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Abstract The recently developed special unity Mach number dispersion
model prescribes the corrections to heat transfer coefficients which are sim-
ple functions of the dispersive Peclet numbers. They can be determined
through the residence time measurements. An evaluation method is de-
scribed in which the measured input and response concentration profiles are
numerically Laplace transformed and evaluated in the frequency domain.
A characteristic mean Peclet number is defined. The method is also applied
to the parabolic dispersion model and the cascade model. A calculated ex-
ample of a tube bundle with maldistribution and backflow demonstrates the
suitability of the evaluation method.
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Nomenclature

A – area, m2

a – constant of polynomial function (a0, a1, a2 and a3)
C – propagation velocity of thermal disturbances, m/s
cp – specific heat at constant pressure, J/kgK
F – transfer function
j – counter
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k – counter
L – flow length, m
M – dispersive thermal Mach number, M = w/C

NTU – number of transfer units, NTU = αA
/

Ẇ

NTUd – effective number of transfer units, corrected for axial dispersion,
NTUd = αdA/Ẇ

n – number of completely mixed zones in the cascade model
Pe – dispersive Peclet number, Pe = wLρcp/λd

q̇x – axial dispersive energy flux, W/m2

s – Laplace variable
T – dimensionless fluid temperature outside the heat exchanger
t – dimensionless fluid temperature inside the heat exchanger
t∗ – dimensionless wall temperature
V – volume of fluid inside the flow channel, m3

V̇ – volumetric flow rate, m3/s
Ẇ – heat capacity rate, Ẇ = wAcρcp, W/K
w – mean flow velocity, m/s
x – dimensionless flow length, 0 ≤ x ≤ 1
z – dimensionless time coordinate

Greek symbols

α – heat transfer coefficient, W/(m2 K)
αd – heat transfer coefficient, corrected for axial dispersion, W/(m2

K)
λd – apparent thermal conductivity, caused by axial dispersion,

W/(m K)
ϕ – dimensionless axial dispersive energy flux, ϕ = q̇xL/(λd ∆ϑ)
σ – integration boundary in eq (10), positive real number
ρ – density, kg/m3

∆ϑ – characteristic temperature difference of the considered prob-
lem, K

τ – time, s
∆τ – time impulse width
τr – residence time, s

Subscripts

d – dispersive
i – counter (0 or 1)
p – parabolic
w – wall
0 – inlet
1 – outlet or first stream
2 – second stream
3 – third stream
∼ – Laplace transform
− – mean value
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1 Introduction

For the thermal design and rating of heat exchangers charts and formulas
are available for numerous flow arrangements which are based on the as-
sumption of nondispersive plug flow [1,2]. However, in most industrial heat
exchangers the real flow pattern deviates from this ideal plug flow in form
of backmixing, maldistribution, recirculation and three dimensional flows.
These deviations cause a reduction of the usual plug flow mean tempera-
ture difference, which effect can approximately be taken into account with
axial dispersion models [3]. The recently [4,5] proposed unity Mach number
dispersion model is subject to this publication.

2 Unity Mach number dispersion model

The most general model is the hyperbolic dispersion model which allows
finite propagation velocities C of the thermal disturbances. The governing
energy equation can be expressed as [6]
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(1)

With suitable values of the propagation velocity, C, or the dispersive Mach
number, M = w/C, one could adapt the model to special flow patterns
deviating from the ideal plug flow. As pointed out earlier [5] low Mach
numbers (high propagation velocities), 0 ≤ M2 < 1, can preferably describe
pure axial mixing, conduction and diffusion, with limiting case M = 0 (C =
∞) for the Fourier type heat conduction. High Mach numbers, M2 > 1,
can consider situations of pure maldistribution as occur in tube bundles or
plate heat exchangers. For an infinite propagation velocity, C2 = ∞, the
dispersive Mach number M = 0, and Eq. (1) leads to the original parabolic
dispersion model. The special case of M2 = 1 in Eq. (1) represents the
basis of the new unity Mach number dispersion model [4,5]. For M2 = 1
and steady state conditions in counterflow, parallel flow and pure cross-flow
heat exchangers the solution to the system of energy equations leads to
simple corrections of the true mean heat transfer coefficients:

1

αdA
=

1

αA
+

1

ẆPe
. (2)
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This equation can approximately be applied to other flow arrangements
with sufficient accuracy [5]. The degree of axial dispersion is expressed with
the dispersive Peclet number Pe. Pe = ∞ means ideal plug flow without
dispersion. For the application of Eq. (2) appropriate values of Pe have to
be known for the heat exchanger flow channel under consideration.

In previous investigations the Peclet numbers, Pep, for the parabolic dis-
persion model were experimentally determined. First through steady state
measurements evaluated with extended Wilson plot techniques [7–10], later
with residence time measurements using a tracer [11]. Balzereit compared
measured outlet responses to calculated ones, as is also recommended by
earlier researchers [12], who compared different evaluation methods in and
outside the time domain, i.e., a transfer function fitting (Laplace trans-
form). They did not consider closed heat exchanger systems (no dispersion
in the fore and aft sections) but infinitely long open systems with parabolic
dispersion (M = 0).

In the following an alternative evaluation method for tracer experiments
on heat exchangers (closed systems) is described, which can be applied to
the unity Mach number dispersion model and other models. The measured
profiles are evaluated in the frequency domain.

3 Evaluation of tracer experiments

The tracer experiment can be described in the same way as the adiabatic
process. For M2 = 1 and NTU = 0 Eq. (1) simplifies to

∂t

∂z
+
∂t

∂x
+

1

Pe

(

∂2t

∂z2
+ 2

∂2t

∂z∂x

)

= 0 . (3)

The temperatures can be regarded as tracer concentrations. Inside the
exchanger flow channel the temperature is denoted with t. In front and
rear the channel cross-section where no dispersion occurs the temperatures
are denoted with T . At the inlet (i = 0, x = 0) and the outlet (i = 1, x = 1)
step changes in temperature take place which can be expressed as

ti (z) +
2

Pe

∂ti (z)

∂z
= Ti (z) +

1

Pe

∂Ti (z)

∂z
. (4)

The derivation of this equation is given in the appendix. At the inlet (i = 0)
Eq. (4) is one of two boundary conditions. Before the experiment (τ ≤ 0)
all temperatures are uniform. The dimensionless temperatures are defined
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such that at the beginning of the measurements all temperatures (or con-
centrations) become zero. This definition is useful for the Laplace transform
solution. At the time τ = 0 the tracer is injected in front of the inlet cross-
section causing the input temperature (concentration) profile T0(τ) to be
measured. The function T0(τ) is the second inlet boundary condition for
the solution to Eq. (3). Immediately following the outlet cross-section the
response profile T1(τ) is measured as well, and the comparison of inlet and
outlet profiles yields the desired Peclet numbers.

Independent of the used evaluation method, the mean residence time in
the flow channel, τr = V/V̇ , has to be determined for the calculation of the
dimensionless time z = τ/τr = τ V̇ /V . The mean residence time can be
calculated from the first moments of the measured inlet and outlet profiles
[11,12] according to

V

V̇
= τr =

∞
∫

0

T1τ dτ

∞
∫

0

T1dτ

−

∞
∫

0

T0τ dτ

∞
∫

0

T0dτ

. (5)

Due to the conservation of energy (if T = temperature) or mass (if T =
concentration)

∞
∫

0

T1dτ =

∞
∫

0

T0dτ . (6)

The Eq. (3) is solved using the Laplace transforms

t̃ (s) =

∞
∫

0

t exp (−sz) dz; T̃ (s) =

∞
∫

0

T exp (−sz) dz (7)

leading to the transfer function

F (s) =
T̃1 (s)

T̃0 (s)
=
t̃1 (s)

t̃0 (s)
= exp

(

−s Pe + s

Pe + 2s

)

. (8)

The real outlet response T1(τ) could be calculated with the aid of numerical
retransformation only for special functions of T0(τ), e.g., the Dirac impulse.
Alternatively the measured profiles T0(τ) and T1(τ) can be evaluated in
the frequency domain. The measured temperatures as functions of the
dimensionless time, z, have to be numerically transformed according to
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Eq. (7), leading to the experimental transfer function F (s) in Eq. (8). This
equation can be solved for Pe yielding Pe(s) for any value of s.

If the channel flow obeys the unity Mach number dispersion model,
Eq. (8), yields the constant Peclet number for any value of s, Pe(s) = const.
A plot of s/Pe versus s would be a straight line through the origin, its
slope being equal to 1/Pe. In reality the model will not fit exactly and
the resulting Peclet number from Eq. (8) varies with s, Pe(s) 6= const.
A characteristic mean value of Pe has to be found. Intuitively the Peclet
number for s = 0 appears to be the characteristic mean value as all parts of
the profiles T0(z) and T1(z) get the same weight. Unfortunately the value
Pe(s = 0) cannot be calculated directly from Eq. (8). This problem is solved
in the following way.

The experimental function s/Pe(s) versus s is a weekly curved line which
can be expressed as a polynomial

s

Pe
= a0 + a1s+ a2s

2 + a3s
3 . (9)

Dividing Eq. (9) by s yields 1/Pe(s). Forming the integral mean value of
1/Pe(s) along s between s = −σ and s = +σ and shrinking the range of
integration to zero yields the mean value Pe at the point s = 0:

1

Pe
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σ→0





1

2σ

+σ
∫

−σ

ds

Pe



 = a1 . (10)

This equation is independent of the degree of polynomial Eq. (9) and of the
value of a0. If s/Pe(s) is linear in the range −s1 ≤ s ≤ +s1, only two Peclet
numbers have to be calculated and

1

Pe
=

1

2

[

1

Pe (−s1)
+

1

Pe (+s1)

]

. (11)

If the polynomial Eq. (9) is of the third degree, at least four points are
required. With the values Pe(−s1), Pe(−s1/2), Pe(+s1/2) and Pe(+s1) the
following formula for a1 = 1/Pe is derived:

1
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=

2

3

[

1
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(

− s1
2

) +
1

Pe
(

+ s1
2

)

]

− 1

6

[

1

Pe (−s1)
+

1

Pe (+s1)

]

, (12)

which is recommended for the evaluation. The value of s1 can arbitrarily
be selected. Alternatively the coefficient a1 could be determined through
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a least square estimation of more than four points with arbitrarily selected
values of s.

The described evaluation method is not restricted to the unity Mach
number dispersion model. It can be applied to other one-dimensional flow
models for which the transfer functions F (s) is available. One has merely
to replace F (s) in Eq. (8) by the function under consideration.

For the parabolic dispersion model with the related Peclet number Pep
Balzereit [11] gave the solution, which is rearranged here to

1
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2

(

1 +

√

1 +
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.

(13)

Numerical methods have to be applied to find Pep(s) from given s and
measured F (s).

The Eqs. (11) and (12) are also valid for Pep. Under steady state condi-
tions of balanced counterflow and zero heat transfer coefficients (adiabatic
case) the comparison of both dispersion models leads to the relationship

Pe =
Pe2p

Pep − 1 + exp (−Pep)
, (14)

which is also valid for parallel flow if NTU1 +NTU2 → 0 (adiabatic case;
NTU1 and NTU2 for stream 1 and stream 2 in the exchanger). Separate
calculations have shown that Eq. (14) is also fulfilled for the Peclet numbers
Pe and Pep from the tracer experiment. This will be demonstrated later in
this paper.

The evaluation method can also be applied to the cascade model with
n consecutive completely mixed zones in the flow channel. The transfer
function is

F (s) =
(

1 +
s

n

)

−n
. (15)

Equating the transfer functions of Eqs. (15) and (8) yields for the limiting
case s→ 0 the relationship

Pe = 2n̄ , (16)

which confirms the findings for steady state conditions [5], Pe = 2n for
counterflow with NTU1 − NTU2 → 0 and for parallel flow with NTU1 +
NTU2 → 0 (NTU1 and NTU2 for stream 1 and stream 2 in the exchanger).
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4 Calculated example

A tube bundle with 7 tubes is considered as shown in Fig. 1. Heat is
transferred from the fluid inside the tubes to the tube wall of uniform di-
mensionless temperature, tw = 0. The fluid cools down from the dimen-
sionless inlet temperature, T0 = 1 to the dimensionless outlet temperature,
T1. Maldistribution and backflow take place in the bundle. Three streams
are considered. Stream 1 in 4 tubes with velocity w1. Stream 2 in 2 tubes
with velocity w1/2. Stream 3 backflow in 1 tube with velocity w1/2. The
temperature distribution is qualitatively shown in Fig. 2.

Figure 1: Tube bundle with maldistribution and backflow.

For a uniform heat transfer coefficient, α, the dimensionless outlet tem-
perature

1
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=

1

1 + Ẇ2
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− Ẇ3
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



(

1 + Ẇ2

Ẇ1

)2
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Ẇ2

Ẇ1
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− Ẇ3

Ẇ1
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




,
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Ẇ1

, NTU2 = NTU1
A2

A1

Ẇ1

Ẇ2

, NTU3 = NTU1
A3

A1

Ẇ1

Ẇ3

.

(17)

The same steady state process can be expressed with the dispersion model
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Figure 2: Temperature distribution.

yielding

1

T1
= exp (NTUd) = exp

(

1
1

NTU + 1
Pe

)

,

NTU =
α (A1 +A2 +A3)

Ẇ1 + Ẇ2 − Ẇ3

= NTU1

1 + A2

A1
+ A3

A1

1 + Ẇ2

Ẇ1

− Ẇ3

Ẇ1

.

(18)

Equating T1 of Eqs. (17) and (18) and solving for Pe gives the Peclet num-
ber for the steady state heat transfer process.

In this example Ẇ2/Ẇ1 = V̇2/V̇1 = 1/4, Ẇ3/Ẇ1 = V̇3/V̇1 = 1/8,
A2/A1 = V2/V1 = 1/2, A3/A1 = V3/V1 = 1/4. With these data the
outlet temperature and the Peclet number can be calculated for different
values ofNTU1. For the comparison with the Peclet number from the tracer
experiment the adiabatic limiting value of Pe is formed resulting in

lim
NTU1→0

Pe (NTU1) =
245

73
. (19)

In the tracer experiment a rectangular impulse T0∆τ(∆τ → 0) is given as
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the input profile. The height T0 is fixed to T0 = 1. For simplification the
volume of inlet and outlet headers is assumed to be zero. The residence
time of stream 1 is given as τr1 = V1/V̇1 = 0.1 s. The residence times
of stream 2 and 3 are τr2 = 0.1 s (V2/V1)(V̇1/V̇2) = 0.2 s and τr3 = 0.1 s
(V3/V1)(V̇1/V̇3) = 0.2 s. The mean residence time of the bundle τr = V/V̇ =
τr1(1 + V2/V1 + V3/V1)/(1 + V̇2/V̇1 − V̇3/V̇1) = 7/45 s. The mean residence
time has been calculated from the given data. In a real experiment it is
determined from the measured profiles using Eq. (5).

The input impulse travels through the channels 1 and 2 and arrives at
the outlet header after the residence times 0.1 s and 0.2 s, respectively.
In the outlet header they mix with the other stream and leave the header
with the lowered temperature. At the same time they enter the backflow
channel and arrive at the inlet header after the residence time τr3 = 0.2 s.
There they mix with the main inlet flow stream and travel again through
channels 1 and 2, and so on. In this way an infinite number of single outlet
impulses of width ∆τ and rapidly decreasing height are created. This is
shown in Fig. 3.

Figure 3: Outlet impulses of calculated example.

According to Eq. (6) the sum of all outlet impulses is equal to the inlet
impulse. This is described and confirmed with

∞
∑

k=1

k+1
∑

j=1

9

50k

(

k
j − 1

)

4(k+1−j) =
∞
∑
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9

50k
(4 + 1)k = 1 . (20)
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According to Eq. (5) the mean residence time of the bundle can be calculated
from the “measured” response

V

V̇
=

∞
∑

k=1

k+1
∑

j=1

9

50k

(

k
j − 1

)

4(k+1−j) 1

10
(3k + j − 3) =

7

45
s . (21)

The summation gives the exact value from the given data.
Finally the transfer function F (s) according to Eq. (8) can be calculated

for given values of s:

F (s) =

∞
∑

k=1

k+1
∑

j=1

9

50k

(

k
j − 1

)

4(k+1−j) exp

[

−s 9

14
(3k + j − 3)

]

. (22)

Selecting the value s1 = 0.1 and calculating Pe for −s1, −s1/2, +s1/2, and
+s1 yields from Eq. (12) the characteristic mean Peclet number Pe. The
results of the calculation are given in Tab. 1. The resulting value Pe agrees
with the steady state value of Eq. (19): 245/73 = 3.3562.

The evaluation method is also applied to the cascade model and the
parabolic dispersion model using the transfer functions of Eqs. (15) and (13),
respectively. The results are presented in Tab. 1 as well. The Eqs. (16) and
(14) are confirmed for the mean values Pe, Pep and n̄, defined by Eq. (10).

Table 1: Calculated values of Pe(s), 2n(s) and Pep(s) from the “experimental” transfer
function F (s). Pe(s = 0) = Pe, Pep(s = 0) = Pep, n(s = 0) = n̄. Pe = 2n̄. Pe
and Pep fulfil Eq. (14).

s –0.1 –0.05 +0.05 +0.1 0, Eq. (12)

F (s), Eq. (22) 1.1088 1.0521 0.9519 0.9073 1.000

Pe, Eq. (8) 3.2958 3.3257 3.3871 3.4185 3.3562

2n, Eq. (15) 3.2298 3.2926 3.4206 3.4858 3.3562

Pep, Eq. (13) 1.6838 1.7417 1.8577 1.9159 1.7996

5 Conclusions

The described evaluation method in the frequency domain is applicable to
the unity Mach number dispersion model, the parabolic dispersion model
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and the cascade model. The resulting newly defined characteristic mean
values Pe, Pep and n̄ agree with the corresponding steady state adiabatic
limiting values.

The evaluation method gives reliable results independent of the shape
of the measured inlet and outlet profiles. In particular it can be applied
to cases in which the usual method of comparing measured and calculated
outlet profiles is impossible.

Appendix. Derivation of Eq. (4)

The energy equation Eq. (3) of [5] with NTU = 0 is used,

∂t

∂z
+
∂t

∂x
+

1

Pe

∂ϕ

∂x
= 0 , (23)

with the dimensionless axial energy flux, ϕ = q̇xL/(λd ∆ϑ), according to
Eq. (4) of [5] with M = 1

ϕ+
1

Pe

∂ϕ

∂z
+

1

Pe

∂ϕ

∂x
= − ∂t

∂x
. (24)

Substituting ∂t/∂x in Eq. (23) according to Eq. (24) yields

ϕ+
1

Pe

∂ϕ

∂z
=
∂t

∂z
. (25)

The energy balances at the inlet (x = 0, i = 0) and outlet (x = 1, i = 1)
according to Eqs. (17) and (18) of [5] give

ϕi = Pe (Ti − ti) . (26)

Applying Eq. (25) to inlet and outlet and substituting ϕi according to
Eq. (26) yields

ti (z) +
2

Pe

∂ti (z)

∂z
= Ti (z) +

1

Pe

∂Ti (z)

∂z
. (4)

The Laplace transform of Eq. (4) reveals that

F (s) =
T̃1 (s)

T̃0 (s)
=
t̃1 (s)

t̃0 (s)
. (27)
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