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On the Reynolds transport theorem for three phase
systems with storage in interfaces

TEODOR SKIEPKO∗

Bialystok Technical University, Faculty of Mechanics, Wiejska 45C, 15-351
Białystok, Poland

Abstract In the paper, the Reynolds transport theorem (RTT) for three
phase systems is developed, in terms associated with a moving control vol-
ume. The basic tools applied to the derivation are the generalized transport
theorem by Truesdell and Toupin , and generalized surface transport the-
orem by Aris as well as Slattery. The final results referenced to a generic
extensive quantity demonstrate the theorem in the integral instantaneous
form. As a further illustration of applicability of the theorem relation devel-
oped some specific forms are deduced from such as for multiphase systems
in terms of fixed control volume, surface systems and homogeneous spa-
tial systems.
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1 Introduction

The model equations for transport phenomena are the conservation laws of
extensive quantities (since abbreviated EQ) stored at the volume density
η (intensive property, scalar, vector or tensor) within the material system
Σ defined by constant mass mΣ filling in variable volume Ω surrounded
by boundary surface Γ moving at the local flow velocity V. These laws

∗E-mail address: tskiepko@pb.edu.pl



22 T. Skiepko

expressed on the rate basis can be written in a unified integral form as:

d

dt

∫
Ω

ηdV

︸ ︷︷ ︸
rate of accumulation
in moving system Σ

=
∫
Ω

℘dV

︸ ︷︷ ︸
production rate

+
∫
Γ

J · ndA

︸ ︷︷ ︸
transport rate

, (1)

where ℘ (scalar, vector or tensor), and J (vector or tensor) are a production
rate density within Ω and transport flux (molecular and radiation transfer)
across Γ, respectively, n is the outward unit normal vector to Γ, “ ·” is the
dot product and dt, dV and dA are differential increments of time, volume
and surface area. Throughout the paper we assume the integral symbol∫

represents either the volume integral (triple – when accompanied with
differential dV ), surface integral (double – differential dA) or line integral
(single – differential dl), respectively.

The Reynolds Transport Theorem (RTT) is a kinematic relation applied
to express the rate of accumulation in the system Σ given as the left side
term of Eq. (1) with the use of material coordinates (the Lagrangian de-
scription) in terms referenced to a selected domain of spatially prescribed
configuration (the Eulerian description) of volume V (fixed or movable). As
H. Lamb writes [8, p. 2], the germs of the first formulations of the theorem
can be designated to Euler [3] in 1757. Since that time for many past years
including Reynolds discovery in 1903 [14, p. 13, eq. (15)] until nowadays
the problem has been subjected to intense research interest. In turn, forms
of the RTT for homogeneous systems can be found now in numerous text-
books intended for students by, e.g. Fox and McDonald [4], as well as in
monographs specialized for researchers interested in the field as those by,
e.g. Aris [1], Rutkowski [10], or by Kundu and Cohen [7] as a more recent
example.

However, number of RTT forms applicable to heterogeneous systems
is significantly less despite that they can play the key role in numerous
practical applications due to the physical effects which they can produce.
The first to be mentioned here is by Truesdell and Toupin [12, p. 347] in
1960. They derived the RTT for a heterogeneous material system of volume
Ω compound of two spatial homogeneous subsystems (phase 1 and phase 2 of
densities η1 and η2, respectively) neighbouring across an interface (dividing
surface) S of negligible storage abilities as follows [12, p. 468]:

d

dt

∫
Ω

ηdV =
∫
V

∂η

∂t
dV +

∫
R

ηV · ndA +
∫
S

(η1 − η2)U · ζdA , (2)
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where V is an established fixed volume of reference defined spatially (Eu-
lerian description) composed of the both phasic volumes and bounded by
an external surface R of outward normal n, S is the interface area and ζ is
the normal to S pointed from phase 1 to phase 2. Here U and V are the
spatial velocities of the interface and phases, respectively.

Nevertheless, there are numerous examples when contribution of the
interface storage into system storage can be essential. Consequently, for
the cases in point Slattery [11] proposed the RTT of the following form

d

dt

⎛
⎝∫

Ω

ηdV +
∫
Γ

ηsdA

⎞
⎠ =

∫
V

(
Dη

Dt
+ η divV

)
dV +

+
∫
S

(
Dsηs

Dt
+ ηs divsVs‖––η(V − U) · ζ ‖––

)
dA , (3)

where the fixed volume of reference V is composed of all phasic volumes
involved and the overall interface area S comprises of all the interfaces
dwelling within volume V . Above U and Vs are the spatial velocities of the
interface and the surface system moving in, respectively. By Dη/Dt and
Dsηs/Dt the material derivatives of spatial and surface densities η and ηs

are denoted, respectively. divs is the surface divergence differential operator
and ζ means the outward unit normal vector to the interface pointing into
phase moving at V. Therefore, the bracketed term ‖––η(V−U)·ζ ‖–– of Eq. (3)
reads as [η+(V+ −U) ·ζ+ + η−(V−−U) ·ζ−] and refers to jump condition
for phasic spatial density η across the interface set in between two phases
which properties are denoted by superscripts ‘+’ and ‘–’.

This paper is purposed to derive the RTT relations for three phase
systems of essential interfacial storage in terms related to referential volume
CV (control volume) surrounded by boundary CS (control surface)) being
in arbitrary motion with respect to fixed (inertial) reference frame. The
final outcomes present the RTT in a general integral instantaneous form
from which forms of the RTT suitable for specific systems are also derived.

Because of the ratio of interface area to system volume rises when a char-
acteristic linear scale decreases then interest in the effect of interfacial stor-
age is motivated by applications to problems when small systems are con-
sidered. Therefore, such the significance manifests primarily in systems
densely structured by presence of small constituents such as waves, layers,
bubbles droplets, etc., extending immensely the interface area and in turn
interface contribution into the system storage. Worthy to note also are some
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applied fields where interface behaviour can be appreciable. Let’s mention
here transport phenomena in nano- and micro-channels and phase change
processes affected by surface tension met in energy storage systems. Also
interfacial dynamics can be important for widespread nuclear and oil tech-
nologies, car engine combustion of liquid fuels, food and pharmaceutical
industry and also environmental applications such as wastes emissions of
aerosols and soot, forest fires and detonation phenomena.

2 RTT for three phase systems

In Fig. 1 a three phase material system Σ is displayed occupying spatial
domain Ω of boundary Γ split into phasic portions Ωi (i = 1, 2, 3). The sys-
tem is composed of three spatial subsystems ∪3

i Σvi separated by interfaces
S and of the K surface subsystems ∪K

k Σsk dwelling in S.

Figure 1. System Σ composed of spatial and surface subsystems.

System Σ passes through a movable CV bounded by CS, see in Fig. 2. In
view of Σ is composed of spatial and surface subsystems the CV comprises
both spatial phasic domains of total volume V and interfacial domains of
aggregated area S, hence CV = V ∪ S.

Volume V involves all the phasic volumes embedded in CV , hence V =
∪3

i Vi. The aggregated interfacial area S involves the interfaces placed within
CV so that S = ∪K

k Sk. The entire CS consists in CS = R ∪ C where
R is the aggregated external boundary of phasic domains determined as
R = ∪3

i Ri with understanding that each individual Ri is designated for the
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entire external boundary of the i-th phasic volume. C = ∪K
k Ck stands for

the aggregated boundary curve of all individual boundary curves Ck formed
as intersection of CS and interface Sk. Following Slattery [11] the interface
is considered here as a surface possessing also accumulative abilities with
respect to EQ-ies such as mass, momentum, energy, and entropy.

Accumulation δΦΣ of an extensive quantity EQ in system Σ is deter-
mined by the difference in system storages ΦΣ at t + δt and t, hence

δΦΣ︸︷︷︸
accumulation in
Σ during δt

= ΦΣ(t + δt)︸ ︷︷ ︸
storage in Σ at
t + δt

− ΦΣ(t)︸ ︷︷ ︸
storage
in Σ at t

. (4)

In Fig. 2(a) the coincidence of Ω and CV is shown at an instant t. In
such particular circumstances boundary Γ of system Σ traced by lowercase
underlined letters abcdefa is superimposed upon boundary CS of CV indi-
cated by ghijklg, hence abcdefa = ghijklg, see in Fig.2(a). In turn, amounts
of EQ stored at t within Σ and CV are the same, what gives

ΦΣ(t)︸ ︷︷ ︸
storage in Σ
at t

= ΦCV (t)︸ ︷︷ ︸
storage in
CV at t

. (5)

Let subsequent instant of time t+ δt be considered as displayed in Fig. 2(b)
where system Σ is shown to be displaced partially out of CV . Hence,
boundaries of Σ traced along abcdefa and CV marked as ghijklg are shifted
each other — see in Fig. 2(b).

In turn, system Σ leaves to CV some amount of EQ stored in region
I (afedjklga) and carries some amount of EQ stored in region II (afediha) out
of CV . Therefore, based on Fig. 2(b) one gets storage ΦΣ(t+ δt) expressed
in terms referenced to CV as:

ΦΣ(t + δt)︸ ︷︷ ︸
storage in Σ
at t + δt

= ΦCV (t + δt)︸ ︷︷ ︸
storage in
CV at t + δt

+ δΦII(δt)︸ ︷︷ ︸
amount of EQ
carried by Σ out
of CV during δt
(region II)

− δΦI(δt)︸ ︷︷ ︸
amount of EQ
brought in CV
by Σ during δt
(region I)

, (6)

where δΦI(δt) is amount of EQ brought in region I of CV by moving Σ.
Consequently, term δΦI(δt) stands for inflow of EQ into CV across CS, i.e.
represents transport of EQ across CS in favour of storage in CV . Term
δΦII(δt) of Eq. (6) is amount of EQ carried by moving Σ in course of time
δt into region II out of CV — see in Fig. 2(b). Hence, term δΦII(δt) of
Eq. (6) defines the transport of EQ at expense of storage in CV , i.e. efflux
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Figure 2. System Σ passing through a moving CV : (a) coinciding condition at time t,
(b) displacement of Σ with respect to CV at time t + δt (see description in
the text).

of EQ out of CV . Note that the sum of transport terms shown in Eq. (6)
expresses the net interchange between CV and its surroundings across the
complete boundary CS = R ∪ C. By substitution Eqs. (5) and (6) into
Eq. (4) one obtains accumulation in system Σ expressed in terms of CV as
follows:

δΦΣ︸︷︷︸
accumulation in
Σ during δt

= φCV (t + δt) − ΦCV (t)︸ ︷︷ ︸
accumulation in moving CV

+ δΦII(δt) − δΦI(δt)︸ ︷︷ ︸
transport across CS

. (7)

Storages ΦCV (t) and ΦCV (t + δt) of Eq. (7) include those in the spatial
domains of volume V (denoted by ΦV ) and those in the interfacial domains
of area S (described by ΦS). Likewise, amounts of EQ transported by
moving Σ refer to contributions made by macroscopic movements of both
spatial (by δvΦ) and surface (by δsΦ) subsystems. With this understanding,
corresponding terms are introduced into Eq. (7) and subsequently all the
terms on both sides are divided by δt. Then by letting δt → 0 one gets
Eq. (7) expressed on the rate basis as:

lim
δt→0

δΦΣ

δt︸ ︷︷ ︸
accumulation
rate in system Σ

= lim
δt→0

[ ΦV (t + δt) − ΦV (t)
δt︸ ︷︷ ︸

accumulation rate in spatial
phasic domains of volume V

(1)

+
δvΦII(δt) − δvΦI(δt)

δt︸ ︷︷ ︸
transport rate by movement of
spatial subsystems across CS

(2)

+
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+
ΦS(t + δt) − ΦS(t)

δt︸ ︷︷ ︸
accumulation rate in

interfacial domains of area S
(3)

+
δsΦII(δt) − δsΦI(δt)

δt︸ ︷︷ ︸
transport rate by movement of
surface subsystems across CS

(4)

]
. (8)

The left side of Eq. (8) converges at the accumulation rate of EQ within Σ
to be given by

lim
δt→0

δΦΣ

δt
=

dΦΣ

dt
. (9)

Below, particular terms placed on the right side of Eq. (8) are converted
into desired rate expressions referenced to CV that by δt → 0 coincides Σ.
In turn, the goal is approached, i.e. rate of accumulation in system Σ (the
material description) becomes to be expressed in terms referenced to CV
(the spatial or Eulerian description) what is the essence of each RTT.

2.1 Term (1) — accumulation rate in spatial phasic domains

Taking the limit when δt → 0 the rate form of the first term of Eq. (8)
becomes

lim
δt→0

ΦV (t + δt) − ΦV (t)
δt

=
dΦV (t)

dt
. (10)

Because V = ∪3
i Vi, then the overall storage ΦV (t) in spatial phasic domains

is given by

ΦV (t) =
3∑
i

ΦVi(t) . (11)

Consequently, in view of Eq. (11) expression (10) writes up as

dΦV (t)
dt

=
3∑
i

dΦVi(t)
dt

, (12)

where
ΦVi(t) =

∫
Vi(t)

ηi(z, t)dV, j = 1, 2, 3 (13)

is the storage within the i-th phasic domain of moving volume Vi(t) at an
instant t and by z the spatial coordinates are denoted. In Fig. 3 boundaries
of volume Vi(t) are illustrated. It is seen in Fig. 3 that the entire boundary
�i of Vi is a closed surface �i = Ri + Si where Ri is the external part of �i
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Figure 3. The phasic domain Vi(t) bounded by external boundary Ri and moving inter-
faces Sk and Sk+1.

and Si =
∑Ki

k Sk is the interfacial part of �i assembled of Ki interfaces Sk

associated phase i.
Now the generalized transport theorem (Truesdell and Toupin [12]) is

applied to determine each derivative of ΦVi(t) shown as the right side terms
of relation (12) to obtain

dΦVi(t)
dt

=
d

dt

∫
Vi(t)

ηi(z, t)dV =

=
∫
Vi

∂ηi

∂t
dV +

∫
Ri

ηiVRi · nidA +
Ki∑
k

∫
Sk

ηi�Sk
Uk · nkdA , (14)

where boundaries Ri and Sk (see in Fig. 3) are moving at velocities VRi and
Uk, respectively. ni and nk are the unit normal vectors to boundaries Ri

and Sk, (k = 1, 2), respectively, drawn outward with respect to Vi(t). ηi�Sk

is the spatial density of EQ stored in the i-th phase taken at infinitesimally
close position to interface Sk. Equation (14) can be can be modified by
the use of the Gauss’s theorem (Kaplan [6]). Hence, the double integrals of
Eq. (14) defined over a closed surface �i = Ri + Si can be expressed by the
triple integral defined over a spatial domain Vi of boundary �i = Ri + Si.
Thus one obtains

∫
Ri

ηiVRi · nidA +
Ki∑
k

∫
Sk

ηi�Sk
Uk · nkdA =

∫
Vi

div(ηiV�i
)dV . (15)
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By substitution Eq. (15) into Eq. (14) and subsequently Eq. (14) into
Eq. (12) one gets

dΦV (t)
dt

=
∫
V

∂η

∂t
dV +

∫
V

div(ηV�)dV , (16)

where ∫
V

∂η

∂t
dV =

3∑
i

∫
Vi

∂ηi

∂t
dV (17)

and ∫
V

div(ηV�)dV =
3∑
i

∫
Vi

div(ηiV�i
)dV . (18)

Consequently, Eq. (16) defines term (1) of Eq. (8).

2.2 Term (2) — transport rate by movement of spatial sub-
systems

This term corresponds to the contribution in the rate of accumulation in
system Σ due to movements of the spatial subsystems relative to the CV .
One can see in Fig. 2(b) that this effect refers to phases engaged in spatial
regions I and II and hence six terms are involved (three per one spatial
region). Considering time increment δt sufficiently small the 2nd term of
Eq. (8) can be expressed in the rate form as:

lim
δt→0

δvΦII(δt) − δvΦI(δt)
δt

=

= lim
δt→0

∑3
i δt

dΦII,i

dt − ∑3
i δt

dΦI,i

dt

δt
= lim

δt→0

( 3∑
i

dΦII,i

dt
−

3∑
i

dΦI,i

dt

)
. (19)

The derivative dΦI,i/dt of Eq. (19) referenced to the i-th spatial portion of
region I of volume δVI,i bounded by ΓI,i ∪RI,i ∪ δSI,i, see in Fig. 4(a), can
be evaluated by the generalized transport theorem (Truesdell and Toupin
[12]) to obtain

dΦI,i

dt
=

∫
δVI,i

∂ηi

∂t
dV −

∫
ΓI,i

ηiVi · nidA +

+
∫

RI,i

ηiVRI,i
· nidA +

Ki∑
k

∫
δSI,k

ηi�δSI,k
Uk · nkdA , (20)
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where δSI,k is the k-th portion of δSI,i and δSI,i =
∑Ki

k δSI,k — see in
Fig. 4(a). Note in Eq. (20), the unit normal vector drawn outward of δVI,i at
boundary ΓI,i is −ni because it is expressed by unit normal ni at boundary
Γi drawn outward of spatial subsystem Ωi.

Figure 4. The spatial portions of region I of volume δVI,i and region II of volume δVII,i

accompanied by associated boundaries.

Likewise, for the i-th (it refers to the i-th phase) spatial portion of region
II of volume δVII,i bounded by ΓII,i ∪ RII,i ∪ δSII,i, see in Fig.4 (b), one
gets the accumulation rate dΦII,i/dt given as:

dΦII,i

dt
=

∫
δVII,i

∂ηi

∂t
dV +

∫
ΓII,i

ηiVi · nidA +

−
∫

RII,i

ηiVRII,i
· nidA +

Ki∑
k

∫
δSII,k

ηi�δSII,k
Uk · nkdA , (21)

where δSII,k is the k-th portion of δSII,i and δSII,i =
∑Ki

k δSII,k — see
in Fig. 4(b). Note in Eq. (21), the unit normal vector drawn outward of
δVII,i at boundary RII,i is −ni because it is expressed by unit normal ni

at boundary Ri drawn outward of phasic volume Vi. Substituting Eqs. (20)
and (21) into Eq. (19) and subsequently determining the limit of each term
by letting δt → 0 one finds

• (δt → 0) → (δVI,i → 0) → lim
δt→0

∫
δVI,i

∂ηi

∂t
dV = 0 , (22)

• (δt → 0) → (δVII,i → 0) → lim
δt→0

∫
δVII,i

∂ηi

∂t
dV = 0 , (23)
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• (δt → 0) → (ΓI,i → RI,i) and (ΓII,i → RII,i) therefore

lim
δt→0

( ∫
ΓII,i

ηiVi · nidA −
∫

RII,i

ηiVRII,i
· nidA+

+
∫

ΓI,i

ηiVi · nidA −
∫

RI,i

ηiVRI,i
· nidA

)
=

=
∫

RII,i

ηi(Vi − VRII,i
) · nidA +

∫
RI,i

ηi(Vi − VRI,i
) · nidA =

=
∫
Ri

ηi(Vi − VRi) · nidA , (24)

where Ri = RI,i + RII,i is the entire external boundary of the phasic
volume Vi,

• (δt → 0) → (δSI,k → 0) , and (δSII,k → 0) therefore

lim
δt→0

( ∫
δSII,k

ηi�SII,k
Uk · nkdA −

∫
δSI,k

ηi�SI,k
Uk · nkdA

)
= 0 . (25)

Involving the resulted expressions (22)–(25) into Eq. (19) one obtains term (2)
of Eq. (8) in the rate form given as:

lim
δt→0

δvΦII(δt) − δvΦI(δt)
δt

=
∫
R

η(V − VR) · ndA , (26)

where ∫
R

η(V − VR) · ndA =
3∑
i

∫
Ri

ηi(Vi −VRi) · nidA . (27)

2.3 Term (3) — accumulation rate in interfacial domains

By letting δt → 0 and taking the limit, the rate form of term (3) of Eq. (8) is

lim
δt→0

ΦS(t + δt) − ΦS(t)
δt

=
dΦS(t)

dt
. (28)
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The total area of interfaces embedded within CV is S = ∪K
k Sk. Hence

the overall storage ΦS(t) determined at an instant t within the interfacial
domain of aggregated area S is given by

ΦS(t) =
K∑
k

ΦSk
(t) . (29)

Equation (28) in view of Eq. (29) can be written as:

lim
δt→0

ΦS(t + δt) − ΦS(t)
δt

=
dΦS(t)

dt
=

K∑
k

dΦSk

dt
. (30)

The following integral describes storage ΦSk
(t) in the interface of area Sk(t)

at an instant t

ΦSk
(t) =

∫
Sk(t)

ηs(y1, y2, t)
√

a(y1, y2, t)dy1dy2 , (31)

where a is the determinant of the surface metric tensor and y1, y2 are the
surface coordinates. Note, all the properties used in Eq. (31) refer to the
interface Sk. Hence, the corresponding subscript k is omitted in the inte-
grand of Eq. (31). Taking into considerations dependency of integral (31)
on ηs, a and Sk, the accumulation rate dΦSk

/dt shown in Eq. (30) can be
expressed now by the surface transport theorem (Aris [1])

dΦSk

dt
=

∫
Sk

(∂ηs,k

∂t
+ ηs,k divsUk

)
dA +

∫
Ck

ηs,k(VCk
− Uk) · bkdl , (32)

where divsUk is the surface divergence of the interface spatial velocity Uk,
VCk

is the spatial velocity of boundary curve Ck formed by intersection of
Sk and CS, bk is the unit surface vector tangent to the surface and normal
to the curve Ck directed outward of Sk — see in Fig. 5.

By substitution Eq. (32) into Eq. (30), then taking the limit and per-
forming summation one gets term (3) of Eq. (8) in the rate form given
by

lim
δt→0

ΦS(t + δt) − ΦS(t)
δt

=
dΦS(t)

dt
=

=
∫
S

(∂ηs

∂t
+ ηs divsU

)
dA +

∫
C

ηs(VC − U) · bdl , (33)
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Figure 5. Interface Sk in between two phases — see description in the text.

where the right side reads as:

∫
S

(∂ηs

∂t
+ ηs divsU

)
dA +

∫
C

ηs(VC − U) · bdl =

=
K∑
k

∫
Sk

(∂ηs,k

∂t
+ ηs,k divsUk

)
dA +

K∑
k

∫
Ck

ηs,k(VCk
−Uk) · bkdl (34)

and the differential area is dA =
√

ady1dy2. Note that (VCk
− Uk) is

a tangential vector field.

2.4 Term (4) — transport rate by movement of surface sub-
systems

This term corresponds to contributions in the rate of accumulation in the
system made by movement of surface subsystems across boundary CS of
the CV . We construct the rate form of the 4th term of Eq. (8) by letting
δt → 0 and taking the limit what can be written as:

lim
δt→0

δsΦII(δt) − δsΦI(δt)
δt

=

= lim
δt→0

∑K
k δt

dΦ
(s)
II,k

δt − ∑K
k δt

dΦ
(s)
I,k

δt

δt
= lim

δt→0

( K∑
k

dΦ(s)
II,k

δt
−

K∑
k

dΦ(s)
I,k

δt

)
. (35)

Each term on the right side of relation (35) can be developed based on
the generalized surface transport theorem (Slattery [11]). Consequently,
accumulation rate dΦ(s)

I,k/dt in the interface portion δSI,k, see in Fig. 6(a),
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located in region I surrounded by boundary curves CI,k and �I,k is

dΦ(s)
I,k

δt
=

∫
δSI,k

(∂ηs,k

∂t
− gradsηs,k ·Uk − 2Hkηs,kUk · ζk

)
dA+

+
∫

CI,k

ηs,kVCk
· bkdl −

∫
�I,k

ηs,kVsk
· bkdl , (36)

where Vsk
is the spatial velocity of the surface system flowing in δSI,k and

Hk is the mean curvature of δSI,k. �I,k is the boundary curve formed by
intersection of system boundary Γ and δSI,k. Likewise, accumulation rate
dΦ(s)

II,k/dt in interface portion δSII,k located in region II , see in Fig. 6(b),
surrounded by boundary curves CII,k and �II,k is

dΦ(s)
II,k

δt
=

∫
δSII,k

(∂ηs,k

∂t
− gradsηs,k ·Uk − 2Hkηs,kUk · ζk

)
dA+

−
∫

CII,k

ηs,kVCk
· bkdl +

∫
�II,k

ηs,kVsk
· bkdl . (37)

Figure 6. Interfacial portions δSI,k and δSII,k, (k = 1, 2), of region I and region II ,
respectively, accompanied by associated boundary curves.

Accordingly Eq. (35) the limits of each term of Eqs. (36) and (37) when
δt → 0 must be determined. Therefore by letting δt → 0 one finds the
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limits to be expressed as:

• (δt → 0) → (δSI,k → 0) → lim
δt→0

∫
δSI,k

(∂ηs,k

∂t
+

− gradsηs,k · Uk − 2Hkηs,kUk · ζk

)
dA = 0 , (38)

• (δt → 0) → (�I,k → CI,k), thus

lim
δt→0

(∫
�I,k

ηs,kVs,k ·bkdl−
∫

CI,k

ηs,kVCk
·bkdl

)
=

∫
CI,k

ηs,k(Vs,k−VCk
)·bkdl , (39)

• (δt → 0) → (δSII,k → 0) → lim
δt→0

∫
δSII,k

(∂ηs,k

∂t
+

− gradsηs,k · Uk − 2Hkηs,kUk · ζk

)
dA = 0 , (40)

• (δt → 0) → (�II,k → CII,k), thus

lim
δt→0

( ∫
�II,k

ηs,kVs,k · bkdl −
∫

CII,k

ηs,kVCk
· bkdl

)
=

=
∫

CII,k

ηs,k(Vs,k − VCk
) · bkdl . (41)

The results given by Eqs. (38)–(41) substituted into Eq. (35) provide
term (4) of Eq. (8) expressed in the rate form as:

lim
δt→0

δsΦII(δt) − δsΦI(δt)
δt

=

= lim
δt→0

( K∑
k

dΦ(s)
II,k

δt
−

K∑
k

dΦ(s)
I,k

δt

)
=

∫
C

ηs(Vs − VC) · bdl , (42)

where ∫
C

ηs(Vs − VC) · bdl =
K∑
k

∫
Ck

ηs,k(Vs,k − VCk
) · bkdl

and Ck = CI,k + CII,k is the entire boundary curve of interface Sk, also
C = ∪K

k Ck.



36 T. Skiepko

2.5 General form of RTT for three phase systems

By substitution expression (9) onto left side of Eq. (8) and relations (16),
(26), (33) and (42) into the right side of Eq. (8) we can generalize the
Reynolds transport theorem for three phase systems to be expressed as
follows:

dΦΣ

dt
=

∫
V

∂η

∂t
· dV +

∫
V

div(ηV�) · dV +
∫
R

η(V −VR) · ndA+

︸ ︷︷ ︸
phasic terms

(43)

+
∫
S

(∂ηs

∂t
+ηs divsU

)
dA+

∫
C

ηs(VC−U) · bdl+
∫
C

ηs(Vs−UC) · bdl

︸ ︷︷ ︸
interfacial terms

.

The third term on the right side of Eq. (43) can be modified by the use
of the Gauss’s theorem for spatial domains (Kaplan [6]). Thus one gets

∫
R

η(V − VR) · ndA =

=
∫
V

div
[
η(V − V�)

]
dV +

∫
S

‖––η�S(V�S −U) · ζ ‖–– dA , (44)

where

∫
S

η�S(V�S − U) · ζdA =

=
K∑
k

∫
Sk

[
η+

�Sk
(V+

�Sk
− Uk) · ζ+

k + η−�Sk
(V−

�Sk
− Uk) · ζ−

k

]
dA (45)

and superscripts ‘+’ and ‘–’ refer to spatial properties of the phases on either
side of interface, respectively. Subscript �Sk means that value of a phasic
property referenced is taken at infinitesimally close spatial position to Sk.
Substitution of Eq. (44) into Eq. (43) yields the final form of the RTT
attempted as follows:



On the Reynolds transport theorem for three phase systems. . . 37

dΦΣ

dt︸ ︷︷ ︸
accumulation
in Σ

=
∫
V

∂η

∂t
dV +

∫
V

div(ηV�)dV

︸ ︷︷ ︸
accumulation in moving spatial phasic
domains of volume V

+
∫
V

div
[
η(V − V�)

]
dA+

︸ ︷︷ ︸
transport by movement of spatial sub-
systems across �

+
∫
S

(∂ηs

∂t
+ ηs divsU

)
dA +

∫
C

ηs(VC − U) · bdl

︸ ︷︷ ︸
accumulation in interfacial domains of
area S

+

+
∫
C

ηs(Vs − UC) · bdl

︸ ︷︷ ︸
transport by movement of surface sub-
systems across bounding curves C

+
∫
S

‖––η�S(V�S − U) · ζ ‖–– dA

︸ ︷︷ ︸
transport between interface S and bulk
phases

. (46)

Note in Eq. (46) the spatial divergence operator div and surface divergence
operator divs are different, see formulas for these operators given by Slat-
tery [11]. The form of RTT given by Eq. (46) is the most general because it
expresses the rate of accumulation in a three phase system in terms of mov-
ing and deformable CV of arbitrary prescribed configuration in which EQ
can be accumulated both by the phases and interface. Worthy to mention
is applicability of RTT relation (46) also to multiphase systems provided
that particular terms can account in proper number of spatial and surface
subsystems involved.

3 Particular forms of RTT for multiphase systems

A general form of the RTT given by Eq. (46) can be easy modified to express
specific RTT formulations valid for many problems of common practical
interest.

3.1 RTT for three phase systems in terms of fixed CV

Diverse modelling of multiphase flows can be developed using CV of fixed
configuration. The RTT for such practical cases can be derived by applica-
tion of Eq. (46) in which the case of fixed CV implies that:
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• external boundaries Ri, i = 1, 2, 3, are fixed, hence VR1 = VR2 =
VR3 = 0, and thus one gets

∫
V

div(ηV�)dV +
∫
V

div
[
η(V−V�)

]
dV +

∫
S

‖––η�S(V�S−U) · ζ ‖–– dA=

=
∫
V

div(ηV)dV +
∫
S

‖––η�S(V�S − U) · ζ ‖–– dA , (47)

• boundary curves Ck move at VCk
= Uk, k = 1, . . . ,K, what results

in the following line integral of Eq. (46) vanishes, hence
∫
C

ηs(VC −U) · bdl = 0 (48)

and subsequent line integral becomes
∫
C

ηs(Vs − VC) · bdl =
∫
C

ηs(Vs − U) · bdl . (49)

Expression (49) can be transformed by the use of the Green’s theorem (for
surface domains surrounded by a curve) based on which a suitable surface
integral defined on the surface vector field can be related to the line integral
along a closed curve bounding the surface (Aris [1]) as follows:

∫
C

ηs(Vs − U) · bdl =
∫
S

divs(ηsẏ)dA , (50)

where ∫
S

divs(ηsẏ)dA =
K∑
k

∫
Sk

divs(ηs,kẏk)dA (51)

and
ẏk = Vs,k − Uk (52)

is the relative velocity ẏk of the surface system Σs,k wholly defined in the
surface Sk. Now Eq. (46) can be modified with the use of Eqs. (47)–(51) to
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obtain the RTT for three phase systems in terms of the fixed CV as:

dΦΣ

dt︸ ︷︷ ︸
accumulation
in Σ

=
∫
V

∂η

∂t
dV

︸ ︷︷ ︸
accumulation in
phasic volumes of
fixed CV

+
∫
V

div(ηV)dV

︸ ︷︷ ︸
transport across bound-
aries of phasic volumes of
fixed CV

+

+
∫
S

(∂ηs

∂t
+ ηs divsU

)
dA

︸ ︷︷ ︸
accumulation in moving interface S
within fixed CV

+
∫
S

divs

[
ηs(Vs − U

]
dA

︸ ︷︷ ︸
transport across bounding curve C
moving along fixed CS

+

+
∫
S

‖––η�S(V�S − U) · ζ ‖–– dA

︸ ︷︷ ︸
transport between interface S and bulk
phases

. (53)

Taking into account Eq. (52) one can express Eq. (53) in a form

dΦΣ

dt
=

∫
V

∂η

∂t
dV +

∫
V

div(ηV)dV +

+
∫
S

(∂ηs

∂t
+ gradsηs · ẏ + ηs divsVs

)
dA +

+
∫
S

‖––η�S(V�S−U) · ζ ‖–– dA , (54)

where term gradsηs · ẏ + ηs divsVs can be also written as

gradsηs · ẏ + ηs divsVs = − gradsηs ·U + divs(ηsVs) . (55)

Now the surface divergence theorem (Slattery [11]) can be applied to term∫
S

divs(ηsVs)dA what gives

∫
S

divs(ηsVs)dA =
∫
C

ηsVs · bdl −
∫
S

2HηsVs · ζdA . (56)
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Employing the results of Eqs. (55) and (56) into Eq. (54) yields the RTT
in a form

dΦΣ

dt
=

∫
V

∂η

∂t
dV +

∫
V

div(ηV)dV +
∫
C

ηsVs · bdl +

+
∫
S

{
∂ηs

∂t
+ gradsηs ·U − 2HηsVs · ζ

}
dA +

+
∫
S

‖––η�S(V�S−U) · ζ ‖–– dA . (57)

Worthy to mention the RTT given by Eq. (57) is of the same form as that
proposed by Slattery [11]. Note that Eq. (57) remains also valid for mul-
tiphase systems provided that sums determining particular terms are ex-
tended to proper number of phases and interfaces involved. If the interfaces
involved do not possess any storage abilities then ηs = 0 what substituted
into Eq. (57) gives

dΦΣ

dt
=

∫
V

∂η

∂t
dV +

∫
V

div(ηV)dV +
∫
S

‖––η�S(V�S−U) · ζ ‖–– dA . (58)

Expression (58) is the RTT given in terms of fixed CV for multiphase sys-
tems with interfaces of negligible storage abilities. In turn the RTT of
expression (58) is widely applied to formulate differential forms of pha-
sic and interfacial balances which are well known as the jump conditions
(Drew and Passman [2], Ishii and Hibiki [5]) for bulk phasic properties at
the phase interface.

3.2 RTT for surface systems

Let us consider an interface S located in between two spatial bulk systems
(say ‘+’ and ‘–’) and surrounded by bounding curve C. The interface is
an open surface system in motion with flow of surface subsystems (fluid
particles) within and exchanges EQ with its surficial surroundings by flow
across curve C as well as with its spatial surroundings due to flow across
the superficial sides. Let Vs be the spatial velocity of the surface system
flowing in S and U is velocity of interface S. Taking into account the only
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interfacial terms shown in Eq. (53) the RTT for the case in point becomes

dΦΣs

dt
=

∫
S

∂ηs

∂t
dA

︸ ︷︷ ︸
(a)

+
∫
S

ηs divsUdA

︸ ︷︷ ︸
(b)

+
∫
S

divs(ηsẏ)dA

︸ ︷︷ ︸
(c)

+

+
∫
S

[
η+

�S(V+
�S−U) · ζ+ + η−�S(V−

�S−U) · ζ−]
dA

︸ ︷︷ ︸
(d)

. (59)

Equation (59) expresses rate of accumulation in the surface system with
reference to interface moving at U. The corresponding terms are: accumu-
lation rate in the “frozen” interface (a), rate of accumulation due to interface
stretching (b), transport across bounding curve C (c) and transport between
the interface and bulk phases (d). Two specific issues can result from rela-
tion (59). If U · ζ+ = U · ζ− = 0 the interface is stationary (Slattery [11])
what subsequently implemented into Eq. (59) leads to

dΦΣs

dt
=

∫
S

[∂ηs

∂t
+ ηs divsU + divs(ηsẏ)

]
dA +

+
∫
S

(η+
�SV+

�S · ζ+ + η−�SV−
�S · ζ−)dA . (60)

However, a case in which there is no exchange of EQ between phases and
interface is perhaps more common. This situation results in V+

�S ·ζ+ = U·ζ+

and V−
�S · ζ− = U · ζ−. Consequently, relation (59) reduces to

dΦΣs

dt
=

∫
S

[∂ηs

∂t
+ ηs divsU + divs(ηsẏ)

]
dA . (61)

Note, surface integral (corresponding integrand is divs(ηsẏ)) describing
transport term of Eq. (61) can be transformed to the line integral by ap-
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plication of Green’s theorem of Eq. (50), thus one gets

dΦΣs

dt︸ ︷︷ ︸
accumulation in
surface system

=
∫
S

(∂ηs

∂t
+ ηs divsU

)√
ady1dy2

︸ ︷︷ ︸
acculumation in moving interface of area S

+

+
∫
C

ηs(Vs − U) · bdl

︸ ︷︷ ︸
transport across bounding curve
C surrounding moving interface of
area S

(62)

Equations (61) and (62) express rate of accumulation in the surface system
in terms of interface S moving at U at no phasic flow interactions. Note,
Eq. (61) obtained in this paper as a particular case of the RTT given by
Eq. (46) takes the same form as those given by Aris [1], Slattery [11], Ishii
and Hibiki [5]. Since the relative velocity ẏ is defined by Eq. (52) then
Eq. (61) can be also written as:

dΦΣs

dt
=

∫
S

(Dsηs

Dt
+ ηs divsVs

)√
ady1dy2 , (63)

where the surface material derivative is given by (see Slattery [11])

Dsηs

Dt
=

∂ηs

∂t
= gradsηs · ẏ . (64)

If the surface system is fixed with interface S then Vs=U, hence ẏ = 0.
Consequently Eq. (62) becomes as:

dΦΣs

dt
=

∫
S

(∂ηs

∂t
+ ηs divsU

)√
ady1dy2 . (65)

Equation (65) expresses the rate of change in the thermodynamic surface
system fixed with respect to interface in terms of spatial movement of the
interface. If U = 0 the interface is fixed. Subsequently Eq. (62) with the
help of Eq. (50) becomes

dΦΣs

dt
=

∫
S

[∂ηs

∂t
+ divs(ηsVs)

]√
ady1dy2 , (66)
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what expresses to the rate of change in the thermodynamic surface system
moving at Vs = ẏ in a fixed interface. If, however, ηs = const. then Eq. (66)
results in

dΦΣs

dt
=

∫
S

ηs divsVs

√
ady1dy2 . (67)

3.3 Cases of homogenous spatial systems

Now let the system Σ be a spatial pure homogeneous. Hence the RTT for
this limit developed in terms of moving and deforming CV becomes to be
also given by Eq. (46) if all the interfacial terms vanish. In turn Eq. (46)
with substitution CV =

∑
i

Vi surrounded by CS =
∑
i

Ri becomes the RTT

for homogeneous spatial systems expressed in terms of moving CV as

dΦΣ

dt
=

∫
CV

∂η

∂t
dV +

∫
CV

div(ηVCS)dV +
∫

CV

div[η(V − VCS)]dV . (68)

The case of a fixed CV can be frequently of particular interest. Then
VCS = 0, what results that the limits of integration become fixed also. In
turn, by substitution VCS = 0 into Eq. (68) one gets a form of RTT as:

dΦΣ

dt
=

∫
CV

∂η

∂t
dV +

∫
CV

div(ηV)dV (69)

expressing the rate of accumulation in moving homogeneous spatial systems
in terms of fixed CV . Note, that Eqs. (68) and (69) are of the same forms
as given for the case in well-known popular textbooks, e.g. Munson, Young
and Okiishi [9], White [13].

4 Concluding remarks

The RTT is a basic tool in development of the local instantaneous model
equations together with corresponding jump conditions based on which av-
eraged models can be derived. The form of RTT given by Eq. (46) is the
most general because it expresses the rate of accumulation in a three phase
system in terms of moving and deformable CV of arbitrary prescribed con-
figuration in which EQ can be accumulated both within the phases and
interfaces. Based on the general form of RTT as derived in the paper a few
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forms of the RTT are also formulated such as for three phase systems in
terms of fixed CV and for a few cases of surface systems. Worthy to mention
is applicability of RTT relation developed also to multiphase systems pro-
vided that particular terms can account in contributions done by all spatial
and surface subsystems involved.

Received 7 September 2010
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