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Modeling of cooling of ceramic heat accumulator
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Abstract The analyzed heat accumulator is a key element in a hybrid
heating system. In this paper, analytical and numerical models of the
ceramic heat accumulator are presented.The accuracy of finite difference
methods will be assessed by comparing the results with those obtained from
the exact analytical solution.
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Nomenclature

A – heat exchange area, m2

cp – specific heat, kJ/(kgK)
Lx – accumulator length, m
m – mass, kg
ṁ – mass flow rate, kg/s
n – time step number
N – number of nodes in finite difference grid
N1 – air number of heat transfer units
t – time, s
tpr – transit time of the fluid particle, s
T – temperature, oC
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x – cartesian coordinate
x+ – dimensionless coordinate
w – velocity, m/s

Greek symbols

α – heat transfer coefficient, W/(m2K)
∆t – time step size, s
∆x – grid size, m
ε – relative error, %
θ – excess temperature, oC
ρ – density, kg/m3

τ – time constant, s

Subscripts

0 – initial
1 – air
c – corrector
in – inlet
p – predictor
w – accumulator bed

1 Introduction

The European Union energy management tends to reduce CO2 emission and
to increase the share of energy obtained from renewable energy sources in
the total energy consumption. As a consequence of these actions there are
plans for reduction and eventually elimination of natural gas, oil and coal use
in building heating system. Electrically-heated ceramic heat accumulator
is an alternative to this kind of installation.

The heat accumulator (Fig. 1) analyzed in the paper is a key element in
a hybrid heating system. During the night the heat accumulator 1 (Fig. 2)
is warmed up with the low-price electrical energy. During the day the
heat accumulator is discharged by the flowing air. The hot air is cooled
in the plate fin and tube heat exchanger 2 by the water flowing inside the
tubes. The heat exchanger performs the function of a low-temperature
water boiler. The cooled air stream flows through the reversing duct and
is forced by a centrifugal fan through the accumulator. Water is heated up
in the plate fin-and-tube heat exchanger and feeds to the central heating
system.

Mathematical models of a cylindrical heat accumulator will be pre-
sented. An accumulator bed consists of cylindrical ceramic elements which
are arranged in an orderly manner (Fig. 1). Small solid cylinders with a di-
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Figure 1. Cross-section of cylindrical heat accumulator: 1 – ceramic cylinder of finite
length, 2 – sheath electrical heater, 3 – steel cylindrical casing , 4 – steel
tube located inside the accumulator, 5 – bottom of the accumulator with holes
through which flows air.

Figure 2. Hybrid heating system with the heat accumulator: 1 – ceramic accumulator
heated electrically, 2 – plate fin and tube heat exchanger connected to central
heating system, 3 – reversing duct, 4 – ventilator.

ameter of 30 mm and finite height of 30 mm are placed inside steel tubes
with an inner diameter of 94.4 mm. The air flows through free spaces be-
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tween ceramic cylinders and steel tubes. Heat accumulator is the main part
of a test facility shown in Fig. 2.

In this paper, analytical and numerical models of the regenerator are
presented.The accuracy of finite difference method will be assessed by com-
paring the results with those obtained from the exact analytical solutions.
The temperature of air flowing through the heat accumulator is a function
of time and position. The accumulator bed is modeled as an object with
the lumped capacity, i.e., the bed temperature is uniform and is a function
of time only. Mathematical modeling of the accumulator operation will be
conducted for a step-wise increase in air temperature at the inlet of the
heat accumulator (Fig. 3). For such case an exact analytical solution can
be found in [1].

Figure 3. Air temperature changes at the inlet of the accumulator.

2 Mathematical formulation of the problem

The differential equations describing the transient temperature distribution
in the air and bed were derived under following simplifying assumptions:

• outer accumulator surface is perfectly insulated;

• heat is only transferred from the bed to the air, but not to the sur-
roundings:

– air temperature is a function of a coordinate, x, and time, t; at
a given cross-section the air temperature is uniform,

– bed temperature is a function of time only,
– physical properties of air and ceramic bed are constant.
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Temperature changes of the air inside the accumulator are described by
the energy conservation equation

τ1
∂ T1

∂ t
+

1
N1

∂ T1

∂ x+
= −(T1 − Tw) . (1)

The number of transfer units N1 and the time constant τ1 are defined as
follows:

N1 =
α1 Aw

ṁ1 cp1
=

α1 Aw

ρ1 w1 A1 cp1
, (2)

τ1 =
m1 cp1

α1 Aw
. (3)

The energy conservation equation for the bed is

τw
∂ Tw

∂ t
= T1 − Tw , (4)

where the symbol τw denotes the time constant of the bed, defined as

τw =
mwcpw

α1Aw
. (5)

Equation (1) is subject to the following boundary condition at the accumu-
lator inlet

T1 |x=0 = T1,in , (6)

where T1,in is the known air temperature at the accumulator inlet.
The initial temperature, T0, of the air and accumulator bed are assumed

to be constant, i.e., the initial conditions have the form

T1 |t=0 = T0 , (7)

Tw |t=0 = T0 . (8)

The initial-boundary value problem (1)–(8) will be solved at first using the
finite difference method and analytically for a time variation in the inlet
temperature of the fluid in the form of a unit jump.

3 Finite difference method application

In the numerical model of the regenerator, the governing system of dif-
ferential equations (1) and (4) with a boundary condition (6) and initial
conditions (7) and (8) will be solved by a finite difference method. Three
methods will be used: explicit and implicit finite difference methods of the
first-order accuracy and the MacCormac’s predictor-corrector method of
second-order accuracy [3–5].
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3.1 Explicit finite difference method

The explicit finite difference method was used to solve the problem (1)–(8).
The arrangement of nodes in the finite difference grid is depicted in Fig. 4.
Equations (1) and (4) are approximated by the finite difference equations:

τ1

T n+1
1, i+1 − T n

1, i+1

∆t
= − 1

N1

T n
1, i+1 − T n

1, i

∆x+
−
(

T n
1, i + T n

1, i+1

2
− T n

w,i

)
,

i = 1, . . . , N ; n = 0, 1, . . . , (9)

τw

T n+1
w,i − T n

w,i

∆t
= τw

T n+1
w,i − T n

w,i

∆t
=

T n
1, i + T n

1, i+1

2
− T n

w,i . (10)

The coordinates of the difference grid are:
xi = (i − 1)∆x, i = 1, . . . , N + 1 for air,
xi = (i − 1)∆x + 1

2 ∆x, i = 1, . . . , N + 1 for accumulator bed,
tn = n∆t, n = 0, 1, . . . for accumulator bed and air.

Figure 4. Finite difference grid for accumulator bed and air: • – bed, o – air.

The dimensionless grid size is

∆x+ = ∆x/Lx = 1/N ,

where Lx is the length of the accumulator.
Solving Eq. (9) for T n+1

1, i+1 and Eq. (10) for T n+1
w,i gives, respectively

T n+1
1, i+1 = T n

1, i+1 −
∆t

τ1

[
1

N1

T n
1, i+1 − T n

1, i

∆x+
+
(

T n
1, i + T n

1, i+1

2
− T n

w,i

)]
,

i = 1, . . . , N, n = 0, 1, . . . (11)
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T n+1
w,i = T n

w,i +
∆t

τw

(
T n

1, i + T n
1, i+1

2
− T n

w,i

)
. (12)

The boundary condition can be written as

T n
1,1 = T0, n = 0, 1, . . . (13)

The initial conditions (7) and (8) take the following form

T 0
1, i = T0, i = 1, . . . , N + 1 , (14)

T 0
w,i = T0, i = 1, . . . , N . (15)

Formulas (11) and (12), after taking into account the boundary condition
(13) and the initial conditions (14)–(15), allow to determine the tempera-
ture of the air and the bed as a function of position and time. The test
calculations were performed for the step size ∆t = 0.01 s.

3.2 Implicit finite difference method

Discretizing Eqs. (1) and (4) using the implicit finite difference method
gives:

T n+1
1, i+1 = T n

1, i+1 +

[
T n

w,i −
T n+1

1, i + T n+1
1, i+1

2
− 1

N1

T n+1
1, i+1 − T n+1

1, i

∆x+

]
∆t

τ1
, (16)

T n+1
w,i = T n

w,i +

(
T n+1

1, i + T n+1
1, i+1

2
− T n+1

w,i

)
∆t

τw
. (17)

The system of algebraic equations (16) and (17) which are subject to the
boundary conditions (13) and initial conditions (14)–(15) was solved using
the Gauss-Seidel method [2]. The step size ∆t was also equal to 0.01 s.

3.3 The MacCormac predictor-corrector method

MacCormac’s method is an explicit finite difference technique which is
second-order accurate in both space and time [3–5].

Predictor step for the air and bed temperature were derived by discretiz-
ing Eqs. (1) and (4) using two-stage approximation:

• predictor step
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Tpn+1
1, i+1 = T n

1, i+1 +
[
T n

w,i −
T n

1, i + T n
1, i+1

2
− 1

N1

T n
1, i+1 − T n

1, i

∆x+

]
∆t

τ1
, (18)

Tpn+1
w,i = T n

w,i +
(

T n
1, i + T n

1, i+1

2
− T n

w,i

)
∆t

τw
, (19)

• corrector step.

Based on the temperatures Tpn+1
1, i+1 and Tpn+1

w,i , calculated in the predictor
step, the following finite difference equations for the corrector step are as
follows:

Tcn+1
1, i+1 = T n

1, i+1+

[
Tpn+1

w,i − Tpn+1
1, i + Tpn+1

1, i+1

2
− 1

N1

Tpn+1
1, i+1 − Tpn+1

1, i

∆x+

]
∆t

τ1
,

(20)

Tcn+1
w,i = T n

w,i +
(

Tpn
1, i + Tpn

1, i+1

2
− Tpn

w,i

)
∆t

τw
. (21)

The final solution is an arithmetic average of the predictor and corrector
step values:

T n+1
1, i+1 =

Tpn+1
1, i+1 + Tcn+1

1, i+1

2
, (22)

T n+1
w,i =

Tpn+1
w,i + Tcn+1

w,i

2
. (23)

Similar as in previous methods the boundary conditions (13) and initial
conditions (14)–(15) must be accounted for. The test calculations were
performed for step size ∆t = 0.02 s.

4 Exact analytical solution

To assess the accuracy of finite difference approximations an analytical exact
solution [1] will be applied.

The excess air temperature, θ1, and bed temperature, θw, over the initial
temperature, T0, are defined as the difference between the real and the initial
temperatures, i.e.,

θ1 = T1 − T0 , (24)

θw = Tw − T0 . (25)

After an initial jump at t = 0, the air inlet temperature to the accumulator
remains constant (Fig. 5)



Modeling of cooling of ceramic heat accumulator 169

Figure 5. Transformed boundary condition for the air; θ|x=0 = T1 |x=0 − T0 .

θ1 |x=0 = −∆T1 . (26)

The initial conditions are:
θ1 |t=0 = 0 , (27)

θw |t=0 = 0 . (28)

The exact analytical solution of Eqs. (1) and (4) subject to the boundary
condition (26) and initial conditions (27)–(28) is:

T1 − T0

∆T1
= −U(ξ, η) exp[−(ξ + η)], t ≥ tpr , (29)

θ1 − T0

∆T1
= −[U(ξ, η) − Io(2

√
ξη)
]
exp

[− (ξ + η)
]
, t ≥ tpr , (30)

where
ξ =

xN1

Lx
, η =

t − tpr

τw
, tpr = x+N1 τ1 . (31)

The symbols I0 (x), I1 (x) and In (x) denote the modified Bessel functions
of the first kind, of order zero, one, and n, respectively. The symbol tpr

designates the transit time of the fluid particle from the inlet (x = 0) to the
x position given by tpr = x/w1 .

Calculations were performed for the following data: N1 = 1.275, τ1 =
0.357 s, τw = 1013.63 s, T0 = 400 oC, ∆T1 = 380 oC. These parameters
are calculated based on actual accumulator data, which was installed in
the experimental facility. The dimensionless spatial and time steps in the
finite difference method were: ∆x+ = 1/25, ∆t = 0.01 s, both for explicit
and implicit method. For the predictor-corrector method the time step was
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larger and equal to: ∆t = 0.02 s. The adopted time step should satisfy the
Courant condition [3–5], when the explicit finite difference method is used

∆x

w1 ∆t
=

∆t

N1 τ1 ∆x+
≤ 1 .

Substituting the data gives

∆t

N1 τ1 ∆x+
=

0.01
1.275 · 0.357 · 0.04 = 0.55 ,

it means that the Currant condition is satisfied.

Figure 6. Comparison of the air and bed temperature at the accumulator outlet (x+ = 1)
– logarithmic scale.

The comparison of results obtained using the explicit (11)–(12), im-
plicit (16)–(17), predictor-corrector (18)–(19) finite difference methods and
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Figure 7. Comparison of the air and bed temperature at the accumulator outlet (x+ = 1).

the exact analytical solution are presented in Figs. 6. and 7. The consis-
tency between the approximate and exact solution is very satisfactory. The
differences between the exact analytical solution and the finite difference
solutions are almost invisible.

The relative error of the finite difference solutions with respect to the
exact solution is given by

ε =
Tm − Tan

Tan
100% ,

where Tm and Tan are the numerical and analytical results, respectively.
As shown in Fig. 8 the predictor-corrector, as a second order method,
is characterized by the lowest relative error comparing to the analytical
solution. Explicit ad implicit finite difference method relative errors are
almost equal. It can be concluded that all the method can be used for the
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Figure 8. Relative error of the finite difference solutions with respect to the exact solu-
tion.

simulation of heat accumulators. After validation of the numerical models,
they can be applied to the modeling of regenerator operation using actual
boundary and initial conditions.

5 Conclusion

Consistency of the results obtained using the exact analytical method and
finite difference method is very good. It was demonstrated that the accuracy
of the explicit and implicit finite difference methods are comparable with
the more accurate MacCormac method. The finite difference method can
also be used to model the heat accumulators with time dependent inlet air
velocity or temperature.
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