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Abstract For the optimal location of an additional surplus measure-
ments in the design of redundant measurements system, from data reconcil-
iation point of view, of thermal processes, an information entropy has been
applied. The relative entropy – Kullback-Leibler divergence, has been used.
As a criterion of the optimal location of an additional surplus measurements
in a system of measurements data, the minimum of the entropy information
of reconciled measurements data has been assumed. Hence, the objective
function in the described optimization task is maximum of the relative en-
tropy – Kullback-Leibler divergence concerning sets of raw and reconciled
measurements data. Simulation calculation with application of data rec-
onciliation algorithm and Monte Carlo method concerning the influence of
installation of the additional surplus measurements on decrease of entropy
information of measurements after data validation have been carried out.
The example calculations concerned the cross high-pressure heat regenera-
tion system with cascade flow of condensate installed in 153 MW power unit
equipped with cooler of steam are presented. Calculations for all variants of
configurations of an additional surplus measurements in the analyzed ther-
mal system have been done. Usefulness of the proposed Kullback-Leibler
divergence as a objective function has been demonstrated.
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Nomenclature

A – area of a heat transfer, m2

b – width of class of a distributive series
c – coefficient
DKL – Kullback–Leibler divergence, bit
DM – Mahalanobis distance
d – assumed accuracy of estimation of searched value
ṁ – flow rate of substance, kg/s
h – specific enthalpy, kJ/kg
k – average heat transfer coefficient, W/(m2K) or current number of mea-

surement
L – number of configurations of installation of an additional measurements

data
M0 – modal value
m – number of a measurement variables
n0 – size of a modal value class
n+1 – size of class succeeding the modal value class
n−1 – size of class preceding the modal value class
nss – size of sample
p – pressure, Pa
Q̇ – heat flux, W
q – number of considered additional surplus measurements
r – number of a conditional equation
SX – variance-covariance matrix of raw measurement data
SX̂ – variance-covariance matrix of reconciled measurements data
s – specific entropy, kJ/(kg K) or estimator of the standard deviation
t – temperature, oC
t1−α/2 – value of quantile of t-distribution
t′ – saturation temperature, oC
u – number of a unmeasured variables
uα/2 – quantile of the standardized normal distribution
v – specific volume, m3/kg
x – raw measurement data
x̂ – reconciled measurement data
x0 – lower limit of a modal value class
ŷ – reconciled unmeasured variable
∆T – difference of a temperature, K

Greek symbols

α – significance level
ηHE – efficiency of heat exchanger concerning heat losses to the environment
σ – standard uncertainty of raw measurement data
σ̂ – standard uncertainty of reconciled measurement data
σV – standard deviation of a measurement correction
ν – number of degree of freedom
µ – expected value
Σ – variance-covariance matrix
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Subscripts

fch – fluid stream in heat in exchanger
fth – fluid stream turn over in heat in exchanger
fw – feed water
HE – heat exchanger
m – average
st – steam
x – measurement variable
∆p – pressure drop

1 Introduction

A value of measurement result as well as its uncertainty is necessary to
present the complete result of the measurement [1]. Measurement uncer-
tainty is a parameter characterizing possible range of the value of this mea-
surement. In many cases existing redundancy in measurements system of
thermal process, from data reconciliation point of view, can’t assure the
required level of accuracy and uncertainty of calculated parameters of ther-
mal process. Increase of the accuracy of thermal process parameters (for
example energy efficiency) calculated using credible measurements data can
be obtained in the following way:

• replacing of the existing measurements equipment,

• change of location of the measurements points in the measurements
system,

• installation of the additional measurements in the measurements sys-
tem.

In the paper the analysis of installation of an additional surplus measure-
ments (from data reconciliation point of view) in the measurements system
has been carried out. The investigated problem belongs to the group of
optimization tasks. For its solution a different shape of the objective func-
tion has been applied [2]. In [3] and [4] optimization task as a minimization
of the sum of a variances of a reconciled measurements data has been de-
fined. This approach is possible only in the case, when the measurements
are concerning the same physical quantity, for example when investigated
problems concerns only the mass fluxes. Optimization of a redundant mea-
surements system with application of minimization of the complex relative
uncertainty of the selected parameter of thermal process – heat power of
steam boiler, as a objective function in [5] has been presented. Installation
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of additional measurement derives requires capital investments. Hence, the
other criterion can be minimization of the capital investments for the addi-
tional measurements which simultaneously fulfills the assumption limiting
the uncertainty of individual measurements. The next criterion could be the
maximization of the increase of measurement uncertainty simultaneously
limiting the capital investment for installation of additional measurement
derives in the thermal process. As a rule however, the increase of mea-
surement accuracy in the monitoring of thermal process and increase of the
accuracy of calculation of a coefficient of technical operation, as a result of
the capital investment has been expected.

In this paper a scalar quantity derived from the information theory –
the entropy of information has been proposed as the objective function. In
the optimization task the relative entropy – Kulback-Leibler divergence for
the two multivariate normal probability distribution of the sets of raw and
reconciled measurements data has been applied.

2 Principles of data reconciliation

Data reconciliation is the procedure of optimally adjusting measured and
preliminary estimated unknown variables in such way that the adjusted
values satisfy the laws of conservation and other constraints [2,6–8]. In
general it is formulated by the following constrained weighted least-squares
optimization problem:

min

{
m∑

i=1

(
x̂i − xi

σi

)2
}

, (1)

subject to
gl (x̂i, ŷj) = 0 for l = 1, ..., r . (2)

Equation (2) defines the set of model constrains. These constrains are
generally the mass and energy balances. In the so called generalized data
reconciliations algorithm another constrains can be included as a part of
the reconciliation problem [7,9].

Procedure of the data reconciliation in thermal analysis permits to
achieve the following aims [2,6,8]:

• calculation of the most reliable values of thermal measurements,

• unique solution of the most probable unknown quantities in thermal
processes,
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• assessment of the accuracy of the corrected results of measurements
and of calculated unknown quantities,

• reduction of uncertainty of measured quantities,

• control of fulfilling of the assumed measurements uncertainty.

3 Application of entropy information as
a objective function in optimization task

As a result of application of the data reconciliation algorithm the recon-
ciled measurements data of thermal process and reduction of its uncertainty
have been achieved [2,6]. Decrease of the measurements uncertainty after
data reconciliation in global way can be described by means of a sum of
a weighted variances of the reconciled measurement variables. The inverse
of input variances of raw measurements data were assumed as a weights of
these variances. In the undetermined Lagrange multipliers the method of
solution of the reconciliation task for the variance-covariance matrix of raw
and reconciled measurements the following property occurs [10]:

Tr
(
SX̂S−1

X

)
= m + u − r . (3)

For the diagonal form of the variance-covariance matrix of raw measure-
ments data the following equation is fulfilled [10]:

m∑
i=1

σ̂2
i

σ2
i

= Tr
(
SX̂S−1

X

)
. (4)

Equations (3) and (4) show that sum of the weighted variances of measure-
ment data for unambiguously defined data reconciliation problem (values
m, u and r) is constant. Introduction of real measurement data in the place
of unmeasured variable in the data reconciliation algorithm cause that sum
of the weighted variances of measurements will include greater number of
measurement variables. It can be concluded, that change of unmeasured
quantity in the thermal process to the measured one, decrease all measure-
ments uncertainty after data reconciliation.

Quality of a redundant system of measurements after introduction of
new additional measurement should be evaluated by applying a criterion,
which permits to measure the reliability increase of measurements – both
values of measurements as well as its uncertainties. Because of the presented
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property of the sum of the weighted variances of data measurements, this
sum is not suitable to evaluate the quality of measurements system. It
has been assumed that measurements system of thermal process represents
a signals system of communication, which can be able to send the infor-
mation about thermodynamic parameters of the thermal process. For this
assumption the entropy of information can be applied as the assessment cri-
terion of quality of measurements system. In information theory, entropy is
a measure of uncertainty which is associated with a random variable. This
concept was introduced by Shannon in [11].

In probability theory and information theory also the concept of a rel-
ative entropy (also information divergence) called the Kullback–Leibler di-
vergence has been introduced [12]. The Kullback–Leibler divergence, is a
non-symmetric measure of the difference between two probability distribu-
tions. Typically one of them (N0) represents the true distribution of data,
observations, or a precisely calculated theoretical distribution. The other
distribution (N1) typically represents the theory, model, description or ap-
proximation of data. The Kullback–Leibler divergence (in nats) from mul-
tivariate normal distribution N0 (µ0,Σ0) to N1 (µ1,Σ1), for non-singular
matrices Σ0 and Σ1, is:

DKL (N0||N1) =
1
2

[
ln

(
detΣ1

detΣ0

)
+ Tr

(
Σ−1

1 Σ0

)
+ D2

M (µ0, µ1) − m

]
,

(5)
where:

DM (µ0, µ1) =
√

(µ1 − µ0)T Σ−1
1 (µ1 − µ0) . (6)

In the assessment of increase of measurement data reliability, in principle,
we are not interested in the absolute value of information entropy, but only
in the decrease of this entropy from state of raw measurements data to
state of reconciled measurements. Hence, assuming that distribution N1
concerns the raw measurements data and distribution, N0 concerns recon-
ciled measurements data, the calculation of decrease of information entropy
of measurements data after application of data reconciliation algorithm can
be determined by use of formula (5). In this case the Kullback-Leibler di-
vergence can constitute the criterion of the assessment of increase of a mea-
surement data reliability in a redundant system of measurements of thermal
systems.

Introduction to the Eq. (5) of the variance-covariance matrices prop-
erty describing by the Eq. (3) and knowing that the Mahalanobis squared
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distance between raw and reconciled measurements data (6), the Kullback–
Leibler divergence (in bits) has the following form:

DKL

(
N̂

∥∥∥N
)

=
1

2 ln 2

{
ln

[
m∏

i=1

(
σi

σ̂i

)2
]

+
m∑

i=1

(
x̂i − xi

σi

)2

+ u − r

}
.

(7)
Minimum of the entropy information of reconciled measurements value, that
is the maximum of the Kullback–Leibler divergence (7) from reconciled
measurements to the raw measurements data, can be the criterion of optimal
location of additional measurements in the measurements system of the
thermal systems. Objective function of such described optimization task
can be defined as follows:

DKL

(
N̂

∥∥∥ N
)

k
= max

{
DKL

(
N̂

∥∥∥N
)

kj

}
for

k = 1, ..., q ,
j = 1, ..., L (k)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (8)

4 Number of configurations of the additional
measurements installation

Value of the Kullback–Leibler divergence (7) constitutes the assumed cri-
terion of the assessment of uncertainty measurement decrease after data
reconciliation. The criterion is dependent on the number of surplus mea-
surements quantities, as well as dependent on its location in the analyzed
thermal system. The procedure of optimization calculations requires first of
all the identification of potential places for installation of an additional mea-
surements in a thermal system, considering the technical constrains. These
potential places determines the maximum number of available surplus mea-
surements in the system. The determined number of surplus measurements
(lower than possible maximum) can be installed in measurements system
in different configurations. Solution of the optimization task (8) requires
determination of the Kullback–Leibler divergence for all available configu-
rations of installation of these measurements in the analyzed thermal sys-
tem. Number of these installation configurations results from the binomial
coefficient. For any set containing n-elements, the number of considered
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k-elements subsets is given by the formula:

L (k) = Ck
n =

(
n
k

)
=

(
n!

k! (n − k) !

)
, where k ≤ n, n, k ∈ N+ . (9)

For the set of q-elements of all considered additional surplus measurements
data, the number of all available configurations of their installation in the
thermal system will be the sum of configurations L(k) (9) results from the
formula:

L =
q∑

k=1

Ck
q =

q∑
k=1

(
q
k

)
=

q∑
k=1

(
q!

k! (q − k) !

)
. (10)

5 Computational example

Example data reconciliation calculations concerning thermal processes in
the high-pressure heat regeneration exchangers in the thermal system of
selected power unit have been worked out to confirm the usefulness of the
proposed criterion of optimization. Scheme of the analyzed cross high-
pressure heat regeneration system (Ricard’s system) with cascade flow of
condensate is presented in Fig. 1. Sets of measured and non-measured
variables based on the real measurements in the distribution control system
of power unit have been defined. Possibility of installation of the additional
surplus measurements in the analyzed thermal system were considered. The
measurements variables ensuring minimum information for solution of mass
and energy balances of investigated heat regeneration system have been
showed in Fig. 1 in a circles. The thermal process variables with status
of non-measured quantities but possible to calculate from mass and energy
balances have been marked in Fig. 1 in a squares. These variables in the
optimization calculations obtain the status of measured quantity.

Application of the data reconciliation requires the mathematical model
of the considered thermal process. Such model is constructed as algebraic
equations (so-called conditional equations). Besides the mass and energy
balances, the following additional equations in the generalized method of
data reconciliation are applied [9]: Peclet’s equations for heat transfer in
the heat exchangers, equation of over-cooling of condensate from the heat
exchangers, Darcy’s equations for the steam pressure drop in the steam
pipeline from the steam bleedings to the exchangers. Particularly in the case
of the considered cross heat regeneration system the conditional equations
are as follows:
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Figure 1. Scheme of the analyzed cross high-pressure heat regeneration system.

• energy balance of the heat exchanger HE1:

[
ṁ24h (p16, t17) + ṁ25h (p13, t8) − ṁ20h (p16, t19)

]
ηHE−

−ṁfw

[
h (pfw, t7) − h (pfw, t6)

]
= 0 , (11)

• energy balance of the heat exchanger HE2:

ṁ25

[
h (p13, t14) − h (p13, t8)

]
ηHE − ṁ21

[
h (pfw, t9) − h (pfw, t7)

]
= 0 ,

(12)
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• energy balance of the heat exchanger (steam attemperator) HE3:

ṁ24

[
h (p10, t11) − h (p15, t17)

]
ηHE − ṁ21

[
h (pfw, t3) − h (pfw, t9)

]
= 0 ,

(13)

• energy balance of the feed water mixing point behind steam attem-
perator:

ṁ22h (pfw, t18) + ṁ23h (pfw, t9) − (ṁ1 + ṁ2)h (p3, t4) = 0 , (14)

• mass balance of the feed water mixing point behind steam attemper-
ator:

ṁ1 + ṁ2 − ṁ22 − ṁ23 = 0 , (15)

• mass balance of the feed water:

ṁ1 + ṁ2 − ṁ21 = 0 , (16)

• mass balance of condensate from heat exchanger HE1:

ṁ24 + ṁ25 − ṁ20 = 0 . (17)

Equations describing subcooling of the condensate from the heat exchanger
HE1 and HE2 have the following form:

∆tcon HE − [
t′ (pHE) − tcon

]
= 0 , (18)

whereas the equations for pressure drop of steam to the heat exchanger
HE1, HE2 and HE3 have the form:

pstb − pHE − c∆p HEv (pstb, tstb) Ḟ 2
st HE = 0 . (19)

In the generalized data the reconciliation method heat transfer in the heat
exchanger is simply expressed by the Peclet’s equation. For the considered
heat exchangers this equation has the following form:

ṁfw

[
h (pfw, tHEout) − h (pfw, tHEin)

]
= kHEAHE∆Tm HE . (20)

For the analyzed system of heat exchangers system the average temperature
difference ∆TmHE has been calculated as a thermodynamic temperature
difference of fluid streams flowing through the heat exchanger:

∆TmHE = Tm fth − Tm fch =
(

∆h

∆s

)
fth

−
(

∆h

∆s

)
fch

. (21)
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The specific enthalpy and entropy increase of the feed water in the heat
exchangers results from the formulas:

∆hfch = h (pfw, tHEout) − h (pfw, tHEin) , (22)

∆sfch = s (pfw, tHEout) − s (pfw, tHEin) . (23)

The specific enthalpy decrease and entropy increase of the hot fluid streams
in exchanger HE1 (steam and condensate) results from the formulas:

∆hfth HE1 =
ṁ24h (p15, t17) + ṁ25h (p13, t8)

ṁ24 + ṁ25
− h (p16, t19) , (24)

∆sfth HE1 = s (p16, t19) − ṁ24s (p15, t17) + ṁ25s (p13, t8)
ṁ24 + ṁ25

. (25)

Equations concerning the decrease of specific enthalpy and the increase of
specific entropy of the hot fluid stream for the heat exchangers HE2 and
HE3 has the same form like Eqs. (22) and (23) for the feed water.

The input values of measurements and their standard uncertainty for
reconciliation calculations are shown in Tab. 1. Values of pseudo-measurements
variables kHE , c∆pHE , ∆tconHE in the Eqs. (18), (19) and (20) and their
uncertainty were calculated applying special measurements of the analyzed
power unit and statistical methods [10]. Empirical functions for prelimi-
nary assessment of pseudo-measurement variables have been carried out.
The standard error of a prediction has been used for estimating of uncer-
tainty of these variables.

For optimization calculations the Monte Carlo method has been ap-
plied. The values of measurements for the data reconciliation and Kullback–
Leibler divergence calculations from the normal probability distribution
have been randomly generated. Statistical tools for determination of the
size of sample have been used to determine the required number of random
vectors of measurements values. The accuracy of assessment expressed by
means of assumed in advance length of the confidence interval 2d for the
given confidence level p = 1−α is applied as a criterion to determine the size
of the sample. The size of sample depends then on the required accuracy of
estimation and probability of acceptable risk of not found estimated param-
eter in the confidence interval. Minimum size of sample from population
described by normal distribution and unknown mean value and standard
deviation results from the inequality [13]:

nss ≥ 1 +
(

t1−α/2s

d

)2

. (26)
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Table 1. List of measurements for the data reconciliation calculations.

No. Basic measurements data Value
Standard
uncertainty

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Flow of feed water – boiler inlet, t/h
Flow of water injection to live steam, t/h
Temperature of feed water – boiler inlet, oC
Pressure of feed water – boiler inlet, MPa
Pressure of feed water – inlet HE1, MPa
Temperature of feed water – inlet HE1, oC
Temperature of feed water – inlet HE2, oC
Temperature of condensate from HE2, oC
Temperature of feed water – inlet HE3, oC
Steam pressure to heat exchanger HE3, MPa
Steam temperature to heat exchanger HE3, oC
Steam pressure to heat exchanger HE2, MPa
Pressure in heat exchanger HE2, MPa
Steam temperature to heat exchanger HE2, oC
Steam pressure to heat exchanger HE1, MPa
Pressure in heat exchanger HE1, MPa
Steam temperature to heat exchanger HE1, oC
Temperature of feed water – outlet HE3, oC

402.1
27.2
254.0
16.9
18.1
189.5
212.0
245.2
250.0
2.12
468.1
3.92
3.89
395.3
1.99
1.96
253.2
257.2

10.0
1.0
2.0
0.1
0.1
2.0
2.0
2.0
2.0
0.04
2.0
0.08
0.08
2.0
0.04
0.04
2.0
2.0

Surplus measurements data
19
20
21
22
23
24
25

Temp. of condensate from heat exchanger HE1, oC
Flow of condensate from heat exchanger HE1, t/h
Flow of feed water – heat regeneration system inlet, t/h
Flow of feed water – heat exchanger HE3 inlet, t/h
Flow of feed water – heat exchanger HE3 bypass, t/h
Steam flow from bleeding to heat exch. HE3, t/h
Steam flow from bleeding to heat exch. HE2, t/h

204.3
53.1
429.3
269.1
160.2
18.3
34.8

2.0
2.0
15.0
12.0
10.0
0.6
1.2

For calculation of the quantities in the inequality (26) the results of calcu-
lation in the case of maximum set of measured variables have been used.
Calculation of the pilot test of sample size nps = 1000 of random vectors
of measurements has been carried out. The estimator of the standard de-
viation of the Kullback–Leibler divergence takes the value s = 8.52. For
assumed confidence level p = 0.99 and degree of freedom ν = 999, the
value of quantile t1−α/2 = 2.8133. As the accuracy of the Kullback–Leibler
divergence 1% of calculated value resulting from the carried out pilot test
has been assumed. The value of the minimum of sample size resulting from
inequality (26) is nss = 3909. Finally for the next calculation the value
nss = 4000 has been accepted.

The optimization calculations for previously defined variants of configu-
rations of the additional measurements in the analyzed thermal system have
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been carried out. Number of the variants of measurement locations for each
amount of a surplus measurements is calculated by means of formula (9).
Column 2 of Tab. 2 presents the number of analyzed variants of additional
measurement locations. Total number of analyzed measurement locations
variants resulting from formula (10) amounted to L = 127.

The optimization calculations don’t take into account these solutions
of data reconciliation tasks that not fulfilled the laws of conservation and
statistical test of control of the assumed uncertainty of measurements us-
ing variance-covariance matrix of measurements corrections according to
VDI 2048 [8]. In the applied statistical method for each measured quantity
the formulated null hypothesis H0i (i-th measurement fulfills assumed ac-
curacy) is not rejected, if value of test of a statistics Z meets the following
inequality:

Zi =
| x̂i − xi|√

max
(
σ2

V i,
σ2

i
10

) ≤ uα/2 . (27)

Analysis of the distribution of the Kullback–Leibler divergence values
obtained from the Monte Carlo calculations shows that this distribution is
not normal distribution, especially for the small number of surplus of mea-
surements data [14]. For this reason the modal value of obtained Kullback–
Leibler divergence distribution has been used in the next analysis. The
modal value represents the value that occurs most frequently in a data set
or a probability distribution. For determined continuous distributive series
of values of the Kullback–Leibler divergence the modal value of these series
can by calculated from the following formula:

M0 = x0 + b
n0 − n−1

2n0 − (n−1 + n+1)
. (28)

Results of optimization calculations for all variants of configurations of an
additional surplus measurements in the analyzed thermal system have been
gathered in Tab. 2.

6 Conclusions

The worked-out computational example concerning the high-pressure heat
regeneration system confirmed usefulness of the proposed Kullback-Leibler
divergence as the objective function in optimization of location of additional
surplus measurements in thermal systems. According to expectations the
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Table 2. Results of simulation calculations.

Number of sur-
plus measure-
ments data , k

Number of configura-
tion of installation of
surplus measurements
data, L(k)

Sets of optimal configuration of
surplus measurements data
(number of measurements ac-
cording to the Tab. 1)

Value of the
Kullback–
Leibler
divergence,bit
(modal value)

1 2 3 4

k = 1 L (1) = C1
7 = 7 Mopt

k=1 ={24} 22.27

k = 2 L (2) = C2
7 = 21 Mopt

k=2 ={19,24} 26.43

k = 3 L (3) = C3
7 = 35 Mopt

k=3 ={19,22,25} 28.65

k = 4 L (4) = C4
7 = 35 Mopt

k=4 ={19,21,23,24} 30.89

k = 5 L (5) = C5
7 = 21 Mopt

k=5 ={19,21,23,24,25} 35.66

k = 6 L (6) = C6
7 = 7 Mopt

k=6 ={20,21,22,23,24,25} 35.78

k = 7 L (7) = C7
7 = 1 Mopt

k=7 ={19,20,21,22,23,24,25} 37.93

optimal value of the Kullback–Leibler divergence (column 4 in the Tab. 2)
increases together with the increase of number of additional surplus mea-
surements in the analyzed thermal system. Thus it can be concluded that
application of the additional surplus measurements in the thermal systems
causes decrease of the information entropy of the reconciled measurements
system. The Kullback–Leibler divergence can be the measure of quality of
the redundant measurements system from data reconciliation point of view.
It should be however emphasized that the results of these optimization cal-
culations closely depend on the standard uncertainty of raw measurements
data assumed to the data reconciliation calculations.
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