particular event
attribute of an event. An event tuple is specified in terms of a start-event tuple, an
intermediate-event tuple, an end-event tuple and a function ΦAtt

E . Next, we concentrate
on the formal description of tasks and subprocesses on which the notion of activities is
built.



41

Definition 5 (Task Tuple) Suppose ML represents the loop marker, MMI represents
the multiple instance marker, MC represents the compensation marker, the valid combi-
nation of markers for tasks SM

T = {{ML}, {MMI}, {MC}, {ML,MC}, {MMI,MC}},
the types of BPMN tasks ΓT = {Service, Receive, Send, User, Script, Manual, Refer-
ence, None} and STNames is a set of task names. A task tuple is a 4-tuple ΩT = (FT,
ΦTM, ΦTtype, ΦTName) where

— FT is a set of tasks;

— ΦTM : FT → SM
T defines for a task its set of markers;

— ΦTtype : FT → ΓT returns the type of a task; and

— ΦTName : FT → STNames maps a task to its name.

Definition 6 (Subprocess Tuple) Suppose MCSP represents the collapsed subprocess
marker, ML represents the loop marker, MMI represents the multiple instance marker,
MAD represents the ad hoc marker, MC represents the compensation marker, the valid
combination of markers for collapsed subprocesses SM

CSP = {{MCSP}, {MCSP, ML},
{MCSP, MMI}, {MCSP, MAD}, {MCSP, MC}, {MCSP, ML, MAD}, {MCSP, ML,
MC}, {MCSP, MMI, MAD}, {MCSP, MMI, MC}, {MCSP, MC, MAD}, {MCSP,
ML, MAD, MC}, {MCSP, MMI, MAD, MC}}, the valid combination of markers for
expanded subprocesses SM

ESP = {{}, {ML}, {MMI}, {MAD}, {MC}, {ML, MAD},
{ML, MC}, {MMI, MAD}, {MMI, MC}, {MC, MAD}, {ML, MAD, MC}, {MMI,
MAD, MC}}, SNP is a set of none-start-events processes, SP is a set of processes and
B is the set of Boolean values. A subprocess tuple is a 10-tuple ΩSP = (FEmbed

SP , FReuse
SP ,

FRef
SP , ΦIsTX, ΦSPM, ΦBdy

SE , ΦBdy
EE , ΦNP, ΦP, ΦRP) where

— FEmbed
SP is a set of embedded subprocesses;

— FReuse
SP is a set of reusable subprocesses;

— FRef
SP is a set of reference subprocesses;

— ΦIsTX : FEmbed
SP ∪ FReuse

SP ∪ FRef
SP → B returns whether a subprocess is a trans-

action or not;

— ΦSPM : FEmbed
SP ∪ FReuse

SP ∪ FRef
SP → SM

ESP ∪ SM
CSP specifies for a subprocess its

set of markers;

— ΦBdy
SE : {x|x ∈ (FEmbed

SP ∪ FReuse
SP ) ∧ ΦSPM(x) ∈ SM

ESP} → 2FSE returns the set
of start events attached to the boundary of an expanded subprocess;

— ΦBdy
EE : {x|x ∈ (FEmbed

SP ∪ FReuse
SP ) ∧ ΦSPM(x) ∈ SM

ESP} → 2FEE returns the set
of end events attached to the boundary of an expanded subprocess;

— ΦNP : FEmbed
SP → SNP returns the associated none-start-events process;

— ΦP : FReuse
SP → SP returns the called process; and



42

— ΦRP : FRef
SP →⋃

i∈{Embed,Reuse,Ref} F i
SP returns the subprocess being referenced.

A task tuple and a subprocess tuple comprise a collection of functions as well as,
respectively, a set of tasks and sets of embedded subprocesses, reusable subprocesses and
reference subprocesses. There are three kinds of task markers: loop markers, multiple
instance markers and compensation markers. The valid combination of markers is based
on Section 9.4.3 in [1]. Likewise, four subprocess markers are allowed to use in both
collapsed subprocesses and expanded subprocesses. These encompass loop markers,
multiple instance markers, ad hoc markers and compensation markers. The sets {MCSP,
ML, MAD} and {MCSP, ML, MC} specify that the placement of both a loop marker
and a multiple instance marker in a collapsed subprocess is invalid as defined in Section
9.4.2 of the BPMN specification [1].

Definition 7 (Activity Tuple) Suppose ΓSP = {Embed, Reuse, Ref}, ΓIE = {None,
Msg, Timer, Err, Cncl, Cmpen, Cond, Link, Sign, Multi}, ΓNLC = {None, Link,
Cncl}, ΓNL = {None, Link}, FA = FT ∪

⋃
i∈ΓSP

F i
SP, STX = {x|x ∈ ⋃

i∈ΓSP
F i

SP ∧
ΦIsTX(x) = true}, SAtt

A is a set of activity attributes and SAttV
A is a set of activity

attribute values. An activity tuple is a 5-tuple ΩA = (ΩT, ΩSP, ΦBdy[−TX]
IE , ΦBdy[TX]

IE ,
ΦAtt

A ) where

— ΩT is a task tuple;

— ΩSP is a subprocess tuple;

— ΦBdy[−TX]
IE : FA \ STX → 2

S
i∈ΓIE\ΓNLC

F i
IE returns the set of intermediate events

attached to the boundary of an activity that is not a transaction;

— ΦBdy[TX]
IE : STX → 2

S
i∈ΓIE\ΓNL

F i
IE returns the set of intermediate events attached

to the boundary of a transaction; and

— ΦAtt
A : FA × SAtt

A → SAttV
A returns the activity attribute value of an activity and

an activity attribute.

A task tuple, a subprocess tuple and a number of functions constitute an activity
tuple. None intermediate events and link intermediate events cannot be attached to the
boundary of an activity or a transaction. Additionally, cancel intermediate events are
restricted to be placed on the boundary of a transaction.

We now present four definitions that specify formally the concepts of exclusive gate-
ways, inclusive gateways, complex gateways and parallel gateways. The notion of gate-
ways is then defined by means of these definitions.

Definition 8 (Exclusive-gateway Tuple) An exclusive-gateway tuple is a 4-tuple ΩXG

= (FD
XDG, FD

XMG, FE
XDG, FE

XMG) where

— FD
XDG is a set of data-based exclusive decision gateways (DXDGs);



43

— FD
XMG is a set of data-based exclusive merge gateways (DXMGs);

— FE
XDG is a set of event-based exclusive decision gateways (EXDGs); and

— FE
XMG is a set of event-based exclusive merge gateways (EXMGs).

Sets of data-based exclusive decision gateways, data-based exclusive merge gate-
ways, event-based exclusive decision gateways and event-based exclusive merge gate-
ways form an exclusive-gateway tuple.

Definition 9 (Inclusive-gateway Tuple) An inclusive-gateway tuple is a 2-tuple ΩIG =
(F IDG, F IMG) where

— F IDG is a set of inclusive decision gateways (IDGs); and

— F IMG is a set of inclusive merge gateways (IMGs).

Definition 10 (Complex-gateway Tuple) A complex-gateway tuple is a 2-tuple ΩCG =
(FCDG, FCMG) where

— FCDG is a set of complex decision gateways (CDGs); and

— FCMG is a set of complex merge gateways (CMGs).

Definition 11 (Parallel-gateway Tuple) A parallel-gateway tuple is a 2-tuple ΩPG =
(FPFG, FPJG) where

— FPFG is a set of parallel fork gateways (PFGs); and

— FPJG is a set of parallel join gateways (PJGs).

Definition 12 (Gateway Tuple) Suppose ΓXG = {XDG, XMG}, ΓIG = {IDG, IMG},
ΓCG = {CDG, CMG}, ΓPG = {PFG, PJG}, FXG =

⋃
i∈{D,E}

⋃
j∈ΓXG

F i
j , F IG =⋃

i∈ΓIG
Fi, FCG =

⋃
i∈ΓCG

Fi, FPG =
⋃

i∈ΓPG
Fi, FG =

⋃
i∈{XG,IG,CG,PG} Fi, SAtt

G

is a set of gateway attributes and SAttV
G is a set of gateway attribute values. A gateway

tuple is a 5-tuple ΩG = (ΩXG, ΩIG, ΩCG, ΩPG, ΦAtt
G ) where

— ΩXG is an exclusive-gateway tuple;

— ΩIG is an inclusive-gateway tuple;

— ΩCG is a complex-gateway tuple;

— ΩPG is a parallel-gateway tuple; and

— ΦAtt
G : FG × SAtt

G → SAttV
G defines for a gateway and a gateway attribute the

corresponding gateway attribute value.



44

The two types of inclusive gateways are: inclusive decision gateways and inclusive
merge gateways. There are two sorts of complex gateways: complex decision gateways
and complex merge gateways. A parallel-gateway tuple is composed of sets of parallel
fork gateways and parallel join gateways. By combining an exclusive-gateway tuple,
an inclusive-gateway tuple, a complex-gateway tuple, a parallel-gateway tuple and a
function ΦAtt

G , a gateway tuple is obtained.
In what follows, a definition for connecting-object tuple is offered. A process is then

defined in terms of events, activities, gateways and connecting objects.

Definition 13 (Connecting-object Tuple) Suppose Γsrc
IE = {Msg, Msg, Timer,

Cond, Link, Link, Sign, Sign}, Γtrg
IE = {None, Msg, Msg, Timer, Cmpen,

Cmpen, Cond, Link, Link, Sign, Sign}, SF =
⋃

i∈{E,A,G} Fi, S
Bdy[−Cmpen]
IE =

⋃
A∈(FT∪

S
i∈ΓSP

F i
SP\STX) ΦBdy[−TX]

IE (A) ∪ ⋃
Tx∈STX

ΦBdy[TX]
IE (Tx) \ FCmpen

IE is the
set of non-compensation intermediate events attached to activities and transactions,
SCmpen

A = {x|(x ∈ FT ∧ MC ∈ ΦTM(x)) ∨ (x ∈ ⋃
i∈ΓSP

F i
SP ∧ MC ∈ ΦSPM(x))}

is the set of activities with the compensation marker, S
NF[src]
IE =

⋃
i∈Γsrc

IE
F i

IE \
(
⋃

A∈(FT∪
S

i∈ΓSP
F i

SP\STX) ΦBdy[−TX]
IE (A)∪⋃

Tx∈STX
ΦBdy[TX]

IE (Tx)) is the set of inter-

mediate events that are sources of normal or uncontrolled flows, S
NF[trg]
IE =

⋃
i∈Γtrg

IE
F i

IE

\ (
⋃

A∈(FT∪
S

i∈ΓSP
F i

SP\STX) ΦBdy[−TX]
IE (A) ∪⋃

Tx∈STX
ΦBdy[TX]

IE (Tx)) is the set of in-

termediate events that are targets of normal or uncontrolled flows, SAtt
C is a set of con-

necting object attributes and SAttV
C is a set of connecting object attribute values. A

connecting-object tuple is a 7-tuple ΩC = (ADO, CSF, CDA, SCond, ΦCond, ΦIsDf ,
ΦAtt

C ) where

— ADO is a set of data objects;

— CSF ⊆ (SF \ (FEE ∪ SCmpen
A ∪ F IE) ∪ (

⋃
P∈FEmbed

SP
ΦBdy

EE (P ) ∪ S
Bdy[−Cmpen]
IE

∪ S
NF[src]
IE )) × (SF \ (F SE ∪ F IE) ∪ (

⋃
P∈FEmbed

SP
ΦBdy

SE (P ) ∪ S
NF[trg]
IE )) is a set

of sequence flows (SFs);

— CDA ⊆ (FA × ADO) ∪ (ADO × FA) ∪ (FCmpen
IE × FA) is a set of directed

associations;

— SCond is a set of conditions;

— ΦCond : CSF → SCond returns the condition of a sequence flow;

— ΦIsDf : CSF → B returns whether a sequence flow is a default sequence flow; and

— ΦAtt
C :

⋃
i∈{SF,DA}Ci × SAtt

C → SAttV
C relates a connecting object and a connect-

ing object attribute to a connecting object attribute value.



45

In Definition 13, the expression (SF \ (FEE ∪ SCmpen
A ∪ F IE) ∪ (

⋃
P∈FEmbed

SP

ΦBdy
EE (P ) ∪ S

Bdy[−Cmpen]
IE ∪ S

NF[src]
IE )) states that

(i) an end event cannot be a source flow object with the exception that it is attached
to the boundary of an expanded subprocess; and

(ii) a compensation activity does not have any outgoing sequence flows.

In a similar way, the expression (SF \ (F SE ∪ F IE)∪ (
⋃

P∈FEmbed
SP

ΦBdy
SE (P )∪ S

NF[trg]
IE ))

says that a start event cannot be a target flow object except it is attached to the boundary
of an expanded subprocess. A sequence flow is a subset of the cross product of these two
expressions. The expression (FA × ADO) ∪ (ADO × FA) ∪ (SCmpen

IE × FA) stipulates
that a directed association connects

(i) a data object with an activity; or

(ii) a compensation intermediate event for catching the event trigger with an activity.

Definition 14 (Process) A process is a 4-tuple P = (ΩE, ΩA, ΩG, ΩC) where

— ΩE is an event tuple;

— ΩA is an activity tuple;

— ΩG is a gateway tuple; and

— ΩC is a connecting-object tuple.

A process consists of four components: an event tuple, an activity tuple, a gateway
tuple and a connecting-object tuple.

Definition 15 (None-start-events Process) Given a process P with a start-event tuple
ΩSE = (FNone

SE , FMsg
SE , FTimer

SE , FCond
SE , F Sign

SE , FMulti
SE ). The process P is a none-start-

events process if and only if
∧

i∈ΓSE\{None}(F
i
SE = ∅).

A none-start-events process is a process that contains solely none start events.

Definition 16 The function ΦTP, defined below, returns the task name, none-start-
events process, called process or referenced subprocess depending on whether the pa-
rameter is a task, an embedded subprocess, a reusable subprocess or a reference sub-
process.

ΦTP(x) =





ΦTName(x) if x ∈ FT

ΦNP(x) if x ∈ FEmbed
SP

ΦP(x) if x ∈ FReuse
SP

ΦRP(x) if x ∈ FRef
SP .



46

Definition 17 (Equivalence Class 29) Suppose R is an equivalence relation on a set S
and s ∈ S. An equivalence class of s, written [s]R, is defined by

[s]R = {x ∈ S|(x, s) ∈ R}.

An equivalence relation, which is a binary relation, divides a set into equivalence
classes which are pairwise disjoint. Each element of the set is a member of solely one
equivalence class. All elements of an equivalence class are regarded as equivalent.

Definition 18 Suppose a process P = (ΩE, ΩA, ΩG, ΩC), ΩE = (ΩSE, ΩIE, ΩEE,
ΦAtt

E ), ΩA = (ΩT, ΩSP, ΦBdy[−TX]
IE , ΦBdy[TX]

IE , ΦAtt
A ), ΩG = (ΩXG, ΩIG, ΩCG,

ΩPG, ΦAtt
G ), ΩC = (ADO, CSF, CDA, SCond, ΦCond, ΦIsDf , ΦAtt

C ), ΩSE = (FNone
SE ,

FMsg
SE , FTimer

SE , FCond
SE , F Sign

SE , FMulti
SE ), ΩIE = (FNone

IE , FMsg
IE , FMsg

IE , FTimer
IE , FErr

IE ,

FCncl
IE , FCmpen

IE , FCmpen
IE , FCond

IE , FLink
IE , FLink

IE , F Sign
IE , F Sign

IE , FMulti
IE , FMulti

IE ), ΩEE

= (FNone
EE , FMsg

EE , FErr
EE , FCncl

EE , FCmpen
EE , F Sign

EE , FTerm
EE , FMulti

EE ), ΩT = (FT, ΦTM,
ΦTtype, ΦTName), ΩSP = (FEmbed

SP , FReuse
SP , FRef

SP , ΦIsTX, ΦSPM, ΦBdy
SE , ΦBdy

EE , ΦNP, ΦP,
ΦRP), ΩXG = (FD

XDG, FD
XMG, FE

XDG, FE
XMG), ΩIG = (F IDG, F IMG), ΩCG = (FCDG,

FCMG), ΩPG = (FPFG, FPJG), domainSF(CSF) = SF \ (FEE ∪ SCmpen
A ∪ F IE)

∪ (
⋃

P∈FEmbed
SP

ΦBdy
EE (P ) ∪ S

Bdy[−Cmpen]
IE ∪ S

NF[src]
IE ), rangeSF(CSF) = SF \ (F SE ∪

F IE) ∪ (
⋃

P∈FEmbed
SP

ΦBdy
SE (P ) ∪ S

NF[trg]
IE ), domainDA(CDA) = FA ∪ ADO ∪ FCmpen

IE

and rangeDA(CDA) = ADO ∪ FA. The functions sourceSF : CSF → domainSF(CSF)
and targetSF : CSF → rangeSF(CSF) relate a sequence flow (o1, o2) ∈ CSF to o1 and
o2, respectively. The functions sourceDA : CDA → domainDA(CDA) and targetDA :
CDA → rangeDA(CDA) map a directed association (a1, a2) ∈ CDA, respectively, to a1

and a2.

The functions sourceSF and targetSF return, respectively, the source and target flow
objects of a sequence flow. Likewise, the functions sourceDA and targetDA determine
the source and target objects of a directed association.

The formal definition that follows specifies how a process is partitioned. With the
concept of partitioned process in place, the notions lane and pool are then defined sub-
sequently.

Definition 19 (Partitioned Process) Suppose a process P = (ΩE, ΩA, ΩG, ΩC). As-
sume that ΩE, ΩA, ΩG and ΩC are defined in Definition 18 and equivalence rela-
tions RDO, RSF, RDA, RCond, RNone

SE , RMsg
SE , RTimer

SE , RCond
SE , RSign

SE , RMulti
SE , RNone

IE ,

RMsg
IE , RMsg

IE , RTimer
IE , RErr

IE , RCncl
IE , RCmpen

IE , RCmpen
IE , RCond

IE , RLink
IE , RLink

IE , RSign
IE ,

RSign
IE , RMulti

IE , RMulti
IE , RNone

EE , RMsg
EE , RErr

EE , RCncl
EE , RCmpen

EE , RSign
EE , RTerm

EE , RMulti
EE , RT,

REmbed
SP , RReuse

SP , RRef
SP , RD

XDG, RD
XMG, RE

XDG, RE
XMG, RIDG, RIMG, RCDG, RCMG,



47

RPFG, RPJG on ADO, CSF, CDA, SCond, FNone
SE , FMsg

SE , FTimer
SE , FCond

SE , F Sign
SE , FMulti

SE ,

FNone
IE , FMsg

IE , FMsg
IE , FTimer

IE , FErr
IE , FCncl

IE , FCmpen
IE , FCmpen

IE , FCond
IE , FLink

IE , FLink
IE ,

F Sign
IE , F Sign

IE , FMulti
IE , FMulti

IE , FNone
EE , FMsg

EE , FErr
EE , FCncl

EE , FCmpen
EE , F Sign

EE , FTerm
EE ,

FMulti
EE , FT, FEmbed

SP , FReuse
SP , FRef

SP , FD
XDG, FD

XMG, FE
XDG, FE

XMG, F IDG, F IMG,
FCDG, FCMG, FPFG, FPJG. The process P is a partitioned process.

Definition 20 (Lane-start-event Tuple) Suppose a process P is a partitioned process.
Assume that ΓSE is defined in Definition 4. A lane-start-event tuple is a 6-tuple ωSE

= (FFNone
SE , FFMsg

SE , FFTimer
SE , FFCond

SE , FF Sign
SE , FFMulti

SE ) where
∧

i∈ΓSE
(FF i

SE ⊆
F i

SE ∧ ∀σ1, σ2 ∈ FF i
SE.[σ1]Ri

SE
= [σ2]Ri

SE
).

Definition 21 (Lane-intermediate-event Tuple) Suppose a process P is a partitioned
process. Assume that ΓIE and ΓIE are defined in Definition 4. A lane-intermediate-

event tuple is a 15-tuple ωIE = (FFNone
IE , FFMsg

IE , FFMsg
IE , FFTimer

IE , FFErr
IE , FFCncl

IE ,

FFCmpen
IE , FFCmpen

IE , FFCond
IE , FFLink

IE , FFLink
IE , FF Sign

IE , FF Sign
IE , FFMulti

IE , FFMulti
IE )

where
∧

i∈ΓIE∪ΓIE
(FF i

IE ⊆ F i
IE ∧ ∀σ1, σ2 ∈ FF i

IE. [σ1]Ri
IE

= [σ2]Ri
IE

).

Definition 22 (Lane-end-event Tuple) Suppose a process P is a partitioned process.
Assume that ΓEE is defined in Definition 4. A lane-end-event tuple is a 8-tuple ωEE

= (FFNone
EE , FFMsg

EE , FFErr
EE , FFCncl

EE , FFCmpen
EE , FF Sign

EE , FFTerm
EE , FFMulti

EE ) where∧
i∈ΓEE

(FF i
EE ⊆ F i

EE ∧ ∀σ1, σ2 ∈ FF i
EE.[σ1]Ri

EE
= [σ2]Ri

EE
).

Definition 23 (Lane-event Tuple) Suppose a process P is a partitioned process. A
lane-event tuple is a 4-tuple ωE = (ωSE, ωIE, ωEE, ΦAtt

E ) where

— ωSE is a lane-start-event tuple;

— ωIE is a lane-intermediate-event tuple; and

— ωEE is a lane-end-event tuple.

A lane-start-event tuple relies on a start-event tuple in which every element of the
lane-start-event tuple is a subset of the respective element of the start-event tuple. Like-
wise, a lane-intermediate-event tuple and a lane-end-event tuple relate, respectively, to
an intermediate-event tuple and an end-event tuple. A lane-start-event tuple, a lane-
intermediate-event tuple and a lane-end-event tuple and the function ΦAtt

E make up a
lane-event tuple.

Definition 24 (Lane-task Tuple) Suppose a process P is a partitioned process. A lane-
task tuple is a 4-tuple ωT = (FFT, ΦTM, ΦTtype, ΦTName) where FFT ⊆ FT ∧ ∀σ1,
σ2 ∈ FFT. [σ1]RT

= [σ2]RT
.



48

Definition 25 (Lane-subprocess Tuple) Suppose a process P is a partitioned process
and ΓSP = {Embed, Reuse, Ref}. A lane-subprocess tuple is a 10-tuple ωSP =
(FFEmbed

SP , FFReuse
SP , FFRef

SP , ΦIsTX, ΦSPM, ΦBdy
SE , ΦBdy

EE , ΦNP, ΦP, ΦRP) where
∧

i∈ΓSP

(FF i
SP ⊆ F i

SP ∧ ∀σ1, σ2 ∈ FF i
SP. [σ1]Ri

SP
= [σ2]Ri

SP
).

Definition 26 (Lane-activity Tuple) Suppose a process P is a partitioned process. A
lane-activity tuple is a 5-tuple ωA = (ωT, ωSP, ΦBdy[−TX]

IE , ΦBdy[TX]
IE , ΦAtt

A ) where

— ωT is a lane-task tuple; and

— ωSP is a lane-subprocess tuple.

There are correspondences between lane-task tuple and task tuple as well as lane-
subprocess tuple and subprocess tuple. A lane-activity tuple is defined in terms of a
lane-task tuple and a lane-subprocess tuple.

Definition 27 (Lane-exclusive-gateway Tuple) Suppose a process P is a partitioned
process, ΓXT = {D, E} and ΓXG = {XDG,XMG}. A lane-exclusive-gateway tuple is
a 4-tuple ωXG = (FFD

XDG, FFD
XMG, FFE

XDG, FFE
XMG) where

∧
i∈ΓXT

∧
j∈ΓXG

(FF i
j ⊆

F i
j ∧ ∀σ1, σ2 ∈ FF i

j .[σ1]Ri
j

= [σ2]Ri
j
).

Definition 28 (Lane-inclusive-gateway Tuple) Suppose a process P is a partitioned
process and ΓIG = {IDG, IMG}. A lane-inclusive-gateway tuple is a 2-tuple ωIG =
(FF IDG, FF IMG) where

∧
i∈ΓIG

(FFi ⊆ Fi ∧ ∀σ1, σ2 ∈ FFi .[σ1]Ri = [σ2]Ri).

Definition 29 (Lane-complex-gateway Tuple) Suppose a process P is a partitioned
process and ΓCG = {CDG,CMG}. A lane-complex-gateway tuple is a 2-tuple ωCG =
(FFCDG, FFCMG) where

∧
i∈ΓCG

(FFi ⊆ Fi ∧ ∀σ1, σ2 ∈ FFi .[σ1]Ri = [σ2]Ri).

Definition 30 (Lane-parallel-gateway Tuple) Suppose a process P is a partitioned
process and ΓPG = {PFG, PJG}. A lane-parallel-gateway tuple is a 2-tuple ωPG =
(FFPFG, FFPJG) where

∧
i∈ΓPG

(FFi ⊆ Fi ∧ ∀σ1, σ2 ∈ FFi .[σ1]Ri = [σ2]Ri).

Definition 31 (Lane-gateway Tuple) Suppose a process P is a partitioned process. A
lane-gateway tuple is a 5-tuple ωG = (ωXG, ωIG, ωCG, ωPG, ΦAtt

G ) where

— ωXG is a lane-exclusive gateway tuple;

— ωIG is a lane-inclusive gateway tuple;

— ωCG is a lane-complex-gateway tuple; and

— ωPG is a lane-parallel-gateway tuple.



49

Definition 32 (Lane-connecting-object Tuple) Suppose a process P is a partitioned
process and ΓCO = {SF, DA}. A lane-connecting-object tuple is a 7-tuple ωC =
(AADO, CC SF, CCDA, SSCond, ΦCond, ΦIsDf , ΦAtt

C ) where (AADO ⊆ ADO ∧
∀σ1, σ2 ∈ AADO.[σ1]RDO

= [σ2]RDO
) ∧ ∧

i∈ΓCO
(CC i ⊆ Ci ∧ ∀σ1, σ2 ∈ CC i .

[σ1]Ri = [σ2]Ri) ∧ (SSCond ⊆ CCond ∧ ∀σ1, σ2 ∈ SSCond.[σ1]RCond
= [σ2]RCond

).

Analogously, we define a lane-exclusive-gateway tuple, a lane-inclusive-gateway tu-
ple, a lane-complex-gateway tuple, a lane-parallel-gateway tuple, a lane-gateway tuple
and a lane-connecting-object tuple based on the same principles.

Definition 33 (Lane Structure) Suppose a process P is a partitioned process. A lane
structure is a 4-tuple LS = (ωE, ωA, ωG, ωC) where

— ωE is a lane-event tuple;

— ωA is a lane-activity tuple;

— ωG is a lane-gateway tuple; and

— ωC is a lane-connecting-object tuple.

A lane structure describes the way in which events, activities, gateways and connect-
ing objects are connected together in a lane.

Definition 34 (Lane) A lane is a 2-tuple LANE = (SLNames, LS ) where

— SLNames is a set of lane names; and

— LS is a lane structure.

Definition 35 (Pool) A pool is a 2-tuple POOL = (PName, SLANE) where

— PName is a pool name; and

— SLANE is a set of lanes.

As lanes can be nested, a lane is uniquely identified by a set of lane names. Each
pool has a pool name and embodies a collection of lanes.

In the following, we end this section by providing a definition of a business process
diagram.

Definition 36 (Business Process Diagram) Let ε represents the empty string, FMsg

SE(Pi )

be the set of message start events of process Pi for catching the event triggers, FMsg

IE(Pi )

be the set of message intermediate events of process Pi for catching the event triggers,
FMsg

IE(Pi )
be the set of message intermediate events of process Pi for throwing the event

triggers, FMsg

EE(Pi )
be the set of message end events of process Pi for throwing the event

triggers, FA(Pi ) be the set of activities of process Pi and PName(POOLi) be the pool
name of pool POOLi for i = 1, 2. A business process diagram is a 4-tuple BPD =
(SPOOL, SP, ΦPOOL→P, CMF) where



50

— SPOOL is a set of pools;

— SP is a set of processes;

— ΦPOOL→P : SPOOL → SP ∪ {ε} relates a pool to a process; and

— CMF ⊆
⋃

P1,P2∈SP
((FMsg

EE(P1) ∪ FMsg

IE(P1) ∪ FA(P1))

×(FMsg

SE(P2) ∪ FMsg

IE(P2) ∪ FA(P2)))∪
⋃

P1∈SP
POOL2∈SPOOL

((FMsg

EE(P1) ∪ FMsg

IE(P1) ∪ FA(P1))× {PName(POOL2)})∪
⋃

P2∈SP
POOL1∈SPOOL

({PName(POOL1)} × (FMsg

SE(P2) ∪ FMsg

IE(P2) ∪ FA(P2)))∪
⋃

POOL1,POOL2∈SPOOL
({PName(POOL1)}×{PName(POOL2)}) is a set of mes-

sage flows such that ΦPOOL→P(POOLi) = Pi.

The expression
⋃

P1,P2∈SP
((FMsg

EE(P1) ∪ FMsg

IE(P1) ∪ FA(P1)) × (FMsg

SE(P2) ∪ FMsg

IE(P2) ∪
FA(P2))) states that a message flow joins the flow objects of two different pools. The

expressions
⋃

P1∈SP
POOL2∈SPOOL

((FMsg

EE(P1) ∪ FMsg

IE(P1) ∪ FA(P1))× {PName(POOL2)}) and
⋃

P2∈SP
POOL1∈SPOOL

({PName(POOL1)} × (FMsg

SE(P2) ∪ FMsg

IE(P2) ∪ FA(P2))) stipulate that

a message flow links up a pool and a flow object of another pool. The expression⋃
POOL1,POOL2∈SPOOL

({PName(POOL1)} × {PName(POOL2)}) says that a message
flow connects two different pools.

5. Equivalences of BPMN Models

A collection of equivalences for BPMN processes is discussed in considerable detail
in our previous work [3]. This section aims to further develop the ideas by (i) introduc-
ing another set of equivalences; and (ii) defining precisely when two business process
diagrams are behavioural equivalent.

To capture the concept of equivalences of BPMN models, we begin with a definition
for inner-outer-DXG form. The inner-outer-DXG form is motivated by the need to re-
structure a BPMN process. The main idea is that the structure of a BPMN process can be
expressed as an alternative representation by swapping (i) an inner data-based exclusive
decision gateway with an outer data-based exclusive decision gateway and (ii) an inner
data-based exclusive merge gateway with an outer data-based exclusive merge gateway.
Based on this definition, we then present the IO-DXG-equivalence and its properties.

Definition 37 (Inner-outer-DXG Form) Let P1 be a process where ΩC, CSF, SCond

are replaced by ΩC(P1) , CSF(P1) , SCond(P1) . If FO1, FO2 ∈ SF, Ai, Aj ∈ FA, G1,
G2 ∈ FD

XDG, G3, G4 ∈ FD
XMG, c1, c2, . . ., cm, cm+1, cm+2, . . ., cn, cn+1 ∈ SCond(P1) ,

(FO1, G2), (G2, A1), (G2, A2), . . ., (G2, Am), (G2, G1), (G1, Am+1), (G1, Am+2),



51

. . ., (G1, An), (A1, G4), (A2, G4), . . ., (Am, G4), (Am+1, G3), (Am+2, G3), . . .,
(An, G3), (G3, G4), (G4, FO2) ∈ CSF(P1) , ΦCond((G2, Ai)) = ci, ΦCond((G1, Aj)) =
cj , ΦCond((G2, G1)) = cn+1, CC SF(P1) = {(FO1, G2), (G2, A1), (G2, A2), . . ., (G2,
Am), (G2, G1), (G1, Am+1), (G1, Am+2), . . ., (G1, An), (A1, G4), (A2, G4), . . ., (Am,
G4), (Am+1, G3), (Am+2, G3), . . ., (An, G3), (G3, G4), (G4, FO2)}, SSCond(P1) =
{cm+1, cm+2, . . ., cn, cn+1} for i = 1, . . . , m and j = m + 1, . . . , n, then there is a
unique process P2 which is in inner-outer-DXG form such that

— ΩC, CSF, SCond are replaced by ΩC(P2) , CSF(P2) , SCond(P2) ,

— FO1, FO2 ∈ SF,

— Ai, Aj ∈ FA,

— G1, G2 ∈ FD
XDG, G3, G4 ∈ FD

XMG,

— c1, c2, . . ., cm, cn+1 ∧ cm+1, cn+1 ∧ cm+2, . . ., cn+1 ∧ cn, c1 ∨ c2 ∨ . . . ∨ cm ∈
SCond(P2) ,

— (FO1, G1), (G1, G2), (G2, A1), (G2, A2), . . ., (G2, Am), (G1, Am+1), (G1,
Am+2), . . ., (G1, An), (A1, G4), (A2, G4), . . ., (Am, G4), (G4, G3), (Am+1,
G3), (Am+2, G3), . . ., (An, G3), (G3, FO2) ∈ CSF(P2) ,

— ΦCond((G2, Ai)) = ci,

— ΦCond((G1, Aj)) = cn+1 ∧ cj ,

— ΦCond((G1, G2)) = c1 ∨ c2 ∨ . . . ∨ cm,

— CCSF(P2) = {(FO1, G1), (G1, G2), (G2, A1), (G2, A2), . . ., (G2, Am), (G1,
Am+1), (G1, Am+2), . . ., (G1, An), (A1, G4), (A2, G4), . . ., (Am, G4), (G4,
G3), (Am+1, G3), (Am+2, G3), . . ., (An, G3), (G3, FO2)},

— SSCond(P2) = {cn+1 ∧ cm+1, cn+1 ∧ cm+2, . . ., cn+1 ∧ cn, c1 ∨ c2 ∨ . . . ∨ cm},

— CSF(P2) = CSF(P1) \ CC SF(P1) ∪ CC SF(P2) and

— SCond(P2) = SCond(P1) \ SSCond(P1) ∪ SSCond(P2)

for i = 1, . . ., m and j = m + 1, . . ., n.

The rationale behind this definition is to capture the concept that an equivalent repre-
sentation is obtained by (i) swapping a pair of inner data-based exclusive decision gate-
way and data-based exclusive merge gateway with a pair of outer data-based exclusive
decision gateway and data-based exclusive merge gateway; (ii) modifying the associated
conditional expressions from cj to cn+1 ∧ cj ; (iii) adding a new conditional expression
c1 ∨ c2 ∨ . . . ∨ cm; and (iv) deleting the conditional expression cn+1. Swapping the
gateways repeatedly results in a unique process P2 where no further transformation can
be applied.



52

The intuitive meaning of the equivalence of BPMN processes is that two BPMN
processes are considered as equivalent if and only if there is a third BPMN process
that is the normal form of these two processes. Typically, an inner-outer-DXG form
is a normal form. Based on these concepts, the equivalence of BPMN processes is
formalized in terms of inner-outer-DXG form as the following definition.

Definition 38 (IO-DXG-equivalence) For any BPMN processes P1 and P2, P1 is IO-
DXG-equivalent to P2, denoted by P1 ≈ IO

DXG P2, if and only if there is a BPMN process
P3 such that P3 is an inner-outer-DXG form of P1 and P2.

Definition 38 states that two BPMN processes are IO-DXG-equivalent if they can be
convertible into a BPMN process which is in inner-outer-DXG form.

Proposition 1 The relation ≈ IO
DXG is transitive.

Proof. Suppose P1 ≈ IO
DXG P2 and P2 ≈ IO

DXG P3. Since P1 ≈ IO
DXG P2, P2 ≈ IO

DXG
P3 and the normal form is a unique process, it follows from Definition 38 that P4 is a
inner-outer-DXG form of P1, P2 and P3. Since P4 is a inner-outer-DXG form of P1 and
P3, we obtain P1 ≈ IO

DXG P3. Thus, ≈ IO
DXG is transitive. ¤

Fig. 5. IO-DXG-equivalent BPMN processes



53

Proposition 2 The relation ≈ IO
DXG is an equivalence.

Proof. For reflexivity and symmetry, these follow immediately from Definition 38. Thus,
≈ IO

DXG is an equivalence as ≈ IO
DXG is transitive by Proposition 1. ¤

Consider Figure 5 (a), a pair of inner data-based exclusive decision gateway and
data-based exclusive merge gateway is swapped with a pair of outer data-based exclusive
decision gateway and data-based exclusive merge gateway. The conditional expressions
c3 and c4 are changed to c5 ∧ c3 and c5 ∧ c4. A new conditional expression c1 ∨ c2

is added and the conditional expression c5 is removed as shown in Figure 5 (b). The
two BPMN processes (Figures 5 (a) and 5 (b)) are IO-DXG-equivalent since the BPMN
process in Figure 5 (c) is a normal form of them.

A BPMN process can be simplified through the elimination of a pair of inner data-
based exclusive gateways. A formal definition is given below.

Definition 39 (Eliminated-inner-DXG Form) Let P1 be a process where ΩG, ΩC,
ΩPG, FPFG, FPJG, CSF, SCond are replaced by ΩG(P1) , ΩC(P1) , ΩPG(P1) , FPFG(P1) ,
FPJG(P1) , CSF(P1) , SCond(P1) . If FO1, FO2 ∈ SF, Ai, Aj ∈ FA, G1, G2 ∈ FD

XDG, G3,
G4 ∈ FD

XMG, c1, c2, . . ., cm, cm+1, cm+2, . . ., cn, cn+1 ∈ SCond(P1) , (FO1, G2), (G2,
A1), (G2, A2), . . ., (G2, Am), (G2, G1), (G1, Am+1), (G1, Am+2), . . ., (G1, An), (A1,
G4), (A2, G4), . . ., (Am, G4), (Am+1, G3), (Am+2, G3), . . ., (An, G3), (G3, G4), (G4,
FO2) ∈ CSF(P1) , ΦCond((G2, Ai)) = ci, ΦCond((G1, Aj)) = cj , ΦCond((G2, G1)) =
cn+1, CC SF(P1) = {(G2, G1), (G1, Am+1), (G1, Am+2), . . ., (G1, An), (Am+1, G3),
(Am+2, G3), . . ., (An, G3), (G3, G4)}, SSCond(P1) = {cm+1, cm+2, . . ., cn, cn+1} for
i = 1, . . . , m and j = m + 1, . . . , n, then there is a unique process P2 which is in
eliminated-inner-DXG form such that

— ΩG, ΩC, ΩPG, FPFG, FPJG CSF, SCond are replaced by ΩG(P2) , ΩC(P2) ,
ΩPG(P2) , FPFG(P2) , FPJG(P2) , CSF(P2) , SCond(P2) ,

— FO1, FO2 ∈ SF,

— Ai, Aj ∈ FA,

— G2 ∈ FD
XDG, G4 ∈ FD

XMG,

— c1, c2, . . ., cm, cn+1 ∧ cm+1, cn+1 ∧ cm+2, . . ., cn+1 ∧ cn ∈ SCond(P2) ,

— (FO1, G2), (G2, A1), (G2, A2), . . ., (G2, Am), (G2, Am+1), (G2, Am+2), . . .,
(G2, An), (A1, G4), (A2, G4), . . ., (Am, G4), (Am+1, G4), (Am+2, G4), . . .,
(An, G4), (G4, FO2) ∈ CSF(P2) ,

— ΦCond((G2, Ai)) = ci,

— ΦCond((G2, Aj)) = cn+1 ∧ cj ,

— CCSF(P2) = {(G2, Am+1), (G2, Am+2), . . ., (G2, An), (Am+1, G4), (Am+2,
G4), . . ., (An, G4)},



54

— SSCond(P2) = {cn+1 ∧ cm+1, cn+1 ∧ cm+2, . . ., cn+1 ∧ cn},

— FPFG(P2) = FPFG(P1) \ {G1},

— FPJG(P2) = FPJG(P1) \ {G3},

— CSF(P2) = CSF(P1) \ CC SF(P1) ∪ CC SF(P2) and

— SCond(P2) = SCond(P1) \ SSCond(P1) ∪ SSCond(P2)

for i = 1, . . ., m and j = m + 1, . . ., n.

Besides the swapping of a pair of inner data-based exclusive gateways with a pair
of outer data-based exclusive gateways as specified in Definition 37, an alternative way
to get an equivalent representation is to remove the pair of inner data-based exclusive
gateways and amend the conditional expressions from cj to cn+1 ∧ cj as stipulated by
Definition 39.

Definition 40 (EI-DXG-equivalence) For any BPMN processes P1 and P2, P1 is EI-
DXG-equivalent to P2, denoted by P1 ≈ EI

DXG P2, if and only if there is a BPMN process
P3 such that P3 is an eliminated-inner-DXG form of P1 and P2.

The existence of ways for transforming two BPMN processes into a BPMN process
in eliminated-inner-DXG form implies that they are EI-DXG-equivalent (Definition 40).

Fig. 6. EI-DXG-equivalent BPMN processes

Proposition 3 The relation ≈ EI
DXG is transitive.

By similar argument as Proposition 1. ¤

Proposition 4 The relation ≈ EI
DXG is an equivalence.

Proof. Analogous to Proposition 2. ¤



55

As depicted in Figure 6 (b), the inner pair of data-based exclusive gateways is elimi-
nated to produce a semantically equivalent diagram that is less cluttered. The conditions
c3 and c4 (Figure 6 (a)) are replaced by the conditions c5 ∧ c3 and c5 ∧ c4 (Figure 6 (b)).

To capture the fact that the simplification of a BPMN process can be achieved by
removing a parallel fork gateway which connects a none start event to a collection of
flow objects, the following definition is introduced.

Definition 41 (Start-event-implicit-PFG Form) Let P1 be a process where ΩG, ΩC,
ΩPG, FPFG, CSF are replaced by ΩG(P1) , ΩC(P1) , ΩPG(P1) , FPFG(P1) , CSF(P1) , FPG(P1)

= FPFG(P1) ∪ FPJG, FG(P1) =
⋃

i∈{XG,IG,CG} Fi ∪ FPG(P1) , SF(P1) = FG(P1) ∪⋃
i∈{E,A} Fi. If FOi ∈ SF(P1) , E1 ∈ FNone

SE , G1 ∈ FPFG(P1) , (EO1, G1), (G1, FO1),
(G1, FO2), . . ., (G1, FOn) ∈ CSF(P1) , CC SF(P1) = {(EO1, G1), (G1, FO1), (G1,
FO2), . . ., (G1, FOn)} for i = 1, . . . , n, then there is a unique process P2 which is in
start-event-implicit-PFG form such that

— ΩG, ΩC, ΩPG, FPFG, CSF are replaced by ΩG(P2) , ΩC(P2) , ΩPG(P2) , FPFG(P2) ,
CSF(P2) ,

— FPG(P2) = FPFG(P2) ∪ FPJG,

— FG(P2) =
⋃

i∈{XG,IG,CG} Fi ∪ FPG(P2) ,

— SF(P2) = FG(P2) ∪⋃
i∈{E,A} Fi,

— FOi ∈ SF(P2) ,

— E1 ∈ FNone
SE ,

— (E1, FO1), (E1, FO2), . . ., (E1, FOn) ∈ CSF(P2) ,

— CCSF(P2) = {(E1, FO1), (E1, FO2), . . ., (E1, FOn)}
— FPFG(P2) = CPFG(P1) \ {G1} and

— CSF(P2) = CSF(P1) \ CC SF(P1) ∪ CC SF(P2)

for i = 1, . . ., n.

Through the elimination of a parallel fork gateway which its incoming and outgoing
sequence flows connect, respectively, to a none start event and a set of flow objects, an
equivalent representation is yielded by linking up the none start event with the set of
flow objects directly (Definition 41).

Definition 42 (SEImpl-PFG-equivalence) For any BPMN processes P1 and P2, P1 is
SEImpl-PFG-equivalent to P2, denoted by P1 ≈ SEImpl

PFG P2, if and only if there is a
BPMN process P3 such that P3 is a start-event-implicit-PFG form of P1 and P2.

Proposition 5 The relation ≈ SEImpl
PFG is transitive.

By similar argument as Proposition 1. ¤



56

Fig. 7. SEImpl-PFG-equivalent BPMN processes

Proposition 6 The relation ≈ SEImpl
PFG is an equivalence.

Proof. Analogous to Proposition 2. ¤

Definition 42 specifies SEImpl-PFG-equivalence in terms of start-event-implicit-
PFG form. An example of SEImpl-PFG-equivalence is delineated in Figures 7 (a) and
(b).

Analogous method for the removal of a data-based exclusive merge gateway which
connects a collection of flow objects to a flow object is formally specified as provided
below.

Definition 43 (Implicit-DXMG Form) Let P1 be a process where ΩG, ΩC, ΩXG,
FD

XMG, CSF are replaced by ΩG(P1) , ΩC(P1) , ΩXG(P1) , FD
XMG(P1) , CSF(P1) , FXG(P1)

=
⋃

i∈{D,E} F i
XDG ∪ (FD

XMG(P1) ∪FE
XMG), FG(P1) =

⋃
i∈{IG,CG,PG} Fi ∪ FXG(P1) and

SF(P1) = FG(P1) ∪ ⋃
i∈{E,A} Fi. If FOi ∈ SF(P1) , A1 ∈ FA, G1 ∈ FD

XMG(P1) , (FO1,
G1), (FO2, G1), . . ., (FOn−1, G1), (G1, A1), (A1, FOn) ∈ CSF(P1) , CCSF(P1)=
{(FO1, G1), (FO2, G1), . . ., (FOn−1, G1), (G1, A1)} for i = 1, . . ., n, then there is a
unique process P2 which is in implicit-DXMG form such that

— ΩG, ΩC, ΩXG, FD
XMG, CSF are replaced by ΩG(P2) , ΩC(P2) , ΩXG(P2) , FD

XMG(P2) ,
CSF(P2) ,

— FXG(P2) =
⋃

i∈{D,E} F i
XDG ∪ (FD

XMG(P2) ∪ FE
XMG),

— FG(P2) =
⋃

i∈{IG,CG,PG} Fi ∪ FXG(P2) ,

— SF(P2) = FG(P2) ∪⋃
i∈{E,A} Fi,

— FOi ∈ SF(P2) ,

— A1 ∈ FA,

— (FO1, A1), (FO2, A1), . . ., (FOn−1, A1), (A1, FOn) ∈ CSF(P2) ,

— CCSF(P2) = {(FO1, A1), (FO2, A1), . . ., (FOn−1, A1)},



57

— FD
XMG(P2) = FD

XMG(P1) \ {G1} and

— CSF(P2) = CSF(P1) \ CCSF(P1) ∪ CCSF(P2)

for i = 1, . . ., n.

A BPMN process consisting of a data-based exclusive merge gateway with n − 1
incoming sequence flows and an outgoing sequence flow connecting to an activity can
be simplified by removing the data-based exclusive merge gateway such that the n − 1
incoming sequence flows link up directly with the activity (Definition 43).

Definition 44 (Impl-DXMG-equivalence) For any BPMN processes P1 and P2, P1 is
Impl-DXMG-equivalent to P2, denoted by P1 ≈ Impl

DXMG P2, if and only if there is a BPMN
process P3 such that P3 is an implicit-DXMG form of P1 and P2.

Proposition 7 The relation ≈ Impl
DXMG is transitive.

Proof. By similar argument as Proposition 1. ¤

Proposition 8 The relation ≈ Impl
DXMG is an equivalence.

Proof. Analogous to Proposition 2. ¤

Definition 44 sets out the interchangeability of a BPMN process comprising an ac-
tivity and a data-based exclusive merge gateway with multiple incoming sequence flows
as well as an outgoing sequence flow and a BPMN process consisting of the activity
with the multiple incoming sequence flows. Figures 8 (a) and (b) illustrate the concept
of Impl-DXMG-equivalence.

In addition to Definitions 39, 41 and 43, another technique for the simplification of
a BPMN process is defined below. Conceptually, a none start event, which connects to a
data-based exclusive decision gateway, is removable.

Definition 45 (DXDG-implicit-start-event Form) Let P1 be a process where ΩE, ΩC,
ΩSE, FNone

SE , CSF are replaced by ΩE(P1) , ΩC(P1) , ΩSE(P1) , FNone
SE(P1) , CSF(P1) , F SE(P1) =

FNone
SE(P1) ∪

⋃
i∈ΓSE\{None} F i

SE, FE(P1) = F SE(P1) ∪⋃
i∈{EE,IE} Fi and SF(P1) = FE(P1)

∪ ⋃
i∈{G,C} Fi. If FOi ∈ SF(P1) , E1 ∈ FNone

SE(P1) , G1 ∈ FD
XDG, (E1, G1), (G1, FO1),

(G1, FO2), . . ., (G1, FOn) ∈ CSF(P1) , ΦCond((G1, FOi)) = ci for i = 1, . . ., n, then
there is a unique process P2 which is in DXDG-implicit-start-event form such that

— ΩE, ΩC, ΩSE, FNone
SE , CSF are replaced by ΩE(P2) , ΩC(P2) , ΩSE(P2) , FNone

SE(P2) ,
CSF(P2) ,

— F SE(P2) = FNone
SE(P2) ∪

⋃
i∈ΓSE\{None} F i

SE,

— FE(P2) = F SE(P2) ∪⋃
i∈{EE,IE} Fi,

— SF(P2) = FE(P2) ∪⋃
i∈{G,C} Fi,



58

Fig. 8. Impl-DXMG-equivalent BPMN processes

— FOi ∈ SF(P2) ,

— G1 ∈ FD
XDG,

— (G1, FO1), (G1, FO2), . . ., (G1, FOn) ∈ CSF(P2) ,

— ΦCond((G1, FOi)) = ci,

— FNone
SE(P2) = FNone

SE(P1) \ {E1} and

— CSF(P2) = CSF(P1) \ {(E1, G1)}
for i = 1, . . ., n.

Definition 45 says that a data-based exclusive decision gateway without an incoming
sequence flow is an alternative representation of a none start event connecting to the
data-based exclusive decision gateway.

Definition 46 (DXDG-ImplSE-equivalence) For any BPMN processes P1 and P2, P1

is DXDG-ImplSE-equivalent to P2, denoted by P1 ≈ DXDG
ImplSE P2, if and only if there is a

BPMN process P3 such that P3 is a DXDG-implicit-start-event form of P1 and P2.

Proposition 9 The relation ≈ DXDG
ImplSE is transitive.

Proof. By similar argument as Proposition 1. ¤

Proposition 10 The relation ≈ DXDG
ImplSE is an equivalence.

Proof. Analogous to Proposition 2. ¤

As stipulated by Definition 46, two BPMN processes are DXDG-ImplSE-equivalent
provided that there exists a sequence of transformations for generating a BPMN process



59

Fig. 9. DXDG-ImplSE-equivalent BPMN processes

in DXDG-implicit-start-event form. Figures 9 (a) and (b) are an example of two BPMN
processes which are DXDG-ImplSE-equivalent.

Before the behavioural equivalence of business process diagrams is discussed, a for-
mal definition of structural equivalence is presented.

Definition 47 (Structural Equivalence) Let Pi = (ΩE(Pi ) , ΩA(Pi ) , ΩG(Pi ) , ΩC(Pi )),
ΩE(Pi ) = (ΩSE(Pi ) , ΩIE(Pi ) , ΩEE(Pi ) , ΦAtt

E(Pi )
), ΩA(Pi ) = (ΩT(Pi ) , ΩSP(Pi ) , ΦBdy[−TX]

IE(Pi )
,

ΦBdy[TX]

IE(Pi )
, ΦAtt

A(Pi )
), ΩG(Pi ) = (ΩXG(Pi ) , ΩIG(Pi ) , ΦCG(Pi ) , ΦPG(Pi ) , ΦAtt

G(Pi )
), ΩC(Pi )

= (ADO(Pi ) , CSF(Pi ) , CDA(Pi ) , SCond(Pi ) , ΦCond(Pi ) , ΦIsDf(Pi ) , ΦAtt
C(Pi )

), ΩSE(Pi ) =

(FNone
SE(Pi )

, FMsg

SE(Pi )
, FTimer

SE(Pi )
, FCond

SE(Pi )
, F Sign

SE(Pi )
, FMulti

SE(Pi )
), ΩIE(Pi ) = (FNone

IE(Pi )
, FMsg

IE(Pi )
,

FMsg

IE(Pi )
, FTimer

IE(Pi )
, FErr

IE(Pi )
, FCncl

IE(Pi )
, FCmpen

IE(Pi )
, FCmpen

IE(Pi )
, FCond

IE(Pi )
, FLink

IE(Pi )
, FLink

IE(Pi )
, F Sign

IE(Pi )
,

F Sign

IE(Pi )
, FMulti

IE(Pi )
, FMulti

IE(Pi )
), ΩEE(Pi ) = (FNone

EE(Pi )
, FMsg

EE(Pi )
, FErr

EE(Pi )
, FCncl

EE(Pi )
, FCmpen

EE(Pi )
,

F Sign

EE(Pi )
, FTerm

EE(Pi )
, FMulti

EE(Pi )
), ΩT(Pi ) = (FT(Pi ) , ΦTM(Pi ) , ΦTtype(Pi ) , ΦTName(Pi )),

ΩSP(Pi ) = (FEmbed
SP(Pi )

, FReuse
SP(Pi )

, FRef
SP(Pi )

, ΦIsTX(Pi ) , ΦSPM(Pi ) , ΦBdy

SE(Pi )
, ΦBdy

EE(Pi )
, ΦNP(Pi ) ,

ΦP(Pi ) , ΦRP(Pi )), ΩXG(Pi ) = (FD
XDG(Pi )

, FD
XMG(Pi )

, FE
XDG(Pi )

, FE
XMG(Pi )

), ΩIG(Pi )

= (F IDG(Pi ) , F IMG(Pi )), ΩCG(Pi ) = (FCDG(Pi ) , FCMG(Pi )), ΩPG(Pi ) = (FPFG(Pi ) ,
FPJG(Pi )), ΓCat = {E,A, G, C}, ΓBdyTX = {Bdy[−TX], Bdy[TX]} and ΓMisc =
{Cond, IsDf , TM, Ttype, TName, IsTX, SPM, NP, P, RP} for i = 1, 2. P1 and
P2 are structural equivalent, written P1 ≡ P2, if and only if (ADO(P1) = ADO(P2))
∧ (

∧
i∈{SF,DA}Ci(P1) = Ci(P2)) ∧ (SCond(P1) = SCond(P2)) ∧ (

∧
i∈ΓSE

F i
SE(P1) =

F i
SE(P2)) ∧ (

∧
i∈ΓIE∪ΓIE

F i
IE(P1) = F i

IE(P2)) ∧ (
∧

i∈ΓEE
F i

EE(P1) = F i
EE(P2)) ∧ (FT(P1)

= FT(P2)) ∧ (
∧

i∈ΓSP
F i

SP(P1) = F i
SP(P2)) ∧ (

∧
i∈ΓXT

∧
j∈ΓXG

F i
j(P1) = F i

j(P2)) ∧
(
∧

i∈(ΓIG∪ΓCG∪ΓPG) F i(P1) = F i(P2)) ∧ (
∧

i∈ΓCat
ΦAtt

i(P1) = ΦAtt
i(P2)) ∧ (

∧
i∈ΓBdyTX

Φi
IE(P1) = Φi

IE(P2)) ∧ (
∧

i∈ΓMisc
Φi(P1) = Φi(P2)) ∧ (

∧
i∈{SE,EE} ΦBdy

i(P1) = ΦBdy

i(P2)).

Two BPMN processes are regarded as structural equivalent if they have (i) the same
sets of data objects, sequence flows, directed associations, conditions, events, tasks, sub-
processes, gateways and attributes; and (ii) the same results for all functions.



60

Proposition 11 The relation ≡ is transitive.
Proof. By similar argument as Proposition 1. ¤

Proposition 12 The relation ≡ is an equivalence.
Proof. Analogous to Proposition 2. ¤

We introduce a notation P →∗ P ′ to represent the transformation of process P into
a unique process P ′ through one or more applications of the inner-outer-DXG form,
eliminated-inner-DXG form, start-event-implicit-PFG form, implicit-DXMG form or
DXDG-implicit-start-event form.

Definition 48 (Behavioural Equivalence) Let BPD1 = (S1
POOL, S1

P, Φ1
POOL→P,

C1
MF), POOLi ∈ S1

POOL, Pi(D1) ∈ S1
P, Φ1

POOL→P(POOLi) = Pi(D1) , C1
MF =⋃

POOL1,POOL2∈S1
POOL

({PName(POOL1 )} × {PName(POOL2 )}), BPD2 = (S2
POOL,

S2
P, Φ2

POOL→P, C2
MF), POOLi ∈ S2

POOL, Pi(D2) ∈ S2
P, Φ2

POOL→P(POOLi) = Pi(D2) ,
C2

MF =
⋃

POOL1,POOL2∈S2
POOL

({PName(POOL1 )} × {PName(POOL2 )}) and C1
MF =

C2
MF for i = 1, . . . , n. BPD1 and BPD2 are behavioural equivalent, written, BPD1 +

BPD2, if and only if (Pi(D1) ≡ Pi(D2)) ∨ (P
′
i(D1) ≡ P

′
i(D2)) where Pi(D1) →∗ P

′
i(D1) and

Pi(D2) →∗ P
′
i(D2) for i = 1, . . . , n.

The motivation for introducing behavioural equivalence is to formally describe when
a business process model is a substitute for another business process model.

Proposition 13 The relation + is transitive.
Proof. By similar argument as Proposition 1. ¤

Proposition 14 The relation + is an equivalence.
Proof. Analogous to Proposition 2. ¤

Having established a formal foundation for the equivalences of BPMN models, we
shift the emphasis away from theoretical aspect to the applicability and practicality of
the mathematical framework. In Figures 10 and 11, two business process diagrams
which are structurally different are delineated. The discrepancies lie in the fact that they
have different numbers of data-based exclusive decision gateways, data-based exclusive
merge gateways and sequence flows.

Business process diagram 1 (Figure 10) is composed of two pools: Pool1 and Pool2.
The pool Pool1 contains a BPMN process that can be restructured and simplified through
a sequence of transformations based on Definitions 37, 39, 43 and 45. The application
of Definition 45 with the objective of eliminating the none start event results in an equiv-
alent BPMN process in DXDG-implicit-start-event form as shown in Figure 12.

By swapping the pair of inner data-based exclusive decision gateway and data-based
exclusive merge gateway consisting of outgoing and incoming sequence flows to and



61

Fig. 10. Business process diagram 1

Fig. 11. Business process diagram 2



62

Fig. 12. Business process diagram 3

from the activities A5 and A6 with the pair of outer data-based exclusive decision gate-
way and data-based exclusive merge gateway comprising outgoing and incoming se-
quence flows to and from the activities A3 and A4, an equivalent BPMN process is
obtained as depicted in Figure 12. The condition expressions c6 and c7 are changed to
c5 ∧ c6 and c5 ∧ c7, respectively. A new conditional expression c3 ∨ c4 is added to the
incoming sequence flow of the data-based exclusive decision gateway (Figure 12). The
conditional expression c5 (Figure 10) is deleted in accordance to Definition 37.

Consider the inner data-based exclusive decision gateway associated with condi-
tional expressions c11 and c12 and the corresponding data-based exclusive merge gate-
way as well as the outer data-based exclusive decision gateway associated with condi-
tional expresssions c8, c9 and c10 and the corresponding data-based exclusive merge
gateways (Figure 10). An application of Definition 37 yields an equivalent BPMN
process in inner-outer-DXG form as illustrated in Figure 12.

Two successive applications of Definition 43 eliminate the two data-based exclusive
merge gateways that connect, respectively, to the activities A13 and A26. The resulting
BPMN process, which is in implicit-DXMG form, is produced as delineated in Fig-
ure 12.

Applying Definition 39, the inner data-based exclusive gateway associated with con-
ditional expressions c18 and c19 and the respective data-based exclusive merge gateway
are eliminated to generate an equivalent BPMN process in eliminated-inner-DXG form
(Figure 12). A repeated application of Definition 39 to remove the inner data-based ex-
clusive decision gateway associated with conditional expressions c23 and c24 along with
the corresponding data-based exclusive merge gateway, we get an equivalent BPMN
process in eliminated-inner-DXG form as shown in Figure 12.



63

The parallel fork gateway with incoming sequence flow from the none start event
in pool Pool2 is removed to obtain an equivalent BPMN process in start-event-implicit-
PFG form as depicted in Figure 12 in accordance to Definition 41. Combining all these
transformations together gives the business process diagram in Figure 12.

In the same spirit, the inner data-based exclusive decision gateway associated with
conditional expressions c6 and c7 (Figure 11) as well as the respective data-based exclu-
sive merge gateway are swapped with the outer data-based exclusive decision gateway
associated with conditional expressions c3, c4 and c5 along with the corresponding data-
based exclusive merge gateway based on Definition 37. The pair of inner data-based
exclusive gateways connecting the activities A22 and A23 is eliminated in accordance to
Definition 39. The data-based exclusive merge gateway with incoming sequence flows
from the activities A24 and A25 is removed through the use of Definition 43. The trans-
formed diagram is depicted in Figure 13.

Fig. 13. Business process diagram 4

According to Definition 47, the two BPMN processes in Pool1 of Figures 12 and 13
are structural equivalent. Likewise, the two BPMN processes in Pool2 of Figures 12
and 13 are also considered as structural equivalent. The business process diagrams in
Figures 12 and 13 are behavioural equivalence as stipulated by Definition 48. Informally,
we say that the two business process diagrams have the same behaviour even though they
are represented in different forms.



64

6. Conclusions and Future Work

The theoretical and practical aspects of the equivalences of UML activity diagrams
and BPMN processes are examined in our two recent studies [3, 4]. Nonetheless, there
remains an unsettled question on how to determine the equivalence of two BPMN mod-
els. This paper closes the gap by advancing a theory of substituting equals for equals.

In summary, we have built a mathematical framework for BPMN. Various
sorts of equivalences including IO-DXG-equivalence, EI-DXG-equivalence, SEImpl-
PFG-equivalence, Impl-DXMG-equivalence, DXDG-ImplSE-equivalence and struc-
tural equivalence have been furnished. The behavioural equivalence of business process
diagrams has been explored from a formal perspective. An illustrative example has been
utilized to demonstrate the practicality of the proposed framework.

Following this thread of work, we aim to further develop it along several tracks:

(i) the automation of the detection for BPMN processes and BPMN models that are
interchangeable;

(ii) the construction of software tools for yielding equivalent BPMN processes and
BPMN models;

(iii) the assessment of the disciplined approach by means of real-life business
processes; and

(iv) the identification of other types of equivalences.

References

1. OMG: Business process modeling notation, v1.2, January 2009. http: //www.bpmn.org/;
accessed February 13, 2010.

2. OMG: UML 2.0 superstructure specification, August 2005. http:// www.omg.org; ac-
cessed July 28, 2006.

3. V.S.W. Lam: Equivalences of BPMN processes. Service Oriented Computing and Appli-
cations, 3(3):189–204, 2009.

4. V.S.W. Lam: Theory for classifying equivalences of UML activity dia- grams. IET Soft-
ware, 2(5):391–403, 2008.

5. OMG: Business process modeling notation specification, February 2006.
http://www.bpmn.org/; accessed December 28, 2007.

6. R. Milner, J. Parrow, and D. Walker: A calculus of mobile process (Parts I and II). Infor-
mation and Computation, 100:1–77, 1992.

7. R. Milner: The polyadic π-calculus: A tutorial. In Logic and Algebra of Specifica-
tion, Proceedings of International NATO Summer School, volume 94, pages 203–246.
Springer-Verlag, 1993.



65

8. J. Parrow: An introduction to the π-calculus. In A. Bergstra, J.A. Ponse and S.A. Smolka,
editors, Handbook of Process Algebra, chapter 8, pages 479–543. Elsevier Science, 2001.

9. C.A.R. Hoare: Communicating Sequential Processes. Prentice-Hall, 1985.

10. A. Bog, F. Puhlmann, and M. Weske: The PiVizTool: Simulating choreographies
with dynamic binding. In Demo Session of the 5th International Conference on
Business Process Management, 2007. http://bpt.hpi.uni-potsdam.de/pub/Public/Frank
Puhlmann/bpm2007-piviztool.pdf; accessed February 17, 2008.

11. A. Bog, and F. Puhlmann: A tool for the simulation of π-calculus systems. In
Open.BPM 2006: Geschäftsprozessmanagement mit Open Source-Technologien, 2006.
http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/PiSimulator_openBPM.pdf;
accessed January 9, 2009.

12. A. Bog: Introduction to PiVizTool. Hasso Plattner Institute, University of Potsdam,
2006. http://bpt.hpi.uni-potsdam.de/pub/ Piworkflow/Simulator/piviztool-intro.pdf; ac-
cessed January 13, 2009.

13. A. Bog: A visual environment for the simulation of business processes based on the
pi-calculus. Master’s thesis, Hasso Plattner Institute, University of Potsdam, 2006.
http://bpt.hpi.uni-potsdam.de/pub/ Public/FrankPuhlmann/AnjaBogThesisFinal.pdf; ac-
cessed January 13, 2009.

14. R.M. Dijkman, M. Dumas, and C. Ouyang: Semantics and analysis of business process
models in BPMN. Information and Software Technology, 50(12):1281–1294, 2008.

15. P.Y.H. Wong and J. Gibbons: A process semantics for BPMN. In Proceedings of the 10th
International Conference on Formal Engineering Methods, LNCS 5256, pages 355–374,
2008.

16. P.Y.H. Wong and J. Gibbons: Verifying business process compatibility. In Proceedings of
the 8th International Conference on Quality Software, pages 126–131, 2008.

17. Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Manual,
May 2003. http://www.fsel.com/fdr2_download. html; accessed January 20, 2005.

18. P.Y.H. Wong and J. Gibbons: A relative timed semantics for BPMN. Electronic Notes in
Theoretical Computer Science, 229(2):59–75, 2009.

19. P.Y.H. Wong and J. Gibbons: Formalisations and applications of BPMN. Science of Com-
puter Programming, sep 2009.

20. F. Puhlmann: Soundness verification of business processes specified in the pi-calculus. In
CoopIS 2007, LNCS 4803, pages 6–23, 2007.

21. S. Briais: The ABC User’s Guide, 2005. http://lamp.epfl.ch/ sbriais/abc/abc_ug.pdf; ac-
cessed February 17, 2008.

22. C. Ou-Yang and Y.D. Lin: BPMN-based business process model feasibility analysis: A
Petri Net approach. International Journal of Production Research, 46(14):3763–3781,
2008.



66

23. A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S. Stissing, M. West-
ergaard, S. Christensen, and K. Jensen: CPN tools for editing, simulating, and analysing
coloured petri nets. In ICATPN 2003, LNCS 2679, pages 450–462. Springer-Verlag,
2003.

24. I. Raedts, M. Petkovic, Y.S. Usenko, J.M. van der Werf, J.F. Groote, and L. Somers: Trans-
formation of BPMN models for behaviour analysis. In MSVVEIS 2007, pages 126–137,
2007.

25. V.S.W. Lam and J. Padget: Analyzing equivalences of UML state- chart diagrams by
structural congruence and open bisimulations. In Proceedings of 2003 IEEE Sympo-
sium on Human Centric Computing Languages and Environments, pages 137–144. IEEE
Computer Society, 2003.

26. W. Gruber: Modelling and Transformation of Workflows with Temporal Constraints. PhD
thesis, Vienna University of Technology, 2003. http: //www.isys.uni-klu.ac.at/PDF/2003-
0178-WLG.pdf; accessed January 13, 2009.

27. J. Eder, W. Gruber, and H. Pichler: Transforming workflow graphs. In First International
Conference on Interoperability of Enterprise Software and Applications, pages 23–25,
2005.

28. S.A.White and D. Miers: BPMN Modeling and Reference Guide. Future Strategies Inc.,
2008.

29. R. Johnsonbaugh: Discrete Mathematics. Macmillan, revised edition, 1986.


