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Abstract The paper deals with a solution of radiation heat transfer
problems in enclosures filled with nonparticipating medium using ray trac-
ing on hierarchical ortho-Cartesian meshes. The idea behind the approach
is that radiative heat transfer problems can be solved on much coarser grids
than their counterparts from computational fluid dynamics (CFD). The
resulting code is designed as an add-on to OpenFOAM, an open-source
CFD program. Ortho-Cartesian mesh involving boundary elements is cre-
ated based upon CFD mesh. Parametric non-uniform rational basis spline
(NURBS) surfaces are used to define boundaries of the enclosure, allowing
for dealing with domains of complex shapes. Algorithm for determining
random, uniformly distributed locations of rays leaving NURBS surfaces is
described. The paper presents results of test cases assuming gray diffusive
walls. In the current version of the model the radiation is not absorbed
within gases. However, the ultimate aim of the work is to upgrade the
functionality of the model, to problems in absorbing, emitting and scatter-
ing medium projecting iteratively the results of radiative analysis on CFD
mesh and CFD solution on radiative mesh.
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Nomenclature

A – surface area, m2

C – CFD mesh cell; cell center
D – radiation distribution factor
d – bundle direction vector
f – user-defined surface flatness criterion
h – heat transfer coefficient, W/m2K
J – Jacobi matrix
k – conductivity, W/m K
N – number of bundles
n – unit normal vector
o – bundle origin
p – calculated surface flatness
Q – heat flux, W
q – heat flux per unit area, W/m2

qv – volumetric heat source, W/m3

qr – radiative heat flux, W/m2

R – random number from < 0, 1 >
S, Su, Sv – parametric surface and its directional derivatives in u and v

directions
T – temperature, K
t – parameter
u, v – parametric surface local parameter
V – ortho-Cartesian cell

Greek symbols

α – absorptivity
δij – Kronecker delta
ǫ – emissivity
σ – Stefan-Boltzmann constant, W/(m2K4)

Subscripts

a – absorbed
e – emitted
i – index
ij – from surface element i to surface element j
j – index
n – iteration number

1 Introduction

Modeling of radiation heat transfer is a challenging task because of the na-
ture of the process in which each surface and volume can interact with each
other on large distances. The problem complicates even more if specular re-
flections and wavelength varying properties of surfaces and gases are taken
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into account. Monte Carlo is a method which can deal with problems of high
complexity while keeping the code of the program relatively simple [1, 2].
Although very versatile, the method is computationally expensive since it
requires tracing a huge number of rays. On the other hand, the algorithm
of ray tracing is a good candidate for parallel computation [3], because the
tracing procedure does not need any information about the fate of other
rays.

The paper presents system for Monte Carlo ray tracing (MCRT) utiliz-
ing coarse ortho-Cartesian mesh which is created based upon computational
fluid dynamics (CFD) mesh. Parametric non-uniform rational basis spline
(NURBS) [14,15] surfaces are used to define enclosure boundaries. The cur-
rent version of the model does not account for radiation absorption/emission
within gases. The code is designed as an add-on to open-source program
OpenFOAM [4].

In this case ortho-Cartesian mesh cells are volume elements involved
in heat transfer and for which volume heat sources are computed. The
volume heat sources correspond to the energy emitted/absorbed by the
medium. In order to find the ray absorption point, the information about
the length of ray within the medium is needed. As a consequence of using
ortho-Cartesian mesh, the volume elements are always axis-aligned paral-
lelepipeds and the procedure of finding the ray-cell intersection is fast and
simple to implement [5–9]. The presented model implements uniform ortho-
Cartesian mesh, in which the ray is traced cell-by-cell and the ray traverses
the space linearly in time. Similar concepts has been presented in the lit-
erature, such as uniform space division (USD) [10] and volume by volume
advancement (VVA) [11] methods but without NURBS surfaces for the
boundary description. It should be emphasized that in case of nonabsorb-
ing/emitting medium the proposed method may not be an optimal one in
comparison with other space subdivision methods like octrees, binary space
partioning (BSP), k-dimensional trees (KD) or bounding volume hierarchy
(BVH). In those approaches the space can be traversed faster than linearly
in time. More information about mentioned above methods can be found
in [5–7,12, 13].

In order to specify the boundaries of the enclosure, parametric NURBS
surfaces were chosen due to a few reasons. NURBS surfaces are able to
describe shapes of high complexity, use little of computer memory and are
widely used in CAD programs and computer graphics [14, 15]. Moreover,
there exist efficient algorithms for finding ray-NURBS surface intersection.
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Most of these algorithms were developed for the purposes of surfaces visu-
alization and rendering in computer graphics.

According to Pabst [16], the algorithms for finding ray-parametric sur-
face intersection can be classified as follows: subdivision, numerical, alge-
braic, and Bézier clipping.

Subdivision-based algorithms make use of convex hull property of para-
metric surfaces [17, 18]. The surface is tested for the intersection with ray
and in case of success it is subdivided. The process is repeated until no
hit is reported or the surface is smaller than the prescribed threshold and
therefore is assumed to adequately approximate the real intersection point.

The core of numerical algorithms is the iterative Newton’s method char-
acterized by a quadratic convergence rate, provided it has a good ini-
tial guess. The algorithm was first used in the context of finding ray-
parametric surface intersection by Toth [19]. The initial guesses for New-
ton’s method were obtained from the interval analysis of the surface. Other
authors [16,20–22] used hierarchies of axis aligned bounding boxes to prop-
erly initialize Newton’s method and to limit the number of ray-surface in-
tersection tests, but they implemented different algorithms for bounding
the box creation.

Algebraic method for ray-parametric surface intersection was first demon-
strated by Kajiya [23]. The method requires finding the roots of 18th-degree
polynomial and is limited to 3rd order surfaces without possibility to extend
it to arbitrary NURBS surfaces making it impractical to implement.

The Bézier clipping algorithm for ray-patch intersection was introduced
by Nishita [24] and it can be thought of as an integration of subdivision-
based and numerical algorithms. The method utilizes convex hull property
of parametric patches to determine parts of surface that cannot contain
intersection point. The algorithm has better convergence than subdivision-
based algorithms and was improved by Efremov [25]. Wang [26] improved
the performance of ray-parametric patch intersection algorithm for coherent
rays by combining Newton’s and Bézier clipping methods.

From the algorithms presented above only Newton’s and Bézier clip-
ping methods are fast enough to be implemented in ray tracing. Newton’s
method has an advantage over the Bézier Clipping, as it is not limited only
to Bézier patches and therefore this technique was used in this work.

The following sections concern the detailed description of the MCRT
model (Section 2), examples of usage of the model (Section 3) and sum-
mary/conclusions (Section 4).
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2 Model description

The radiation heat transfer model presented in this paper employs method
of radiation distribution factors described by Mahan [1].

2.1 The radiation distribution factor

The radiation distribution factor from the surface element i to surface ele-
ment j is defined as a fraction of total radiation emitted from the surface
element i that is absorbed by element j, Qij, due to direct radiation and to
all possible reflections within the enclosure, Qi, [1]:

Dij =
Qij

Qi
. (1)

Elements of the distribution factor matrix have the following properties:

1. Conservation of energy

n
∑

j=1

Dij = 1.0 , 1 6 i 6 n . (2)

2. Reciprocity

ǫiAiDij = ǫjAjDji , 1 6 i 6 n, 1 6 j 6 n . (3)

3. Combination of conservation of energy and reciprocity

n
∑

i=1

ǫiAiDij = ǫjAj , 1 6 j 6 n . (4)

The solution of the radiation heat transfer problem in case of gray diffusive
walls without absorbing/emitting medium and known wall temperatures are
radiative heat fluxes on the walls

qi = qi,e − qi,a = ǫi

n
∑

j=1

σT 4
j (δij −Dij) , (5)

where: n – number of surface elements, ǫ – total hemispherical emissivity,
A – surface area, T – temperature, δij – Kronecker delta.
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2.2 Monte Carlo ray tracing method

A procedure for calculating values of radiation distribution factors is the
core of MCRT method. The elements of radiation distribution factor matrix
are estimated by registration of absorption points of energy bundles, that
are emitted from each surface element i taking into account reflections,
according to the following equation [1]

Dij
∼= Nij

Ni
, (6)

where: Nij – number of energy bundles emitted in element i and absorbed
in element j, Ni – total number of energy bundles emitted from element i.
The propagation of the energy bundle is described by a parametric vector
equation

r(t) = o+ d · t , (7)

where: o – vector of origin, d – vector of direction of the energy bundle, t
– line parameter. Absorption of the energy bundle at the surface element i
occurs when the following condition is fulfilled:

Rα < αi , (8)

where: αi – wall absorptivity, Rα – random number from the 〈0, 1〉 interval.
For diffuse surfaces the bundle emission or reflection direction is defined

by polar and azimuth angles φ and θ at a given point:

φ = 2πRφ , (9)

θ = arcsin(
√

Rθ) , (10)

where Rφ and Rθ – random numbers from 〈0, 1〉 interval.

2.2.1 Ray tracing on ortho-Cartesian mesh

The idea is to create regular ortho-Cartesian mesh (USD, [10]) on which
the radiation heat transfer is solved and which communicates with CFD
mesh. The ortho-Cartesian mesh cells are therefore parallelepipeds with all
walls parallel to the planes of global coordinate system. The communication
between both meshes is assured by the fact that every ortho-Cartesian cell
contains a list of CFD cells. A given CFD cell belongs to ortho-Cartesian
cell if its center is inside the ortho-Cartesian cell. Depending on the type
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and number of CFD cells on the list the ortho-Cartesian cells are classified
as follows: active – when the list is not empty, boundary – when at least
one CFD cell from the list is a boundary cell, inactive - when the list is
empty (Fig. 1).

Vi

cj

Ω
S

Figure 1: Ortho-Cartesian mesh cells (Vi) created on the basis of CFD mesh cells (Cj):
dark – active inner cells, bright – active boundary cells (containing boundary
S of domain Ω), white – inactive cells.

The construction of ortho-Cartesian mesh, selection of CFD cells and cre-
ation of NURBS surfaces run in preprocessing stage. Thus it is done once for
the simulation. The two-way communication between two meshes is realized
in the following form: from CFD to ortho-Cartesian mesh the temperature
and emissivity of walls are exported and from ortho-Cartesian to CFD mesh
the radiative heat flux at walls is exported. Geometrical properties of reg-
ular ortho-Cartesian mesh allow using efficient ray tracing algorithm [5–7]
and computing values of radiation distribution factors. The algorithm com-
putes the closest ray-cell intersection point and assigns a direction flag to
it. In the next step the ray goes to the neighbouring cell according to the
direction shown by the flag. In case the ray hits the boundary cell, the
procedure for finding the ray-surface intersection point is invoked. If the
ray-surface intersection point is found the ray is checked for absorption (8).
In case of reflection, new bundle direction is computed from Eqs. (9) and
(10). The procedure continues till the ray is absorbed at the surface, i.e.,
at a boundary element.
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2.2.2 Boundary cells of ortho-Cartesian mesh

Boundary cells are special kind of cells, because they contain boundary ele-
ments that describe the enclosure geometry. It is assumed that each bound-
ary cell contains exactly one boundary element, which in turn consists of
many NURBS surfaces (at least one). At first NURBS surfaces of order 3 are
created (one for each boundary cell of ortho-Cartesian mesh) using method
of squared distance minimization and boundary points extracted from CFD
cells belonging to ortho-Cartesian cells. After the surface ‘flattening’ proce-
dure (see Section 2.2.4) some of the surfaces are divided and therefore one
boundary element can consist of more than one surface. NURBS surfaces
of order 3 are flexible enough to express most of complex shapes adequately
and the surface evaluation time is acceptable. Moreover, they are widely
used in computer graphics and CAD programs [14, 15]. The algorithms
for NURBS surface creation from unorganized cloud of points and for sur-
face evaluation were taken from the Point Cloud Library (PCL) [27]. The
boundary CFD cells for boundary points extraction are selected using ortho-
Cartesian cells overlapping (Fig. 2). The idea was introduced in order to
assure the boundaries to be sealed and to avoid creation of NURBS sur-
faces from too few points. The cells overlapping is defined by parameter
OF according to equation

OF =
0.5(dx′ − dx)

dx
=

0.5(dy′ − dy)

dy
=

0.5(dz′ − dz)

dz
, (11)

where dx, dy, dz and dx′, dy′, dz′ are ortho-Cartesian cell dimensions before
and after introduction of cell overlapping.

Ci+1

Vi

Ci

Vi+1

dx
dx’

d
y

d
y
’

Figure 2: Overlapping of ortho-Cartesian cells Vi and Vi+1 in order to extract boundary
points for NURBS surface creation: dx, dy and dx′, dy′ – cell dimensions before
and after introduction of cell overlapping, Ci, Ci+1 – cell centers.
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2.2.3 Iterative Newton’s method

The procedure for finding the ray-surface intersection point is triggered as
soon as the ray hits the boundary cell of ortho-Cartesian mesh. It uses
iterative Newton’s method and bounding volume hierarchy for proper ini-
tialization.

The Newton’s method has a quadratic convergence rate provided it was
given an initial guess (u0, v0) that is close enough to the solution. The
proper initial guess for the Newton’s method is assured by the traversal
of the ray through the hierarchy of bounding boxes. The method requires
computation of the directional derivatives of the surface at a given point,
therefore the surface has to be differentiable in the considered domain. Ac-
cording to [20, 23] the ray equation can be rewritten as an intersection of
two planes π1 i π2

πi : Pi · (ni, di) = 0 , i = 1, 2 . (12)

Vectors P1, P2 are defined in homogeneous coordinate system by arbitrary,
perpendicular unit vectors n1, n2 and distances from the coordinate system
origin d1, d2:

Pi = (ni, di) , i = 1, 2 , (13)

where
di = −ni · o , i = 1, 2 . (14)

Ray-surface intersection point S(u, v) can be expressed by

Pi ·
(

S(u, v), di
)

= 0 , i = 1, 2 . (15)

Inserting Eq. (13) to (15) yields a system of equations

F(u, v) =

(

n1 · S(u, v) + d1
n2 · S(u, v) + d2

)

, (16)

in which the parameters of intersection point u∗, v∗ are unknown. Newton’s
method uses truncated Taylor expansion for the function

(

un+1

vn+1

)

=

(

un
vn

)

− J−1(un, vn) · F(un, vn) , (17)

where J is Jacobi matrix of system of equations F and is defined by

J = (Fu,Fv) =

(

n1 · Su(u, v)
n2 · Sv(u, v)

)

. (18)



74 P. Kuczyński and R. Białecki

Vectors Su, Sv are directional derivatives in u, v directions of parametric
surface S(u, v):

Su =
∂S(u, v)

∂u
, Sv =

∂S(u, v)

∂v
. (19)

The exit conditions for Newton’s iteration are:

1. Convergence
||F(un, vn)|| < ǫ . (20)

2. Divergence
||F(un+1, vn+1)|| > ||F(un, vn)|| . (21)

3. Exceeding maximum number of iterations nmax

n > nmax . (22)

According to [20] there is one more exit condition for Newton’s it-
eration, i.e., when the solution is outside the valid parametric domain
u /∈< umin, umax), v /∈< vmin, vmax). This condition was not taken into
account, because the intersection point is subjected to further tests, de-
scribed in Section 2.2.6 which are more strict. In theory it can happen that
the Jacobian is close to zero and its inverse tends to infinity. In this case
either the surface is not regular or the ray is parallel to a silhouette ray at
this point. As a consequence, the computed point is rejected or not found
and a new ray is traced.

2.2.4 Bounding volume hierarchy

Newton’s method for finding ray-surface intersection point is computation-
ally expensive since it requires multiple evaluation of the surface point
and surface derivatives (usually convergence achieved after 3–4 iterations).
Therefore it is important to avoid ray-surface intersection test whenever
possible. Additionally, Newton’s method needs a good initial guess, which
should be closer to the real solution for considerably curved surfaces.

Stated above requirements are met using the bounding volume hierarchy
(BVH) described by Martin in [20]. Generally, the hierarchy consists of the
root, as well as internal and leaf nodes. The root node is the highest level
node containing the other ones. Leaf nodes are placed only at the lowest
level of each hierarchy branch and are assigned initial point for Newton’s
iteration. Bounding volumes are more associated with the objects they are
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actually bounding and have a tendency to bound them tightly, contrary to
the other techniques like octrees, BSP-trees, KD-trees in which the space is
divided using the top-down approach. For bounding volumes axis-aligned
bounding boxes were chosen. They allow to use very efficient ray-box in-
tersection algorithm introduced by Kay [29], mentioned later by Smits [30].
Axis-aligned boxes can also nicely bound flat parts of the surface which is
often the case, as shown later in Section 3.

The method described by Abert [22,28] was used to create the bounding
boxes, which are assigning the initial point for Newton’s iteration and are
leaf nodes in the hierarchy. The other nodes (root and internal) are created
later during the stage of hierarchy development. In Abert’s method the
surface flatness criterion p is defined according to

p =
7
∏

i=1

ni · ni+1 , (23)

where ni are surface normal vectors evaluated at eight points shown in
Fig. 3.

u

v

25%
50%

75%

25%

50%

75%

Figure 3: Black dots are points in parametric domain at which surface normals for surface
flatness criterion are evaluated.

Surface is perfectly flat if p = 1. For p > f a leaf bounding box is
created by taking coordinates of four points corresponding to four limiting
vertices of parametric domain. The initial point for Newton’s iteration is
the arithmetic mean of limiting values of parametric domain. If p 6 f the
surface is divided in half of its parametric domain. The process is recursively
repeated till all subsurfaces fulfil the flatness criterion. Parameter f ∈<
0, 1 > is set empirically and usually it is equal to 0.8–09. In case p < 0,
the surface is also subdivided in half of the parametric domain. Examples
of leaf bounding boxes created for two values of f parameter are shown in
Figs. 4a and 4b.
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(a) f = 0.8 (b) f = 0.95

Figure 4: Leaf bounding boxes for NURBS surface created based on different surface
flatness criterion parameter f .

By taking f parameter closer to 1 the parts of surfaces inside bounding
boxes are ‘more flat’. As a consequence higher number of bounding boxes is
created leading to bigger hierarchy tree, higher memory consumption and
slower ray traversal through the hierarchy. On the other hand, Newton’s
iteration is likely to converge faster.

After computing all the leaf bounding boxes the BVH is created using
the Goldsmith-Salmon algorithm [31]. The quality measure for the hier-
archy is the average time needed for a ray to traverse the hierarchy. The
principle of the algorithm is to put the leaf nodes into the hierarchy tree
one-by-one and to search the tree for optimum insertion place which is
determined by the minimization of the tree cost function. The algorithm
allows to create ‘almost optimal’ hierarchy tree and the time needed for it
is of order n log(n), where n denotes the number of leaf nodes. An example
of BVH is shown in Fig. 5.

In order to efficiently store and traverse the BVH a depth-first order ar-
ray of bounding box objects with skip-pointer mechanism was used (Fig. 6).
If the ray-box intersection test was successful, the next box to test is the
subsequent element of the array. Otherwise, the box to test is determined
by the skip-pointer mechanism which tells how many elements in front of
the current element of the array should be omitted. The advantages of such
representation of the hierarchy are efficient use of the computer memory
(no empty elements), limited to the minimum the amount of information
stored in one element and no need for using recursive function calls during
the hierarchy traversal [30].
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Figure 5: An example of BVH that is assigned to NURBS surface. Leaf nodes containing
initial point for Newton’s iteration are marked by grey colour.

a

b c d

e f g

ba e f c g d

Figure 6: BVH representations: left – using pointers to child nodes, right – depth-first
order array with skip-pointer mechanism.

2.2.5 Bundle emission point

An important step in MCRT method is determination of the bundle emis-
sion point. Since the paper deals with radiation problems without absorp-
tion/emission in gases the energy bundle can have its emission point only
at boundary elements or precisely NURBS surfaces. The emission points
should have uniform distribution across the surface, because the amount
of energy emitted from the surface of constant temperature is proportional
to its area. Algorithm that is capable of drawing random points on any
parametric surface with uniform distribution was described by Kopytov
in [32, 33].

A parametric surface S(u, v) is defined in parametric domain D : {u1 6
u 6 u2; v1 6 v 6 v2}. The joint probability distribution function of param-
eters u and v – f(u, v) – is to be determined. This function corresponds to
the uniform point distribution in 3D space. In case of uniform distribution
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of points on the surface, the probability of point A being on the differential
surface dS equals to

P (A ∈ dS) =
dS

S
, (24)

where

dS =
√

EG− F 2dudv , (25)

S =

∫∫

D

√

EG− F 2dudv . (26)

E, F , G are coefficients of the first fundamental form of the surface S:

E = Su · Su , (27)

F = Su · Sv , (28)

G = Sv · Sv . (29)

Inserting Eqs. (25) and (26) into (24) leads to

P (A ∈ dS) =

√
EG− F 2dudv

∫∫

D

√
EG− F 2dudv

, (30)

where D is surface parametric domain. On the other hand, probability of
point A being on the differential surface dS equals to

P (A ∈ dS) = f(u, v)dudv . (31)

Comparing the Eqs. (30) and (31) the expression for unknown joint proba-
bility distribution function is found

f(u, v) =

√
EG− F 2

∫∫

D

√
EG− F 2dudv

. (32)

The function f(u, v) is proportional to
√
EG− F 2.

Eguation (32) is used in the algorithm for drawing random points on
parametric surface with uniform distribution in 3D space:

1. Determine the maximum of the function fmax = max
√
EG− F 2 in

domain D.
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2. Generate two random numbers Ru i Rv ∈< 0, 1 > and scale them to
the size of the domain D by computing parameters u0, v0:

u0 = (u2 − u1)Ru + u1, v0 = (v2 − v1)Rv + v1 . (33)

where u1, u2, v1, v2 are local parameters bounding valid surface do-
main.

3. Check the condition

fmaxR < f(u0, v0) , (34)

where R – random number from < 0, 1 >. If the condition is fulfilled
the point S(u0, v0) is accepted, otherwise it is rejected.

4. Repeat steps 2, 3 till required number of points on the surface S is
achieved.

The algorithm described above is applicable to one surface only, thus it
needs upgrading to account for many surfaces, as it is the case for some of
the boundary cells of ortho-Cartesian mesh. If boundary cell contains more
than one NURBS surface, the surface is chosen randomly with probability
proportional to its area. Kopytov’s algorithm is used to draw a single emis-
sion point from this surface and then the point is tested if it lies inside the
boundaries of ortho-Cartesian cell. If it does, it is accepted as an emission
point for the new energy bundle, otherwise the procedure is repeated.

2.2.6 Interrogation of intersection points

In general, the bundle can have more than one intersection point with
NURBS surface. All possible intersection points are found during BVH
traversal in which, if the ray hits the leaf node, the iterative Newton’s
procedure is launched. The hierarchy is traversed till its end, because find-
ing one ray-surface intersection point does not guarantee it is correct and
unique. After BVH traversal by the ray the list of all possible intersection
points is created. The task of the interrogation algorithm is to choose the
closest point to the ray origin that is within current ortho-Cartesian cell. In
case no point meeting all the criteria was found the ray goes to neighbouring
ortho-Cartesian cell, according to mechanism described in Section 2.2.1.

It is important to note, that if the value of surface flatness criterion
parameter f is set low, it is more probable for Newton’s method to converge
to improper point or even diverge. In this case the ray can travel to inactive
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ortho-Cartesian cell and escape from the enclosure producing nonphysical
result. This error does not terminate the code execution, simply the traced
ray is neglected. It should be kept in mind that the value of f parameter
is a compromise between the speed the ray traverses through BVH and the
number of rays that can escape from the enclosure.

Another issue worth mentioning is the minimum distance of the intersec-
tion point from the bundle emission or reflection point Lmin. It was noted
that some intersection points were found exactly in the emission/reflection
point. It is caused by the fact that just after emission or reflection the ray
is inside the boundary cell and the procedure of finding intersection point is
automatically triggered. After introducing Lmin parameter the ray is forced
to travel at least this distance before intersection is reported. The value of
the Lmin parameter is set by the user and it should be equal to several
percent of mean linear dimension of ortho-Cartesian cell.

3 Results

This section describes three examples on which MCRT model was checked.
The influence of the number of rays traced from one surface element on the
solution accuracy is shown on the example of view factor. The cube exam-
ple describes how the ortho-Cartesian mesh resolution affects the results.
Finally, the MCRT model is used to perform a full thermal analysis of the
pit furnace operation.

3.1 View factor estimation

MCRT model was used to estimate value of the view factor for two parallel
rectangular plates of sides equal to X and Y . Surfaces lay in front of each
other in distance L. The exact value of the view factor was calculated using
the expression from [34]

Fij =
2

πX̄Ȳ

{

ln

[

(1 + X̄2)(1 + Ȳ 2)

1 + X̄2 + Ȳ 2

]1/2

+ X̄(1 + Ȳ 2)1/2 tan−1 X̄

(1 + Ȳ 2)1/2

}

+
2

πX̄Ȳ

{

Ȳ (1 + X̄2)1/2 tan−1 Ȳ

(1 + X̄2)1/2
− X̄ tan−1 X̄ − Ȳ tan−1 Ȳ

}

,

(35)

where X̄ = X/L, Ȳ = Y/L. By setting the values X = Y = 1/3 m and
L = 1 m the exact value of F exact

ij = 0.0329714.
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During the simulation rays were traced from the surface of one plate
and hits were reported when rays arrived at the second plate. Using the
number of hits reported and total number of rays traced the view factor
Fij can be estimated using the Eq. (6). For a given total number of rays
traced, Nrays, 10 tests were performed for different seeds of random number
generator (RNG). It allowed to estimate a mean value, F estimate

ij , standard
deviation, s10, and relative error, ǫ, for the view factor. The results are
listed in Tab. 1 and shown in the graph in Fig. 7.

Table 1: Results of simulation of view factor estimate. Values computed on the basis of
10 runs with different RNG seeds.

Nrays, – F exact
ij , – F estimate

ij , – s10, – ǫ, %

100 0.0329714 0.047 0.02648 42.55

1000 0.0329714 0.0341 0.00370 3.42

10000 0.0329714 0.03310 0.00129 0.39

100000 0.0329714 0.033063 0.00043 0.28

1000000 0.0329714 0.0328263 0.00018 0.44

The results show that the estimated value of the view factor tends to an
exact value with the increasing number of rays traced. The value of standard
deviation for 10 samples decreases proportionally to the value of expression
√

Nrays. Also relative error tends to 0 for a large number of rays traced.

3.2 The cube

In this test the results obtained by S2S Ansys Fluent [35] and OpenFOAM
MCRT models are compared on the geometry of cube that has edges equal
to 1m (Fig. 8).

Fixed temperature boundary conditions are listed in Tab. 2, in which
T (r) is temperature profile on the wall

T (r) =







(T0 − T1) cos
2(

π

2rmax
r) + T1, if r < rmax ,

T1 , otherwise ,
(36)

where: r =
√
pi − p0 – distance between the center of the cell boundary wall

pi and the center of Z0 wall p0; T0 = 500 K, T1 = 300 K – maximum and



82 P. Kuczyński and R. Białecki

 

Nrays , -

MCRT

Exact

Figure 7: Estimates of the view factor Fij for two parallel plates computed on the basis of
10 tests with various RNG seeds done with MCRT model for different number
of rays traced Nrays.

x
y

z

Z1

Z0

Y1Y0

X0

X1

Figure 8: The geometry of 1m cube with names of boundary walls.

minimum temperature, rmax = 0.4 m – radius of influence. T (r) function
guarantees temperature continuity on the boundary walls.

CFD mesh consists of 125000 cells which corresponds to uniform x, y,
z resolution of 50. MCRT model was run 5 times for different RNG seeds
for each otho-Cartesian mesh resolutions Mres equal to 10, 20 and 40. The
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Table 2: Boundary conditions – temperature and absorptivity for the case of 1m cube.

Wall name T, K α, –

X0, X1, Y0, Y1, Z1 300 1

Z0 T (r) 1

number of rays traced from one surface element was 10000.
Table 3 shows balances of radiative heat fluxes computed by S2S model

and MCRT for three ortho-Cartesian mesh resolutions. The results pro-
duced by MCRT model follow S2S results and are closer to them for the
greater ortho-Cartesian mesh resolution. The balance of radiative heat
fluxes for the entire enclosure should be equal to zero. In the case of MCRT
model it is greater than for S2S model, but the Monte Carlo results converge
with the increase of mesh resolution. The unbalance is caused by uncer-
tainties in computation of radiation distribution factors. The uncertainties
can be lowered either by increasing the number of energy bundles traced, or
by smoothing of the distribution factor matrix. The smoothing procedure
causes the elements of distribution factor matrix to fulfil energy conserva-
tion and reciprocity rules given by Eqs. (2) and (3). Current version of
MCRT model has not the smoothing procedure implemented yet.

Table 3: Balance of radiative heat fluxes, (W ), at cube walls for S2S and MCRT models.
In the case of MCRT model the results are average values of 5 runs for different
RNG seeds.

Model Mres X0 X1 Y0 Y1 Z0 Z1 Net

MCRT 10 -60.72 -61.20 -59.38 -62.08 314.02 -71.78 -1.13

MCRT 20 -61.59 -63.05 -62.40 -63.32 323.43 -77.09 -4.03

MCRT 40 -62.58 -62.04 -62.39 -62.94 325.85 -76.55 -0.65

S2S – -62.76 -62.75 -62.77 -62.76 326.53 -75.52 -0.03

Figure 9 shows the influence of ortho-Cartesian mesh resolution Mres on
the radiative heat fluxes. Increasing the resolution causes the solution to be
more smooth and to approach the reference solution of S2S model. More-
over, the lower the resolution, the bigger the difference between extreme
values of radiative heat flux reported by S2S and MCRT models. This fact
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is caused by the temperature averaging inside the ortho-Cartesian cells and
it is important, since the radiative heat flux is proportional to fourth power
of temperature.

(a) S2S (b) MCRT Mres = 40

(c) MCRT Mres = 20 (d) MCRT Mres = 10

Figure 9: The influence of ortho-Cartesian mesh resolution on the radiative heat fluxes
(W/m2) on the walls.

In order to measure how the solution of MCRT model deviates from
the accurate solution of S2S model the radiative heat fluxes on the line of
symmetry of X0 wall were extracted and compared using p-norms. The
norms are defined as follows:

||x||p = (|x1|p + |x2|p + ...+ |xn|p)1/p , (37)

||x||∞ = max {|x1|, |x2|, ..., |xn|} , (38)

where: p = 1, 2, xi = xS2Si −xMCRT
i . The results are summarized in Tab. 4.

Increasing the ortho-Cartesian mesh resolution two times causes the norms
to decrease by a factor of two and to improve the accuracy of the MCRT
model. It should be noted that the resolution of ortho-Cartesian mesh can
not be greater than the resolution of CFD mesh.
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Table 4: The influence of ortho-Cartesian mesh resolution on the deviation of heat fluxes
on symmetry line of X0 wall obtained using MCRT model from S2S solution
and expressed in form of p-norms.

Mres ||x||∞ ||x||1 ||x||2

10 11.9 239.3 39.4

20 9.4 130.2 24.3

40 3.4 59.3 10.7

3.3 Pit furnace

In order to test MCRT model in practical case, the technique was used
for simulation of the pit furnace performance. This kind of furnaces are
used (among other processes) for nitriding process of metal parts, such as
connecting-rods, gear wheels, sleeves, housings, etc. As a result of nitrid-
ing, a coating is created on the outer surface of the material. The coating
has a high hardness and good antiwear properties. The nitriding process is
operated in controlled atmosphere of 20% ammonia, 80% nitrogen mixture
and in temperatures between 753 and 973 K. Depending on the required
thickness of coating and the type of material, the whole process can last
from several hours to a couple of days. Simulation covered the steady-state
stage of the nitriding process.

The cross-section of the cylindrical pit furnace in the vertical plane of
symmetry is shown in Fig. 10. The cylindrical chamber 14 of the pit fur-
nace has the working space of dimensions: diameter φ 600 mm and height
900 mm and is closed by a removable lid at the top. The sides of the
chamber are covered by electric heaters 1–10 which have a maximum power
of 40 kW. The furnace is insulated by bricks 12 and ceramic blankets 15.
Steel legs 11 reinforce the furnace base on which a steel shaft 13 is placed.
Ammonia/nitrogen mixture flows to the chamber through the inlet 18 and
escapes through the outlet 16. The mixing fan shaft 17 is placed in the
center of the lid.

It should be noted that during the creation of the geometrical model of
the furnace certain simplifications and assumptions were made including:

• placing heaters inside the insulation,

• neglecting the presence of the gas-tight retort,
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(a) (b)

Figure 10: Cylindrical furnace cross-section through vertical plane of symmetry: 1–10 –
electric heaters, 11 – steel legs, 12 – insulating brick, 13 – shaft, 14 – chamber,
15 – insulating ceramic blankets, 16 – outlet, 17 – fan shaft, 18 – inlet, s1-s10
– inner surfaces of electric heaters, s11 – bottom surface of steel legs, s12 –
bottom surf. of insulating brick, s13, s14, s15 – bottom/side/top surface of
insulating blanket, s16, s20 – outlet/inlet, s17, s19 – outlet/inlet pipes walls,
s18 – top surf. of fan shaft. The furnace data acquired from Seco/Warwick
Group, [36].

• neglecting the presence of the fan.

In practice, the furnace load is placed inside the gas-tight retort which pre-
vents the heaters to have the contact with nitriding atmosphere. The usage
of the fan causes the atmosphere and its temperature to be more uniform
inside the retort and especially in the neighbourhood of surfaces undergo-
ing nitrification which influence quality of the process. It should be kept in
mind that the introduced simplifications influence the flow of the nitriding
mixture inside the chamber. They do not change the overall energy balance
of the system and are not crucial for testing the MCRT radiation model.
Because of the low optical thickness of the medium inside the chamber,
the absorption/emission properties of ammonia/nitrogen mixture were ne-
glected.

Selected boundary conditions are named in Fig. 10b and listed in Tab. 5.
Material properties are shown in Tab. 6. The emissivity of all walls inside
the furnace chamber was set to 1. The simulation was run for two radiation
mode MCRT and S2S for comparison.

As a result of the simulation temperatures and radiative heat fluxes
within the chamber were determined and overall energy balance of the fur-
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Table 5: Boundary conditions for the case of pit furnace. Names correspond to the nu-
meration introduced in Fig. 10b.

Name BC type Property Units Value

s11, s12, s13, wall natural Text K 300

s14, s15, s18 convection hext W/m2K 5

s16 pressure p Pa 0

outlet

s20 velocity v m/s 0.0853

inlet V̇ l/min 10

T K 300

s17, s19 wall q W/m2 0

1 – 10 volume qv W/m3 130000

Text – external free-stream temperature, hext – external heat transfer coefficient, p – pressure,

v =– velocity, V̇ – volumetric flow rate, T – temperature, q – surface heat flux, qv – volumetric

heat source.

Table 6: Material properties used in the simulation. Volumes numbering corresponds to
one introduced in Fig. 10a.

Material Volumes k, W/mK ρ, kg/m3 cp, J/kgK

steel 11, 13, 17 58.00 7800 600

insulating blanket 15 0.20 70 970

insulating brick 12 0.14 480 1050

heaters rod 1–10 80.00 8000 450

k – heat conductivity, ρ – density, cp – heat capacity.

nace was calculated. Figure 11a shows the resulting temperature profile
in the plane of symmetry. The detailed inspection of the profile reveals
the existence of thermal bridges, created by fan shaft and steel legs. Also
the cold stream of ammonia/nitrogen mixture, close to the inlet is visible.
Figure 11b shows the radiative heat fluxes on the sides of the chamber.
Although the duty of each heater is the same, their radiant power dif-
fers significantly. This fact is caused by the different temperatures of the
heaters. The heaters 1 and 10 have the lowest temperature and correspond-
ing radiant power. The temperature and radiative heat flux profiles on the
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surface of nitriding object are shown in Fig. 12. The temperature on the
shaft equals to 967 ± 4 K and its range is too wide to assure the quality
of the process. The nonuniform temperature is caused by the cold stream
of ammonia/nitrogen mixture and exposure to the low-temperature side
of the fan shaft. Uniformity of the temperature distribution (and simul-
taneously nitrogen concentration) can be improved by using fan and gas
flow-distribution equipment. Moreover, the electric power input for each
heater should be adjusted in order to maintain uniform temperature across
the chamber.

(a) (b)

Figure 11: (a) Temperature profile (T ) in furnace cross-section through vertical plane
of symmetry. (b) Radiative heat flux (qr) on the outer sides of cylindrical
chamber.

The overall energy balance for the furnace is shown in Tab. 7. In order
to maintain the required temperature inside the chamber in steady state,
only 10% of maximum heaters duty is needed. It is clear that most of
the heat is lost through the insulation and metal parts and only a small
percent (< 4%) by hot exhaust gases. Mean temperature outside the side
insulation is 382 K which is too high for people who operate the furnace.
Additional cooling device should be installed in order to avoid contact with
hot surfaces.

The comparison of radiative heat flux, mean temperature on selected
walls and heat fluxes from Tab. 7 done for MCRT and S2S models shows
that the differences are less than 5%. The differences are caused mainly
by the temperature averaging inside ortho-Cartesian cells done in MCRT
model.
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(a) (b)

Figure 12: Temperature (a) and radiative heat flux (b) profiles on the outer surface of
the shaft.

Table 7: Overall energy balance of the furnace for MCRT and S2S models. Surface names
correspond to ones introduced in Fig. 10b.

Surfaces QMCRT , W QS2S, W

s11, s12, s13 -508 -522

s14 -2761 -2766

s15, s17, s18, s19 -489 -469

s16, s20 -79 -108

Hgas -137 -136

Qheaters 4000 4000

Net -26 1

4 Conclusions and summary

Radiation heat transfer model using Monte Carlo ray tracing method on
hierarchical ortho-Cartesian meshes and NURBS surfaces for description of
boundaries has been developed and discussed. The code is an add-on to the
open-source CFD program OpenFOAM. The ortho-Cartesian mesh is con-
structed based upon the CFD mesh. Algorithms for finding ray-NURBS
surface intersection and determining random, uniformly distributed loca-
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tions of rays leaving NURBS surfaces are described. The presented version
of the model does not account for the radiation absorption/emission within
gases. However, the ultimate aim of the work is to upgrade the functionality
of the model to problems in absorbing, emitting and scattering medium.

The developed model is tested on three examples with an assumption
of gray diffuse walls: view factor, the cube and pit furnace. The results
show how the number of rays traced from boundary element and the ortho-
Cartesian mesh resolution influence the solution. Moreover, model ability
to deal with geometries of complex shapes is proved. Wall heat fluxes and
temperature predictions obtained by MCRT model are in good agreement
with the S2S Fluent model.
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