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1. INTRODUCTION

The Kaufmann and Desbazeille algorithm is a procedure used in the time-cost tra-
de-off project analysis (TCTP-analysis). The method in question is commonly known 
by project management trainers, academic teachers and students. The algorithm is pre-
sented, among other places, in Bladowski (1970), Gaspars (2006a), Gaspars (2006b), 
Hendrickson (1989), Idźkiewicz (1967), Kukuła et al. (1996), Muller (1965), Muller 
(1964), Siudak (1998) and Trocki et al. (2003). Authors use different names for this 
method (e.g. CPM-COST analysis, time-cost analysis, network compression algo-
rithm, MCX – Minimum Cost Expediting). That is why Kaufmann and Desbazeille 
(1964) are little-known surnames in TCTP analysis. Nevertheless, their book is the 
oldest one containing a description of the algorithm under consideration. Therefore, 
the procedure analyzed in this article, is conventionally called the Kaufmann and 
Desbazeille algorithm. For convenience, we also use of the abbreviation KDA.

Many people claim that this method is an exact algorithm (Bladowski, 1970; 
Bozarth, Handfi eld, 2005; Fusek et al., 1967; Giard, 1991; Idźkiewicz, 1967; Kopań-
ska-Bródka, 1998; Kukuła et al., 1996; Muller, 1965; Trocki et al., 2003; Waters, 
1998), i.e. an algorithm which always indicates the cheapest way of project com-
pression. The KDA is however only a heuristic procedure. Examples of problems for 
which the method leads to quasi-optimal solutions are given in Gaspars (2006a) and 
Gaspars (2006b). 

In Anholcer, Gaspars-Wieloch (2011) we have discussed and proved the special 
case for which the Kaufmann and Desbazeille algorithm gives the worst results. In 
this paper we are going to calculate the average accuracy of the KDA for several test 
problems similar to the worst case and for some randomly generated problems, as well. 

2. TIME-COST TRADE-OFF PROJECT PROBLEMS

In TCTP problems the trade-off occurs between the project completion time (T) 
and the amount of non-renewable resources, i.e. money, which constitute the total cost 
of the project (TC).
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The total cost (TC) consists of direct (DC) and indirect costs (IC). The fi rst cate-
gory concerns costs related directly to the completion of activities (e.g. labor, raw 
materials) and their compression. Activity durations are bounded from below (crash 
duration) and from above (normal duration). The shortening of a given task requires 
the increase of the amount of resources that are used to accomplish this activity. 
Indirect costs, like e.g. penalty, insurance and taxes, are assigned to the project as 
a whole. The penalty costs are imposed when the completion time has been delayed. 
In general, when the completion time increases, indirect costs increase and direct 
costs decrease (see Figure 1). 

C TC 

IC DC 

T 

Figure 1. Time-cost curves

The main goals considered in TCTP analysis are as follows (Skutella, 1998):

1) minimizing time-dependent project costs within a specifi ed project deadline or 
target time Td (Deadline Problem),

 C(X)  min ,  (1)
 T(X)  Td , (2)

2) minimizing project completion time within a specifi ed budget Cb (Budget Pro-
blem),

 T(X)  min ,   (3)
 C(X)  Cb , (4)

where X signifi es the vector of activity durations.

3. EXISTING ALGORITHMS FOR THE TCTP PROBLEM

A detailed survey and analysis of optimization methods applicable to the TCTP 
problems was presented by one of us in Gaspars-Wieloch (2008) and Gaspars-Wieloch 
(2009). In addition, we both showed a comparative breakdown of these algorithms in 
Anholcer, Gaspars-Wieloch (2011). Here we just recapitulate the most important parts 
of the breakdown mentioned above (tci – the shortest possible time for the i-th activity, 
i.e. crash time; tni – the normal time for the i-th activity), see Table 1. 
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Table 1. 
Comparative breakdown of existing project time-cost trade-off algorithms

Criterion Authors of procedures
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Ty
pe

 o
f o

pt
im

iz
at

io
n 

pr
ob

le
m

s 
so

lv
ed

C(X) → min, T(X) ≤ Td

1. Berman 2. Bladowski 3. De, Dunne, Gosh and Wells 
4.Falk and Horowitz 5. Fondhal 6. Fulkerson 7. Gedymin 

8. Goyal 9. Hindelang and Muth 10. Kaufmann and 
Desbazeille 11. Kelley 12. Liu, Burns and Feng 

13. Moder and Phillips 14. Moussourakis and Haksever 
15. Panagiotakopoulos 16. Phillips and Dessouky 

17. Prager 18. Siemens

T(X) → min, C(X) ≤ Cd

1. Bladowski 2. De, Dunne, Gosh and Wells 3. Fulkerson 
4. Gedymin  5. Kaufmann and Desbazeille 6. Kelley 7. Liu, 
Burns and Feng 8. Moder and Phillips 9. Moussourakis and 

Haksever 10. Phillips and Dessouky 11. Prager

C(Tad) → min *

1. Bladowski 2. Crowston and Thompson 3. De, Dunne, 
Gosh and Wells 4. Fulkerson 5. Gedymin 6. Hindelang and 
Muth 7. Kaufmann and Desbazeille 8. Kelley 9. Liu Burns 

and Feng 10. Moder and Phillips 11. Moussourakis and 
Haksever 12. Phillips and Dessouky 13. Prager

2.

Ty
pe

 o
f c

os
ts

 c
on

si
de

re
d

Shortening costs

1. Bladowski 2. Fulkerson 3. Gedymin 4. Goyal 
5. Kaufmann and Desbazeille 6. Kelley 

7. Panagiotakopoulos 8. Phillips and Dessouky 9. Prager 
10. Siemens 

Shortening costs and other 
direct project costs

1. Berman 2. Bladowski 3. De, Dunne, Gosh and Wells 
4. Falk and Horowitz 5. Fondhal 6. Kaufmann and 

Desbazeille 7. Liu, Burns and Feng 8. Moussourakis and 
Haksever

All costs (direct and 
indirect)

1. Crowston and Thompson 2. Hindelang and Muth 
3. Moder and Phillips 

3.

G
ro

w
th

 s
pe

ed
 o

f d
ire

ct
 c

os
ts

Constant (linear time-cost 
curve)

1. Fulkerson 2. Goyal 3. Kelley 4. Phillips and Dessouky 
5. Prager 6. Siemens 

Increasing 
(convex 
curve)

Linear 
approximation

1. Kelley 2. Goyal 3. Liu, Burns and Feng 4. Phillips and 
Dessouky 5. Prager 6. Siemens 

No 
approximation 1. Berman

Decreasing 
(concave 

curve)

Linear 
approximation 1. Falk and Horowitz 2. Gedymin 

No 
approximation –

Various (ex. 
Concave-
convex 
curve)

Linear 
approximation

1. Falk and Horowitz 2. Gedymin 3. Moussourakis and 
Haksever

No 
approximation 

1. Bladowski 2. Crowston and Thompson 3. De, Dunne, 
Gosh and Wells 4. Fondhal 5. Hindelang and Muth 
6. Kaufmann and Desbazeille 7. Moder and Phillips 

8. Panagiotakopoulos
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Criterion Authors of procedures

4.

Fe
as

ib
le

 a
ct
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ur

at
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Any real number from 
<tci, tni>

1. Berman 2. Falk and Horowitz 3. Fondhal 4. Fulkerson 
5. Gedymin 6. Goyal 7. Kelley 8. Phillips and Dessouky 

9. Prager 10. Siemens 
Any integer from 

<tci, tni>
1. Bladowski 2. Kaufmann and Desbazeille 

Discrete options from 
<tci, tni>

1. Crowston and Thompson 2. De, Dunne, Gosh and 
Wells 3. Hindelang and Muth 4. Liu, Burns and Feng 
5. Moder and Phillips 6. Moussourakis and Haksever 

7. Panagiotakopoulos 

5.

A
cc

ur
ac

y 
of

 s
ol

ut
io

ns
 

ob
ta

in
ed

Optimal solutions

1. Berman 2. De, Dunne, Gosh and Wells 3. Falk and 
Horowitz 4. Fulkerson 5. Gedymin 6. Kelley 7. Liu, Burns 

and Feng 8. Moussourakis and Haksever 9. Phillips and 
Dessouky 10. Prager 

Optimal or suboptimal 
solutions

1. Bladowski 2. Crowston and Thompson 3. Fondhal 
4. Goyal 5. Hindelang and Muth 6. Kaufmann and 

Desbazeille 7. Moder and Phillips 8. Panagiotakopoulos 
9. Siemens 

* Tad denotes an advisable, but not mandatory, project completion time. When the advisable time is 
exceeded, than the total project cost must include a penalty. When the project is fi nished before the 
advisable time, the total cost is reduced by a bonus. 

Source: Anholcer, Gaspars-Wieloch (2011), Gaspars-Wieloch (2008), Gaspars-Wieloch (2009).

Exact algorithms (i.e. those which guarantee fi nding an optimal solution) applied 
in discrete problems (DTCTP – Discrete Time-Cost Trade-off Problems) are cha-
racterized by an exponential complexity and are NP-hard. Procedures designed for 
continuous cases are solvable in polynomial time (see De et al., 1995; De et al., 1997; 
Gaspars-Wieloch, 2008; Panagiotakopoulos, 1977; Siudak, 1998; Skutella, 1998). 

4. THE PROJECT NETWORK – NOTATION

In the paper we use the AOA (activities on arcs) network representation of the 
project, similarly as in Anholcer, Gaspars-Wieloch (2011). To be more exact, the set 
E of arcs consists of m arcs e1,  …,  em, while the set of nodes V consists of n nodes 
v1,  …,  vn. Each arc ei, i = 1,  …,  m is labeled by some positive natural number ti, i.e. 
the duration of the respective activity. For convenience, we often index the arc by ejk, 
where j = 1,  …,  n – 1 and k = 2,  …,  n are the indices of the starting and end node of 
the arc, respectively.

In addition, for each arc we defi ne a non-decreasing sequence i

ii

K

k
i

k
i cC

1
 of 

real numbers representing the shortening cost, where i
ki

c  is the cost of reducing the 

Table 1. 
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duration of the i-th activity by the ki-th unit and Ki  ti (one may shorten an activity 
at most (tni – tci) times).

The earliest time of the event j (the earliest time at which node j can be reached 
such that all its preceding activities have been fi nished) is denoted by I

jt  ( I
nt  being 

equal to the minimum completion time of the project, i.e. T*). The latest time of the 
event j (the latest time that node j can be left such that it is still possible to fi nish the 
overall project in the minimum completion time) is denoted by II

jt . 

5. THE KAUFMANN AND DESBAZEILLE ALGORITHM 
– DESCRIPTION AND IMPLEMENTATION

The Kaufmann and Desbazeille algorithm is one of the oldest procedures applied 
in TCTP analysis. As one can notice in the Table 1, the KDA allows to solve the 
problem (1)-(2) or (3)-(4). This procedure focuses on the minimization of direct costs 
(see Section 2). Theoretically, the algorithm may be used in time-cost trade-off pro-
blems with any types of time-cost curves for project activities. However, in practice 
it is applied only when the unit shortening costs are non-decreasing, because in other 
cases the solutions obtained are extremely bad (i.e. far from the optimal ones). Most 
of the existing exact algorithms for TCTP are designed just for linear or convex 
time-cost curves. 

Kaufmann and Desbazeille assume that the parameters representing the normal 
activity durations (tin), the project target time (Td) and the difference (tin-tic) are inte-
gers. They take into consideration only integer realizations of the project time even 
if, for a given Cb (see the Budget Problem (3)-(4)), the optimal solution requires 
non-integer times for some tasks (see Table 1, point 4). 

The original version of the KDA consists in iteratively shortening each critical 
path in the network by exactly one time unit. The target is to fi nd the cheapest way of 
compressing the project time by one unit. We stop when constraints (1)-(2) or (3)-(4) 
are satisfi ed. In order to apply this procedure, the user should know:
– the structure of the project network, 
– the normal and the crash duration of the activities within the project,
– the unit shortening cost for each task,
– the deadline or budgetary constraint. 

Let us recall the details of the KDA. Two steps are performed in every iteration: 
one is to implement the CPM method for the actual durations of activities and the 
second one is the shortening of the project by one time unit. The algorithm stops 
when the desired time (Td) has been reached.

To compress the project duration, it is necessary to reduce each critical path by 
one time unit. It is not necessary to shorten one activity from each critical path as the 
critical paths not always are disjoint. In order to reduce the project duration, all the 
cuts of the critical sub-network are considered and the cheapest one is chosen. Then, 
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all the activities belonging to the minimal cut are shortened by one time unit. In the 
original KDA the cut P is defi ned as the set of arcs such that:
1. After removing all the arcs belonging to P, the project network is no longer con-

nected.
2. The set of nodes V splits into two disjoint subsets: V1 containing the starting event 

and V2 containing the end event of the project such that the starting nodes of all 
the arcs from P belong to V1, while the end nodes belong to V2.

e2 

e1 

e5 

e4 

e3 

2 

3 

1 4 

Figure 2. Sample network

In the articles Gaspars (2006a) and Gaspars (2006b) one of us came to the conc-
lusion that the main (but not the only one!) factor affecting the accuracy of the KDA 
is the way in which variants for compressing the completion time are found. In the 
original version of the KDA the best set of activities to shorten is chosen from a list 
of sets containing exactly one activity on each critical path. This approach exposes 
us to overlooking the cheapest way of accelerating the project by one time unit. In 
Gaspars (2006a) and Gaspars (2006b) it has been emphasized that the easiest, but not 
suffi cient, way of improving the results, i.e. reducing the compression costs, is to fi nd 
the cheapest solution among sets containing at least (but not exactly) one activity on 
each critical path. This modifi cation is so natural and obvious that in the next section 
we will analyze the accuracy of this modifi ed version of the KDA. That means that 
in order to increase the exactitude of the algorithm it is desirable to consider a more 
general concept of a cut, as Ford and Fulkerson do (see e.g. Cormen et al., 2001; 
Ford, Fulkerson, 1962; Gedymin, 1974; Korzan, 1978). To be more specifi c, they only 
use the second point of the last defi nition. This slight modifi cation allows us to use the 
FFEK1 algorithm (see e.g. Edmonds, Karp, 1972) for fi nding the minimal cut instead 
of an exhaustive search over all the cuts, which makes the algorithm much faster. To 

1 Edmonds – Karp algorithm, one of the adaptations of the Ford – Fulkerson algorithm.
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illustrate the difference between these two defi nitions of the cuts see Figure 2 below. 
In the case of the original KDA the cuts allowed are {e1, e2}, {e2, e3, e4} and {e4, e5}, 
while in the case of the Ford – Fulkerson algorithm there is one more cut allowed, 
namely {e1, e5}.

Finally, the version of the Kaufmann – Desbazeille algorithm tested in the next 
section can be defi ned as follows:
1. (Initialization) Set the total shortening cost TC  := 0 and go to step 2.
2. (CPM) Perform the CPM analysis of the project network. If dI

n Tt  then STOP. 
The current solution is the optimal one2. Otherwise go to step 3.

3. (Time reduction / FFEK) Defi ne the following maximum fl ow problem. Conside-
red arcs in the network are all the critical arcs in the project network. Moreover 
the capacity of each arc ei belonging to this network is equal to the fi rst element 
of the sequence C(i) (if this sequence has at least one element and  otherwise). 
Using the FFEK method one fi nds the minimal cut. If the value CV of the mini-
mal cut MC is equal to , then STOP. The deadline problem cannot be solved3. 
Otherwise, go to step 4.

4. (Update) Set TC  := TC + CV. For each arc ei   MC set ti  := ti – 1 and remove the 
fi rst element of C(i). Go back to step 2.
Note that each time step 4 is performed, the total completion time of the overall 

project decreases by one. Thus the version of the KDA defi ned above always stops 
after a fi nite number of steps: it either fi nds the optimal solution or reports the pro-
blem to be inconsistent.

6. GOAL OF COMPUTATIONAL EXPERIMENTS

Kaufmann and Desbazeille were only interested in integer realizations of the pro-
ject time. Therefore, the empirical research will just be related to the deadline problem 
(see problem 1-2) as the discrete solutions obtained simultaneously constitute solu-
tions for different values of the budgetary parameter in the budget problem. Solutions 
generated for one of the chosen problem (deadline or budget) suffi ce to establish the 
whole time-cost project curve DC (see Figure 1). 

In our article we calculate the mean deviation between KD solutions and optimal 
results. The measure of accuracy (A) is a relative difference between the total project 
compression costs obtained by the KDA, i.e. CKDA, and the minimum project com-
pression costs Cmin (the average is calculated over P, i.e. all the test problems, see 
Equation 5):

2 It is optimal in the sense of the KDA, while it does not have to be the global minimum of the 
defi ned deadline problem.

3 It cannot be solved using the KDA method. It can be easily proved then that the deadline problem 
is contradictory (inconsistent).
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with parameters:
m – number of activities (arcs),
n – number of events (nodes),
tin, tic – the normal and crash time of activity ei, 1  i  m, 
K(i) – maximum number of units that activity ei can be shortened by, K(i) = tin – tic,
cik – cost of shortening activity ei by kth unit, cik  ci,k+1, 1  k < K(i),
p(i), q(i) – indices of the starting and end node of arc ei, 1  p(i) < q(i)  n,
Td – the desired project completion time,

and variables:
xj – time of event vj, 1  j  n,
yik –  binary variable equal to 1 when activity ei is shortened by kth unit and 0 other-

wise,
zi – fi nal time reserve for activity ei, 1  i  m.
Each optimal value of the variable xj always belongs to the interval [tjI,tjII]. 

In connection with the assumptions made by Kaufmann and Desbazeille (the time 
parameters are integer) and the fact that we only analyze the deadline problem, the 
variables in the model (6)-(10) are always integer although there are no additional 
constraints requiring integer solutions (see Schrijver, 2003). In our experiments we 
intend to check the accuracy of the KDA for problems similar to the worst case 
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presented and proved in Anholcer, Gaspars-Wieloch (2011) and for totally random 
problems. 

7. DESCRIPTION OF THE TEST PROBLEMS

Let us recall the details of the case for which the accuracy of the KDA is the worst 
(see Anholcer, Gaspars-Wieloch, 2011): 
1) the network has the structure given in Figure 3 (i.e. the set of arcs consists of all 

the pairs of nodes of the form (vj, vj+2), j = 1,  …,  n-2, and all the pairs of nodes 
of the form (vj, vj+1), j = 1,  …,  n-1) and the number of nodes (n) is even, 

2) the normal completion times of activities <k,k+1> equal n
kkt 1,  and the normal 

completion times of activities <k,k+2> equal 12 1,
n

kkt  (see Figure 3),
3) the unit shortening costs of activities <2k, 2k + 1>, <2k – 1, 2k> and <k, k + 2> 

 are respectively equal to a, b and c where b > a and 1
2
nbc  (see Figure 3),

4) the desired project completion time Td is equal to 11
2
nT n , where Tn is 

 the normal project time (i.e. n
kk

n tnT 1,)1( ) ) and 1
2
n  is the number of all 

 activities <2k, 2k + 1>. This means that 
2

)1(
2 1,

ntnnTT n
kk

nd . 

 

2 

1 2k-1 

2k 

2k+1 n-1 

n2k+2

Figure 3. Network type: deterministic

According to the proof given in Anholcer, Gaspars-Wieloch (2011), in such a situ-
ation the difference between the total shortening cost given by KDA and the optimal 

one amounts to 1
2

min naCC KDA . This implies that the gap increases arbitrarily if 

either n, a or both increase. In particular we have

minlim CC KDA

n
.
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We use three types of test problems in our experiments. The structure of the fi rst 
type network is deterministic and is connected to the worst case. Two others are 
random.
1. Network type 1 (deterministic): The set of nodes consists of n nodes, where n 

is a parameter. The set of arcs (activities) consists of all the couples of nodes 
of the form (vj, vj+2), j = 1,  …,  n-2, and all the couples of nodes of the form 
(vj, vj+1), j = 1,  …,  n-1 (see Figure 3).

2. Network type 2 (globally random): The set of nodes consists of n nodes, where 
n is a parameter. There is also one more parameter – D, being the maximum 
out-degree4. The process of generating the arcs consists of two steps. In the fi rst 
step, for each node vj, j = 1,  …,  n-D, we choose uniformly at random D successors 
from the set {vj+1,  …,  vn}. Each remaining node, i.e. node vj, j = n-D+1,  …,  n-1, 
is linked with all the nodes from the set {vj+1,  …,  vn}. One may observe that 
such a way of the network generation does guarantee neither the connectivity of 
the network nor the uniqueness of the starting event. Thus in the second step all 
the nodes from the set {v2,  …,  vn} are examined. If some of them, say vj, does 
not have any predecessor, then an additional arc is added in the following way. 
A vertex, say vk, is chosen uniformly at random from the set {v1,  …,  vj-1}, and the 
new arc is formed as (vk, vj).

3. Network type 3 (locally random): The way of generating the arcs is almost the 
same as in the previous case. The only difference is that in both steps the proba-
bilities of choosing the neighbors are not equal, but the smaller is the difference 
between the nodes indices, the higher is the probability of joining them with an 
arc. Namely, the probability of creating an arc joining the pair of nodes (vj, vj+k) 
is k times lower than the probability of the creation of the arc between the nodes 
vj and vj+1.
In the deterministic case the integer times are chosen uniformly at random from 

the given range, where the minimal and maximal values are parameters. The ran-
ges are defi ned separately for the arcs of the type (vj, vj+1) and the arcs of the type 
(vj, vj+2). In the case of random networks there is one basic range defi ned for all the 
arcs of the type (vj, vj+1). For the arcs joining the vertices (vj, vj+k), k  1, the length 
of the range is calculated as the fl oor5 from the product of the basic time and one 
of the expressions: k (linear growth), lnk + 1 (logarithmic growth), k1/2 (square root 
growth) or k3/2 (power growth).

One more time parameter is defi ned in case of each problem. It is the maximum 
time reduction, i.e. the maximal number of time units by which the time of each 
activity may be reduced. This parameter is defi ned either in units or in percents (in 
the latter case the resulting times are rounded to integer values if necessary).

4 In fact, in the case of some nodes the maximum out-degree may be fi nally equal to D + 1.
5 The fl oor function [x] is defi ned as the greatest integer lower or equal to x: [x] = max{y  Z | y  x}. 

E.g. [2.7] = 2, [–2.7] = –3, [2] = 2, [–2] = –2.
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Having defi ned it, one may defi ne all the possible durations for each activity. 
For each duration the reduction cost is generated in the following way. The starting 
reduction cost is a real number chosen uniformly at random from a given range. Then 
for each duration of the activity the increase of the cost (in comparison to the cost 
for the previous considered duration) is a real number chosen from another range. 
As both ends of the ranges have to be positive, the shortening cost sequences are 
always non-decreasing. In the case of the deterministic network the pair of ranges 
under consideration is defi ned separately for each type of arcs: (v2j+1, v2j+2), (v2j, v2j+1) 
and (vj, vj+2). In the case of the random ones, there is one range defi ned for all the 
arcs.

Now let us analyze in details the generated problems. 
In the case of deterministic type network, we have tested only the problems on 

10 nodes. We considered four types of test problems, distinguished with the time 
and basic costs generation schemes. Times on the edges (k, k + 1) were equal to 5 
in two fi rst cases (Tables 2 and 3) and chosen randomly from the range [1; 5] in the 
remaining two (Tables 4 and 5); times on the edges (k, k + 2) equal to 9 and 5 or 
chosen from [5; 10] and [1; 5], respectively. The basic costs for the arcs (2k, 2k + 1), 
(2k – 1, 2k) and (k, k + 2) have been chosen respectively from the ranges [1; 2], 
[2.1; 5], [25; 50] (fi rst and second type) and [1; 5], [1; 5], [1; 5] (third and fourth 
type), see Figure 3. In all four cases we considered the problems with constant and 
increasing costs. All the increments were chosen from some intervals as in the random 
case (the ranges are given in respective tables). In each case two shortening modes 
were tested.

In the case of the random and locally random networks we have tested the pro-
blems on 10 and 50 vertices. The problems have been tested for all the types of the 
ranges for activities duration (constructed using the linear, logarithmic, square root 
and power growth function). The maximum out-degree was set to 2.

The basic times (to be multiplied by respective growth functions) have been cho-
sen randomly from the range [0; 5]. 

In the case of the problems on 50 nodes, the maximum activity compression were 
set to 2 units or 80%, i.e. the duration of each activity was allowed to be shortened by 
at most 2 units or at most down to 80% (see Tables 8, 9). Test problems on 10 nodes 
were examined also for the maximum shortening down to 60% (see Tables 6, 7). 

The basic shortening costs (c0) for each activity have been defi ned as chosen 
randomly from the range [1; 5]. For each possible unit of the shortening k the cost 
has been defi ned recursively as ck = ck – 1 + d, where the number d has been chosen 
every time uniformly at random from the range [0; 5]. 

For each combination of settings (four growth functions times two or three shor-
tening modes) we tested each problem by calculating the Kaufmann and Desbazeille 
solution with comparison to the exact one. The computations have been performed 
for each possible integer shortening time Td (dozens for each test problem). For each 
combination of settings 100 problems have been generated and tested.



Marcin Anholcer, Helena Gaspars-Wieloch352

Notice that problems calculated in this article, even though they always have 
discrete solutions, are not NP-hard.

8. EMPIRICAL RESULTS

The mean accuracy related to the deterministic problems is presented in Tables 
2-5.

Table 2. 
Network type: deterministic 

Constant unit shortening cost 
(cost increment = 0).

Variant unit shortening cost.
Cost increment (2k, 2k + 1): [0; 2].
Cost increment (2k – 1, 2k): [0; 5].
Cost increment (k, k + 2): [0; 50].

Short. 2 units Short. 70% Short. 2 units Short. 70%

5.91329 5.16709 4.16203 3.90385

Nodes: 10. Time (k, k + 1): 5. Time (k, k + 2): 9. Basic cost (2k, 2k + 1): [1; 2]. Basic cost (2k – 1, 2k): 
[2.1; 5]. Basic cost (k, k + 2): [25; 50]. 

Table 3. 
Network type: deterministic 

Constant unit shortening cost 
(cost increment = 0).

Variant unit shortening cost.
Cost increment (2k, 2k + 1): [0; 2].
Cost increment (2k – 1, 2k): [0; 5].
Cost increment (k, k + 2): [0; 50].

Short. 2 units Short. 70% Short. 2 units Short. 70%

0.00000 0.00000 0.00000 0.00000

Nodes: 10. Time (k, k + 1): 5. Time (k, k + 2): 5. Basic cost (2k, 2k + 1): [1; 2]. Basic cost (2k – 1, 2k): 
[2.1; 5]. Basic cost (k, k + 2): [25; 50].

Table 4. 
Network type: deterministic

Constant unit shortening cost 
(cost increment = 0).

Variant unit shortening cost.
Cost increment (2k, 2k + 1): [1; 2].
Cost increment (2k – 1, 2k): [1; 2].
Cost increment (k, k + 2): [1; 2].

Short. 2 units Short. 70% Short. 2 units Short. 70%

0.57990 0.03260 0.14376 0.05813

Nodes: 10. Time (k, k + 1): [1; 5]. Time (k, k + 2): [5; 10]. Basic cost (2k, 2k + 1): [1; 5]. Basic cost 
(2k – 1, 2k): [1; 5]. Basic cost (k, k + 2): [1; 5]. 
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Table 5. 
Network type: deterministic

Constant unit shortening cost 
(cost increment = 0).

Variant unit shortening cost.
Cost increment (2k, 2k + 1): [1; 2].
Cost increment (2k – 1, 2k): [1; 2].
Cost increment (k, k + 2): [1; 2].

Short. 2 units Short. 70% Short. 2 units Short. 70%

0.84420 0.00000 0.46760 0.00000

Nodes: 10. Time (k, k + 1): [1; 5]. Time (k, k + 2): [1; 5]. Basic cost (2k, 2k + 1): [1; 5]. Basic cost 
(2k – 1, 2k): [1; 5]. Basic cost (k, k + 2): [1; 5]. 

This time the accuracy is worse than in the case of randomly generated networks. 
It is mostly visible in the Table 2, where the numbers reach the level of about 5%. 
It means that the KDA is not as much useful in the cases where many critical and 
subcritical paths with a lot of common arcs may appear (see Figure 3). Observe that 
we defi ned the deterministic type of network in a very special way in order to make 
such a situation very likely. However, the poor accuracy of the KDA occurs not only 
because of the fact that networks are characterized by an extremely peculiar structure 
and by a huge number of critical and subcritical paths with a lot of common edges. 
The third characteristic of the networks analyzed in Table 2 is the quite unusual level 
of shortening costs for each type of activities (compare Table 2 with Tables 4-5). 
Let us recall this specifi c case. The unit shortening costs of activities <2k, 2k + 1>, 
<2k – 1, 2k> and <k, k + 2> are respectively equal to a, b and c where b > a and

1
2
nbc . 

The mean accuracy for random and locally random problems is given in Tables 
6-9. 

Table 6. 
Network type: locally random

Short. 
Mode Linear growth Power growth Square root growth Logarithmic growth

2 units 1.09354 0.54207 0.61875 0.68812

80% 0.00000 0.00000 0.00000 0.00000

60% 0.00052 0.00151 0.03298 0.03353

Nodes: 10. Out-degree: 2. Time: [1; 5]. Basic cost: [1; 5]. Cost increment: [0; 5]. 
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Table 7. 
Network type: globally random

Short. 
Mode Linear growth Power growth Square root growth Logarithmic growth

2 units 0.24885 0.97609 1.16946 0.45341

80% 0.00000 0.00000 0.00000 0.00000

60% 0.06152 0.00397 0.05415 0.00714

Nodes: 10. Out-degree: 2. Time: [1; 5]. Basic cost: [1; 5]. Cost increment: [0; 5]. 

Table 8. 
Network type: locally random

Short. 
Mode Linear growth Power growth Square root growth Logarithmic growth

2 units 0.28675 0.57902 0.34920 0.31711

80% 0.03424 0.00126 0.00510 0.02037

Nodes: 50. Out-degree: 2. Time: [1; 5]. Basic cost: [1; 5]. Cost increment: [0; 5]. 

Table 9. 
Network type: globally random

Short. 
Mode Linear growth Power growth Square root growth Logarithmic growth

2 units 0.02317 0.00000 0.55802 0.19056

80% 0.00000 0.00000 0.00000 0.00000

Nodes: 50. Out-degree: 2. Time: [1; 5]. Basic cost: [1; 5]. Cost increment: [0; 5]. 

As one can see, the accuracy is usually better in networks consisting of more 
nodes (compare Table 8 with Table 6 and Table 9 with Table 7). The differences 
between the KD solutions and the exact ones are not very signifi cant – only few of 
them exceeds the level of 1%, while many of them are less than 10 –5%. This proves 
our supposition that the modifi ed version of KDA behaves quite good in the situation 
where the network does not contain too much critical paths (which is very likely in 
our case, as the network is quite sparse).

We tested two kinds of random networks. The ones called globally random have 
arcs distributed in a sense uniformly, while the locally random networks have rather 
a structure close to the Dth power of path (i.e. the graph where the vertex vi is adjacent 
with the vertices vj, for which the inequality | i – j | D holds). We hoped that this 
difference in the structure of the network would lead to some substantial differences 
in the accuracy of the examined algorithm. The infl uence of the network structure on 
the algorithm is not obvious.
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In the case of logarithmic growth, the algorithm performs better for globally ran-
dom networks. In the case of square root growth, it acts better when networks are 
locally random (with one exception, however in this case – 50 nodes, 80% shortening 
– the difference is hardly visible). In the case of power growth the algorithm performs 
better on small locally random and bigger globally random networks. In the case of 
linear growth, again the algorithm is better for globally random networks (the only 
exception seems to be not signifi cant). As we can see, in most cases the more ordered 
structure of the network (locally random) implies a worse performance of the KDA. 
However, this does not mean that the structure itself has the infl uence on the way 
the KDA works. It has to be analyzed together with other features of the problem, in 
particular the distribution of the shortening costs. 

9. CONCLUSIONS

The goal of our article was to check the accuracy of the Kaufmann and Desba-
zeille algorithm for the worst case described in Anholcer, Gaspars-Wieloch (2011) 
and for randomly generated problems. As one can notice the difference between the 
exactitude of the procedure for the deterministic and random networks is quite signifi -
cant. The KDA is essentially ineffi cient only in specifi c cases. Nevertheless we should 
remember that the computational experiments focused on the modifi ed version of the 
KDA. The accuracy of the original method is certainly worse. 

Poznan University of Economics
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DOKŁADNOŚĆ ALGORYTMU KAUFMANNA I DESBAZEILLE W PROBLEMACH 
OPTYMALIZACJI CZASOWO-KOSZTOWEJ PROJEKTU

S t r e s z c z e n i e

Analiza czasowo–kosztowa jest bardzo ważnym elementem zarządzania projektem. Algorytm 
Kaufmanna–Desbazeille dla tego problemu jest przez wielu autorów określany mianem dokładnego, lecz 
w kilku pracach wykazano, iż w niektórych przypadkach stosowanie tej procedury prowadzi jedynie do 
rozwiązań bliskich optimum. W artykule wyznaczamy średnią dokładność algorytmu dla pewnej liczby 
sieci o z góry ustalonej bądź losowo wygenerowanej strukturze. Dokładność procedury Kaufmanna 
i Desbazeille jest najniższa, gdy:
– sieć jest generowana w sposób deterministyczny (parzysta liczba węzłów, sieć składa się z samych 

łuków łączących sąsiednie węzły, sąsiednie węzły parzyste i sąsiednie węzły nieparzyste, a więc 
posiada wiele ścieżek krytycznych i podkrytycznych ze wspólnymi łukami),

– każdy typ czynności w tak skonstruowanej sieci ma bardzo specyfi czne charakterystyki czasowo-
-kosztowe. 
Struktura sieci ma wpływ na wydajność algorytmu. Powinna być jednak analizowana łącznie z roz-

kładem jednostkowych kosztów skrócenia czynności.

Słowa kluczowe: analiza czasowo-kosztowa projektów, sieć, ścieżka krytyczna, dokładność 
algorytmu, skracanie czasu realizacji projektu, krzywe czasowo-kosztowe, minimalizacja kosztu przy 
zadanym czasie dyrektywnym 

 ACCURACY OF THE KAUFMANN AND DESBAZEILLE ALGORITHM FOR TIME-COST 
TRADE-OFF PROJECT PROBLEMS

A b s t r a c t

The time-cost tradeoff analysis is a very important issue in the project management. The Kaufmann-
Desbazeille method is considered by numerous authors as an exact algorithm to solve that problem, 
but in some articles it has been proved that for specifi c network cases the procedure only leads to 
quasi-optimal solutions. In this paper we calculate the average accuracy of the algorithm for several 
deterministic and randomly generated networks. The accuracy of the KDA is the worst when:
– the network is generated in a deterministic way (an even number of nodes, the network contains only 

arcs connecting neighbouring nodes, neighbouring even nodes and neighbouring odd nodes, thus it 
has many critical and subcritical paths with a lot of common arcs), 

– each type of activities in such a network has very specifi c time-cost characteristics. 
The structure of the network has the infl uence on the performance of KDA. It should be however 

analyzed together with the distribution of the shortening costs.

Keywords: time-cost tradeoff project analysis (TCTP-analysis), network, critical path, accuracy of 
the algorithm, project compression time, time-cost curves, deadline problem


