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Abstract: The relationship between internal response-based reliability and conditionality 
is investigated for Gauss-Markov (GM) models with uncorrelated observations. The models 
with design matrices of full rank and of incomplete rank are taken into consideration. 
The formulas based on the Singular Value Decomposition (SVD) of the design matrix 
are derived which clearly indicate that the investigated concepts are independent of each 
other. The methods are presented of constructing for a given design matrix the matrices 
equivalent with respect to internal response-based reliability as well as the matrices 
equivalent with respect to conditionality. To analyze conditionality of GM models, in 
general being inconsistent systems, a substitute for condition number commonly used 
in numerical linear algebra is developed, called a pseudo-condition^number. Also on 
the basis of the SVD a formula for external reliability is proposed, being the 2-norm 
of a vector of parameter distortions induced by minimal detectable error in a particular 
observation. For systems with equal nonzero singular values of the design matrix, the 
formula can be expressed in terms of the index of internal response-based reliability 
and the pseudo-condition^number. With these measures appearing in explicit form, the 
formula shows, although only for the above specifi c systems, the character of the impact 
of internal response-based reliability and conditionality of the model upon its external 
reliability. Proofs for complementary properties concerning the pseudo-condition^number 
and the 2-norm of parameter distortions in systems with minimal constraints are given in 
the Appendices. Numerical examples are provided to illustrate the theory. 
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1. Introduction

The internal and external reliability together with the system conditionality are the 
features that should all be taken into account in characterizing the quality of Gauss-
Markov (GM) models. Since each of them is based on the properties of the design 
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matrix of a GM model, they are expected to be interrelated. The objective of the 
present paper is to investigate links between the above features, by establishing 
explicit relationships containing the corresponding measures. By this the paper aims 
at specifying closer links of the theory of reliability with the sensitivity analysis of 
linear systems established in numerical linear algebra. 

In this paper the approach to “internal reliability” does not follow the traditional 
line of Baarda (1968), continued and developed by contributions from Wang and 
Chen (1994), Schaffrin (1997), Teunissen (1996), Knight et al. (2010) and others. It 
concentrates entirely on the properties of network responses to observation gross errors 
(Prószyński, 1994; 1997), characterized for uncorrelated observations by redundancy 
numbers. So, the approach does not operate with Minimal Detectable Biases (MDBs) 
for individual observations as the internal reliability measures. This corresponds to 
treating by Caspary (1988) the redundancy numbers (otherwise called the redundancy 
contributions) as measures of internal reliability. Therefore, for distinction from the 
traditional concept it is referred to as “internal response-based reliability” as used in 
Prószyński (2012). However, for saving space in the present paper the “response-
based” specifi cation will in most places be omitted. For external reliability Baarda’s 
approach is followed, although the arbitrary vectors of observation disturbances are 
also taken into account. 

The concept of conditionality of a linear system is well established in numerical 
linear algebra (e.g. Kiełbasiński and Schwetlick, 1992; Meyer 2000; Cheney and 
Kincaid, 2008; Kalitkin et al. 2010, and others). It describes sensitivity of the solution 
vector to disturbances in the input data. Such is also the sense of external reliability, 
so both the features are expected to have a direct connection. However, in the course 
of the present studies it turned out that the condition number commonly used as 
a measure of the system conditionality, is not applicable to inconsistent systems of 
equations. Therefore, a substitute measure called a pseudo-condition^number had to 
be developed for the purposes of the analysis. 

The relationships between various types of measures of internal and external 
reliability have already been thoroughly studied by Caspary (1988). But to the 
knowledge of the present author, a relationship between the measures of internal 
response-based reliability and conditionality of the system as well as a relationship 
between the measures of external reliability and those of internal response-based 
reliability and conditionality have so far not been given a separate attention and 
reported in geodetic research publications. As regards the former relationship there 
are some implications that there may even be no dependence between the concepts. 
First of them is the fact that for systems with design matrices of full rank and of 
incomplete rank, the average reliability index depends only on the dimensions and 
rank of these matrices. Other implications are connected with invariance of the 
reliability matrix to the choice of minimal-constraint datum in observation systems 
with design matrices of incomplete rank. For every chosen datum we have the same 
reliability matrix but different magnitudes of eigenvalues of the covariance matrix for 
parameters, that decide about a level of the system conditionality. 
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In view of the above implications, the present paper seeks a theoretically grounded 
answer to the question of dependence between the internal response-based reliability 
and the conditionality of a system, both for the full-rank and rank-defi cient systems. 
The author has not found any direct matrix operations that might provide answer to 
this question. That is why the analysis is based on the use of the SVD of a design 
matrix, since it discloses the inner structure of the matrix. Also with the use of SVD 
the relationship will be looked for, linking the external reliability with the measures 
of internal response-based reliability and the system conditionality.

A general objective of the present paper can be summed up as making an 
attempt to interrelate, in terms of the corresponding measures, the basic concepts that 
characterize quality of GM models with uncorrelated observations. It is also expected 
that this knowledge will help better understand and interpret the results of analyses of 
such models, especially in the course of their design.

2. Recalling basic concepts and auxiliary properties

We provide brief presentation of the concepts together with some auxiliary properties 
necessary for the analyses in the present paper. Some of the properties were developed 
deliberately for this purpose. 

2.1. Observation model and basic formulas for least squares estimation 
of parameters

Let us consider a standardized Gauss-Markov model 

 Ax e y ;      e  (0, I)  (1a)

and its form with minimal constraints

 Ax e y ;      e  (0, I)  (1b)

                                        Sx = 0

where: 
y – the n × 1 vector of standardized uncorrelated observations;
A – the n × u design matrix; rank A = r; r ≤ u for (1a), r < u for (1b);
x – the unknown u × 1 vector of parameters;
e – the unknown n × 1 vector of standardized random errors;
S – the d × u coeffi cient matrix in constraint equations, 

d = u – rank A; rank S = d; rank u
TT SA , i.e. each row-vector of S belongs to 

the null-space of A (Koch, 1999).
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The least squares (LS) solutions of the system (1a) and (1b) will be denoted, 
respectively 

yAx̂    or equivalenly   yAAAx TT )(ˆ

yAx Sˆ    or equivalenly   yAAAx S
TT )(ˆ

where: 
)(  – the pseudo-inverse, S)(  – a refl exive g – inverse, satisfying 0S S)(  (Rao and 

Mitra, 1971). The g – inverse SAA )( T  is a symmetrical matrix (Meyer 2000). With 
a specifi ed S, SA  yields a unique solution. 

The above cases are not disjoint, since with oSS , such that 0AST
o , we have 

oSAA . 

2.2. Singular Value Decomposition of the design matrix 

The SVD of the matrix A of incomplete rank, will be denoted by 

 TVUA  (2)

where: 

U(n × n), V(u × u) – orthogonal matrices containing the left-hand side and right-hand 
side singular vectors, respectively; 
Σ(n × u) – the matrix of singular values,

 
)()()(

)(

rurnrrn

rurrr
un 00

0
 (3)

σ(r × r) – a diagonal matrix of nonzero singular values, i.e.
σ = diag (σ1, σ2, …, σr), with σi > 0 (i = 1, 2,…, r)

Partitioning the matrices U and V according to the rank of A, as below

 rnr UUU   rur VVV  (4)

and substituting them into the formula (2), we get its equivalent reduced forms (see 
e.g. Golub and Reinsch, 1970)

 T
rrUA  r 0UA TV  

0
UA

T
r  (5)
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2.3. A pseudo-condition^number developed for the purposes of analysis

The condition number as defi ned in numerical linear algebra (eg. Kiełbasiński and 
Schwetlick, 1992; Meyer, 2000), applies only to nonsingular systems of equations. 
Additionally, in (Meyer, 2000) a generalized condition number is introduced, that 
allows for the analysis of consistent systems with the design matrices being rectangular 
or singular. So, neither of the above condition numbers is applicable for the systems 
of the type (1a) and (1b) that are, in general, inconsistent, i.e. do not have exact 
solution. Although a generalized condition number could be used for singular normal 
equations, but we do not operate there with a vector of observation disturbances in 
explicit form, necessary for seeking the links between conditionality and external 
reliability. 

For the purpose of the analysis undertaken in the present paper we introduce 
a substitute for conventional concept of conditionality, called here a “pseudo-
conditionality”. We make an assumption that the model is exact, i.e. the matrices 
A or A, S are known exactly and all the disturbances reside only in the observation 
vector y. 

We shall introduce a general form of unique solution for the systems (1a) and 
(1b), denoted by

 yAx̂   (6)

where A• stands for either of A+ or SA  (with a specifi ed S). 

It follows from (6), that the disturbances in y will cause distortions in x̂ ,, as shown 
below 

 yAx̂  (7)

Expressing equation (7) in terms of the 2-norm and using the property given in 
(Meyer 2000), we get 

 yAyAx̂  (8)

where A   denotes the 2-norm of the matrix A•.

Since it follows from (8) that 

 
max

ˆ
y
x

A  (9)

we shall assume A   as a pseudo-condition^number for inconsistent systems of 
linear equations (either rank-defi cient or of full rank), and denote it by 



Witold Prószyński162

 AA )(k  (10)

It serves here as a substitute for a condition number k(A) used for consistent 
systems of equations. The condition number k(A) is defi ned as a ratio of relative 
disturbances in solution and relative disturbances in observations, the former being 
referred to the exact solution. The pseudo-condition^number, due to the lack of exact 
solution, is defi ned as a ratio of absolute disturbances in solution and in observations, 
where the disturbances in solution are referred to the unique but approximate solution. 

Moving the derivations to Appendix A, we present here the fi nal detailed formulas 
for k(A•), i.e. 

 1
minmax )()()( T AAAAk    for all   0or    0 ii   (11a)

              SS AAA )()( T
maxk                     for all    0i   (11b)

For oSS , we have AASo  and hence, )()( o AAS kk  

It follows from the derivations in Appendix B that for oSS , we have 

 )()( AAS kk  (12)

which means that the solution of the system 1b) is worse conditioned than that of the 
system 1a).

For the sake of simplicity, anywhere in the text when referring to a pseudo-
condition^number, we shall be using a general term “conditionality”. 

2.4. Internal response-based reliability of a model and its measures

The model internal reliability as presented in this paper, more properly termed the 
internal response-based reliability of a model, has as its basis the “disturbance/
response relationship” (Prószyński, 1994; 1997), written as

 yHv̂  (13)

where:

Δy – the n × 1 vector of the standardized observation disturbances (standardized gross 
errors), 

v̂   – the n × 1 vector of increments in the standardized LS residuals, 
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H – the n × n reliability matrix, for a model with uncorrelated observations being an 
operator of orthogonal projection, given by the formula 

 TT )( AAAAIH  (14)

The expression (14) can be written in an equivalent generalized form 

 TT )( AAAAIH   (15)

which is invariant to the choice of generalized inverse )( TAA   (Rao, 1973), e.g. 
)()( TT

o
AAAA S , )( ,)(

2

T

1

T
SS AAAA , … .

The diagonal elements of H, hii <  0,  1), i = 1, …, n, known as redundancy numbers, 
are indices of the model internal reliability, their sum being Tr H = n – r. The average 
index is hii n/r1 . The reliability criterion for the case of a single outlier is hii > 0.5 
(Prószyński, 1994).

3. SVD–based representation of reliability matrix and its invariance properties

Coming back to reliability matrix H we derive other representation of the formula 
(14), basing on the SVD of the matrix A as in (2). 

The reliability matrix will take the form

 

TT AA)A(AIH TTTTTT UVUUVUI )(   
TTTTT UVVVUI 11 )()( TTT )( UUI

TT

r-n

r
2

U
00

0I
UIU

00
0

00
0

00
0

UI    (16)

Partitioning the matrix U as in (4) and substituting into the formula (16), we get 

 T
rrT

rn

T
r

rn

r
rnr UUI

U
U

00
0I

UUIH  (17) 

Since 0UUUUUIHU rrr
T
rrr )( , each column vector in Ur belongs to  

R(A) and therefore, we shall call Ur the left active singular vectors of the matrix A. 
Hence, we say that the operator H depends entirely on the left active singular vectors 
of the matrix A. 

To create a basis for further analysis, we also recall a specifi c property of 
the reliability matrix H being, in the case that rank A = u, its invariance to non-
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singular transformations. The property is extended here for rank A < u onto singular 
transformations that are non-singular in the subspace R(A).

The property reads, that for a transformed matrix A, denoted by A•, such that

 AGA  (18)

where G(u × u) is a singular matrix with SVD as below

 T
G

G

)()()(

)( V00

0
VG

rururru

rurrr
uu

 (19) 

with V being identical with that in (2),

we have H• = H. 

The proof is as follows, 

               
TTTTTT )( AGAGAGAGIA)A(AAIH  (20)

          = TT )( AGGAAAGGI
where GG+ is a symmetrical matrix.
Finding that

T
2
rT

r

T
rrT

r V
00
0VV0U

0
UVAA

        

T
2

rT )( V
00
0VAA

TrT
1

G
G

T
G

G V
00
0I

VV
00
0VV

00
0

VGG
 

and substituting into (20), we obtain

T
T

r
r rr

r1
r UUI

0
U0UIH =

 
= H

We can explain the above invariance property by stating that any singular 
transformation A• = AG, being non-singular in a subspace R(A) and compatible with 
A as regards the orientation of r – principal axes in a parameter space (Ru), maintains 
the matrix of left active singular vectors Ur .

The proof is immediate.
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The transformed matrix takes the form

TT
G

G
r V

00
0

VV0UAGA

and we get 

T
rG,

T
GG )(rr VUV0UA G  

For matrices A of full rank the transformation matrix G can be any arbitrary non-
singular matrix.

4. Generating reliability-equivalent and conditionality-equivalent matrices

The invariance property (18) enables one to generate for a given matrix A the matrices 
equivalent with respect to internal reliability. Using any transformation matrix G, we 
obtain a matrix A• having Ur as that in A, but the components σ and V of different 
values than those in A. Now, we show how to generate A• that has the a priori 
specifi ed σ and V.

Denoting these elements by σ• and V• respectively, we write the required matrix 
A• in the SVD form

 T

)()()(

)( V00

0
UA

rurnrrn

rurrr

un
=  T

r V0U  (21)

Since we change the structural components of the initial matrix A, we denote the 
corresponding transformation matrix G as in (18) by GA. 

The derivation of the matrix GA is as follows:
expressing the transformation formula AGA = A• in terms of the SVD, and 

assuming the structure of GA as that of G in (19), we get

TGV
00
0

U A
TV

00
0

U  

Then, premultiplying both sides by UT and decomposing V and V• as in (5), we 
obtain 

T
r G

0 A
TV

00
0

,

Finally, premultiplying both sides by 0V 1
r ,, we get
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 GA
T1

r V0V  (22)

This, after taking into account the eigenvectors Vu–r complementary to Vr , can be 
considered as an equivalent reduced form of the matrix

 GA
T

1

V
00
0V   (23)

In the case that r = u, we have 

 GA
T1 VV  (24)

Substituting into (24) σ• = Ir and V• = Iu, we get GA that generates the matrix A• 
with unit singular values, i.e. 

 GA
1V    and hence,  r

1 UVUA T
r   (25)

We can see that the matrix A• is equivalent to A with respect to internal reliability, 
being equal to that structural component of A which determines the internal reliability 
of the system. 

To extend the analysis we shall consider the transformation carried out on the 
rows of the matrix A, i.e. 

 KAA   (26)

where K is an arbitrary nonsingular matrix. 

We can check that in general we have )()( * AA  and HH . However, for 
K being orthogonal, we get 

T
rr,

TT UV
00
0

UV
00
0

KUA KK  

where: UK = KU (orthogonal); UK,r = KUr. 

Since T
rr

TT
rr

T
r,r, UUKUKUUU KK , we have HH . But, since AAT  

KAKA TT AAT , therefore )()( * AA  and hence, )()( AA kk  
We notice that the resulting matrix A• is of different internal reliability but the 

same conditionality as the initial matrix A.
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Therefore, using orthogonal transformation matrices K, we can generate the 
conditionality-equivalent matrices of different reliability characteristics.

The structure of matrices equivalent to a given design matrix A with respect to 
internal reliability or with respect to conditionality is shown in Fig. 1.

Fig. 1. The SVD structure of reliability-equivalent and conditionality-equivalent matrices

As the reliability characteristics contained in the matrix H can be obtained for 
an infi nite number of systems with different conditionality characteristics (i.e. )(A , 

(Ak ), and reversely, the specifi ed conditionality characteristics can be obtained 
for an infi nite number of systems with different reliability characteristics, we may 
conclude, that in terms of the above characteristics the concepts of internal reliability 
and conditionality are not interrelated. It is shown on a scheme in Fig.2, by referring 
the SVD of the design matrix A to that of the coeffi cient matrix ATA in normal 
equations.

Fig. 2. Lack of interrelation between the concepts of internal response-based reliability 
and conditionality of the system

.
The measures of system conditionality are, in general, based on the eigenvalues of 

the matrix ATA, each being a square of the corresponding singular value of the design 
matrix A. Instead, the measures of internal reliability are determined on the basis of 
the matrix Ur , being the component of A which disappears when passing to ATA. 
Since passing to normal equations means transforming the initial inconsistent system 
of observation equations into a consistent system of normal equations, the internal 
reliability is not covered by the existing defi nition of a condition number. 

The above considerations can be summarized as follows:
– in GM models the internal reliability and conditionality are defi ned on different 

components of the SVD of a design matrix, so these features are not interrelated. 
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Hence, a GM model may have low internal reliability and also be well–conditioned, 
and reversely, may have a high internal reliability and also be ill-conditioned;

– since adding or removing an observation in a GM model changes the structure 
of the design matrix and hence, affects both the internal reliability and the 
conditionality, we have to check each feature in the design separately; 

– it can be proved that the transformations AGA and KA of the design matrix, can 
be applied to a GM model so that we get its modifi ed forms being equivalent 
with respect to the LS estimation. However, it was not investigated in the present 
research whether the transformed models can be helpful in the design of networks. 

5.  Seeking links of external reliability with the internal reliability 
and conditionality of a model

We shall try to determine the relationship linking external reliability of a model with 
its internal reliability and conditionality. As in the preceding sections, for derivation 
of the relationship we shall use the SVD of the design matrix A.

The Baarda concept of external reliability as applied to the system (1a) is based 
on a formula 

 yAAAx TT )(ˆ  (27)

where: 

Δy – the vector of standardized observation disturbances as in (13)
x̂ – the vector of distortions in the LS solution x̂, induced by the disturbances Δy.

In the case of a single disturbance, (27) takes the form

 )i()i(
TT )(ˆ yAAAx  (28)

where T0...0y0...0 i)i(y . .

Baarda considers a specifi c single disturbance case, i.e.

 i
i

i MDB1y  
iih

; (29)

where: 

MDBi – Minimal Detectable Bias in the i-th observation, σi – standard deviation of 
the i-th observation, δ – the non-centrality parameter.

In this specifi c case the corresponding vector )i(x̂  as in (28) will be denoted by 
)B( ix̂  .
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Applying the SVD of A, we get (27) in the form

 yVVVx TT2
rrrrˆ   (30)

and fi nally
 
 yUVx T1

rrˆ  (31)

As could be expected, the formula (31) shows that the vector of distortions x̂  
depends on all the structural components of the matrix A, and hence, on the internal 
reliability (Ur) and conditionality (σ) of the system. We can also notice that the greater 
are the singular values, the smaller are the distortions in the parameters. In a single 
disturbance case (see (28)), where Δyi is as in (29), we get in (31) another component 
containing internal reliability, i.e. hii.

Since formula (31) does not precisely indicate, i.e. in terms of specifi ed measures, 
the character of the infl uence of internal reliability and conditionality of the system 
upon 

,
x̂ , we shall consider the 2-norm instead, i.e.

 
2x̂  

2T
r

1T
r

2T
r yUyUUy   (32)

In a specifi c case of systems with equal nonzero singular values, we get σ = σ ∙ Ir, 
and the formula (32) will take a simplifi ed form

  
2x̂  

22T
r

T2T
r

2-2-2-
r yHyyUUyyU   (33)

In the above derivation the equation (17) was used, i.e. HIUU T
rr .

Hence

 x̂  
221 yHy  (34)

Assuming a single disturbance, we have 22 )y( iy , 22 )(h iii yyH , 
and the formula (34) takes the form

  )h1(1ˆ iii)i( yx
 

(35)

Putting iy  
iih

 as in (29), we obtain for such systems the exact formula for 

external reliability

 1
h
11ˆ

ii
)iB(x  (36)
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The analyzed specifi c case of equal singular values allows one to introduce into 
the formula (36) a pseudo-condition^number )(Ak  (here )(Ak ), by substituting 

)(1 Ak , i.e. 

  1
h
1)(ˆ

ii
)iB( Ax k   (37)

By this we get, although for a specifi c case, a formula with a clear separation 
of the infl uence of conditionality and internal reliability, expressed in terms of the 
corresponding measures. The formula (37) can be considered as an approximate 
formula for the systems (1a) that have small variation in nonzero singular values. 

As regards internal reliability, each of the formulas discussed above, i.e. (35), 
(36), (37), indicates that the greater the reliability index for the i–th observation, the 
smaller is the norm of parameter distortions. From the formula (36) or (37) we can 
see that the internal reliability, at any value of its index hii, except hii = 0, decreases 
the norm of parameter distortions. The formula (37) shows that for a disturbance 
being the MDBi, the decrease in that norm occurs for hii > 0.5, i.e. when satisfying 
the reliability criterion. We may thus conclude that both the appropriately high level 
of internal reliability and a good conditionality of a system are advantageous for 
external reliability. 

In spite of the approximate character of the formulas (35), (36) or (37) when 
applied for systems with σmin ≠ σmax , we may, without a further loss of accuracy, 
analyze the impact of internal reliability level hii upon )iB(x̂   with respect to that 
upon (i)x̂ . We shall therefore compare the following infl uencing factors appearing 
in the formulas (29), (35) and (36), respectively

 
iih

1
(1) , due to MDBi;  iih1(2) ,, due to the structure of A, 

 1
h
1

ii
(2)(1)(1,2) , due to the joint infl uence

The corresponding graphs are shown in Fig. 3. It is only within the interval 
0.5 < hii < 1, that the joint infl uence of internal reliability upon )iB(x̂  is advantageous 
(η(1,2) < 1), and the greater are the values of hii, the greater is the reduction in )iB(x̂ . 
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Fig. 3. Relibility-dependent factors infl uencing the norm of parameter distortions

For the models (1b) with S ≠ So, the formula analogous to (27) takes the form

 yAAAx T
S

T
)S( )(ˆ  (38)

and, after applying the SVD of the factors and carrying out several matrix operations 
(see appendix B), we get 

 yUVVx s
T
r

11
r,

T
r )(ˆ )(  (39)

where Vr and V*,r are the matrices of active eigenvectors of ATA and S
T )( AA  

respectively.
Comparing the formulas (39) and (32), we can see that the factor 

1
r,

T
r VV   

refl ects the infl uence of the constraints used. For S = So, we get rr
T
r IVV , and (39) 

becomes identical with (32).
Finally, since xx s ˆˆ )( , where x̂   is as in (27), we obtain the inequality (see 

Appendix C)

 yUx s
T
r

1
)(ˆ  (40)

By noticing structural analogy in the formulas (39) and (32), we get a link between 
the analyses of external reliability for the systems 1b) and 1a). The analogy enables us 
to follow in the analyses of the systems 1b) a fi nal general conclusion drawn for the 
systems 1a), that the better the internal reliability and the conditionality of a system, 
the smaller is the norm of parameter distortions induced by observation disturbances. 
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The relations between the analyzed concepts, shown by indicating the involved 
SVD components of the design matrix A, are presented on a scheme in Fig. 4. The 
scheme takes into account that the external reliability can be expressed either in terms 
of the vector of parameter distortions )( T

rrU  or in terms of the 2-norm of this 
vector (Ur σ).

Fig. 4. Links between the concepts of external reliability, internal reliability 
and conditionality of a system

6. Numerical examples 

Example 1. For a given design matrix A (3×2) of full rank, fi nd a matrix equivalent 
to A with respect to internal reliability, having equal singular values and a matrix 
equivalent to A with respect to conditionality, obtained with the use of an arbitrary 
orthogonal transformation matrix. Make a graphical presentation of the systems 
generated by the 3 matrices.

 
95.01.1
9.01

11
A  

 
We get for this matrix:

A = UΣVT= 73626.067670.0
67670.073626.0

00
075916.00

043243.2

54153.0
81230.0
21662.0

0.591650.59724
0.185190.55306
0.784640.58088

 

(left active singular vectors are marked in bold); pseudo-condition^number 
k(A•) = k(A+) = 13.2; indices of internal reliability: h11 = 0.047; h22 = 0.660; 
h33 = 0.293
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Solution

Option 1. Assuming σG = I2, VG = I2 we get on the basis of formula (25) (for r = u) 
the following transformation matrix GA

GA
1V

1

075916.00
043243.2

73626.067670.0
67670.073626.0   

69839.927820.0
91375.830269.0  

and hence, 

AGA )1( A  
59165.059724.0
18519.055306.0
78464.058088.0

which, according to formula (25), is a matrix of left active singular vectors of the 
initial matrix A, i.e. Ur 

. Due to the assumptions, we have )( )1(Ak  = 1.
Applying the formula (17) we get the reliability indices, being the same as those 

for the initial matrix A. 

Option 2. Assuming an arbitrary orthogonal matrix K, we transform A as in (26), i.e. 

KAA )2(  
52621.167280.1
52753.059403.0
32386.024267.0

95.01.1
9.01

11

80927.025193.053067.0
20180.096762.015162.0
55168.001562.083391.0

 

We can readily check that the resulting matrix A(2) is conditionality-equivalent to 
the initial matrix A, i.e. )( )2(Ak  = 13.2, but of different internal reliability (h11 = 0.017; 
h22 = 0.861; h33 = 0.122).

Graphical presentation of the results is given in Fig. 5. For each of the analyzed 
cases an ellipse representing (ATA)-1 and the gradients of positional lines are shown. 

Fig. 5. Graphical presentation of the results: a) initial matrix, b) a matrix reliability–equivalent to that 
in a), a matrix, conditionality-equivalent to that in a); (major axis in a) and c) is shown at scale 1:50)
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As could be expected, both the lengths and the orientation of the gradients in the 
case b) vary considerably from those in the case a). The lengths of the gradients in c) 
vary considerably from those in a), whereas their orientation is roughly maintained. 

Example 2. For a given matrix A (6×5) of incomplete rank (r = 4), being a design 
matrix for a simple local levelling network, 

10010
10001

11000
01100
00110
00011

A

and the following options of coeffi cient matrices S (S ≠ So) in constraint equations as 
in a system (1b), i.e. 

01111
1

S  ;      00011
2

S  ;     00001
3

S  , 

fi nd the nonzero eigenvalues and pseudo-condition^numbers for a system 1a) and 
a system 1b).

Solution

For a system 1a) 

618.41 ; 618.32 ; 382.23 ; 382.14 ; )(Ak  = )(Ak = 0.85 

 For a system 1b) 

To verify the property )()( TT
ii AAAA S  and hence )()( AAS kk  (see 

Appendix B), we precede the eigenvalues of SAA )( T  with those of )( T AA , denoted 
by i  and i   respectively:

724.01 ; 420.02 ; 276.03 ; 216.04 ;          )(Ak  =   0.85 
---------------------------------------------------------------         ------------------ 

734.01 ;  443.02 ;  302.03 ;  232.04 ;          )( 1SAk  0.86  

456.11 ;   446.02 ;  281.03 ;  250.04 ;          )( 2SAk  1.21 

217.41 ;   618.22 ;  420.03 ;  382.04 ;         )( 3SAk  2.05  
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The above listing of eigenvalues and the corresponding pseudo-condition^numbers 
verifi es the property in Appendix B. 

7. Conclusions 

The SVD of the design matrix proved to be useful in seeking the relationships between 
the measures of internal reliability, external reliability and conditionality of GM models 
with uncorrelated observations. The analysis concerning the model conditionality had 
to be based on a substitute measure called pseudo-condition^number, developed in 
this paper for inconsistent systems of linear equations. 

And so, the following properties of GM models with respect to interrelations 
between the above mentioned concepts could be established, covering both the case 
of the full-rank and the rank-defi cient design matrices: 
- the concepts of internal response-based reliability and conditionality of a model 

are not interrelated. Hence, in the design of observation systems each feature can 
be considered independently of each other. The design operations such as adding 
or removing observations change both the features, so the lack of interrelation 
between these features does not seem to offer advantage for the design process, at 
least at this state of research, 

- as could be expected, the external reliability, expressed either as a vector of 
parameter distortions (as in Baarda defi nition) or in the form of the 2-norm of 
this vector (as in this paper), depends on both the conditionality and the internal 
reliability of a model. The newly derived auxiliary formula for external reliability, 
although being exact only for the systems with the design matrices having equal 
singular values, contains the measures of internal reliability and the conditionality 
in explicit form. It shows in terms of these measures that the appropriately high 
level of internal reliability and a good conditionality of a system are advantageous 
for external reliability. Such a general conclusion applies also to systems with 
minimal constraints on parameters, however the detailed analysis based on the 
measures of internal reliability and conditionality did not prove possible for such 
systems.
It seems to the present author that research in this area is worth continuing and 

should cover the systems with correlated observations. The approach to reliability 
measures for the systems with singular both the design matrices and the covariance 
matrices as in Wang and Chen (1999), paves the way for further extension of the 
research. 
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APPENDIX A

Derivation of the formulas (11a) and (11b)

By defi nition of the 2-norm of the matrix A•, we get

 AAA T)(max   (41)

Using the equality as below (e.g. Kiełbasiński and Schwetlick 1992)

 TT )()( maxmax AAAA   (42)

we may express (41) in the equivalent form

 T)(max AAA   (43)

Applying (43) for each of the two types of the inverse A•, i.e. A+ and SA , we get 
after several operations

T)(max AAA )()( TTT
max AAAAAA       

          11
)()()( minminmax

TT AAAAA

 for all λi > 0 or σi > 0  (43a)

T)(max SSS AAA SS AAAAAA )()( TTT
max SAA )( T

max

 for all λi > 0  (43b)

This ends the derivations. ■
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APPENDIX B

Derivation of the relationship between the eigenvalues of SAA )( T   and )( TAA
Applying to SAA )( T   a basic property of generalized inverses, i.e. 

 AAAAAAAA S
TTTT )(   (44)

and expressing it in terms of SVD, we shall write 

TTTT V
00
0

VV
00
0

VV
00
0

VV
00
0

V  

and, since det V ≠ 0 

 
00
0

00
0

VV
00
0

VV
00
0 TT  (45)

Partitioning V and V* as in (4), we get 

ru
T

rur
T

ru

ru
T
rr

T
r

,,

,,

VVVV
VVVV

VVT  

and after substituting it into (45) and considering the r × r blocks only, we obtain the 
equality

 VVV r
T

r,r,
T
r   (46)

After a simple modifi cation of (46), we get 

 VVVV r
T

r,r,
T
r   (47)

where λ+ = λ–1 denotes the matrix of eigenvalues of the pseudo-inverse (ATA)+.

The matrix r,
T
r VV  can be expressed with the use of its i,j–th element (Meyer 2000), 

as 

 )v, cos jir, r,r,
T
r VV      i, j = 1,2, … , r (48)

where: 
vr,i, v*r,j – the column-vectors of Vr, V*,r respectively,
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α – the angle between the column-vectors vr,i, v*r,j.

Applying the simplifi ed notation ijcr,
T
r VV   in (48) and substituting it into (47), 

we obtain after carrying out several operations a consistent system of r equations in r 
unknowns, i.e. λ*,1, λ*,2, …, λ*,–

  (49)

 

   1
2
1r2

2
121

2
11 c...cc ,,, r  

      2
2
2r2

2
221

2
21 c...cc ,,, r  

                               ……………………………………….. 

                              r
2
rr2

2
r21

2
r1 c...cc ,,, r  

where: 
 0  ,0 i,i ;  1c  ,1c  ,1c0 22

i
2
ij j , i,j = 1,2, …, r,

(i•), (•j) indicate that summation runs in a column or a row of the coeffi cient matrix, 
respectively.

It can be proved that with the limitations for the values of coeffi cients, the unknowns 
and the free terms as listed above, the solution of the system satisfi es the inequalities

i,i ,      i = 1, …, r, 

excluding i,i  for all “i” and maxmax )()(  

To verify the appropriateness of excluding the equality maxmax )()( , we carry 
out the reasoning presented below. 
Since x̂   as in (27) is a minimum norm solution, we have for S ≠ So   xx s ˆˆ )( , 
and hence 

 maxmax

)( ˆˆ

y
x

y
x S

 

Taking into account (9) and (43a), (43b) we get 

 SAA )( T
max  )( T

max AA   

which verifi es the above exclusion.

Due to (11a) and (11b), we get )()( AAS kk , which ends the derivations. ■ 
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APPENDIX C

Proof for the property (40)

For the systems 1b) we shall write (27) in the form

 yAAAx TT
s)s( )(ˆ     where S ≠ So  (50)

Expressing the formula (50) in terms of the 2-norm and applying SVD for the 
components, we obtain

     yAAAAAAyx TTTT2

ss)s( )()(ˆ =  

yU
00
0

VV
00
0

VV
00
0

VV
00
0

Uy TTTTT  

Partitioning U, V and V* as in (4) and carrying out several simple operations, we 
obtain

yVVVUyx T
rr

T
r,

2
r,

T
rr

T2

)s(ˆ

Taking into account the property (47) and realizing that 2 , we get 

yUVVVVUyx T
r

11
r,

T
r

1
r

T
r,

1
r

T2
)()(ˆ )(s  

and hence

 
2T

r
11

r,
T
r

2
)(ˆ )( yUVVx s  (51)

which, for a system 1a) where r,
T
r VV  = I, is consistent with (32). 

Using a well known property, that )s()s( o
ˆˆ xx  for any nonzero vector Δy, we 

get on the basis of (32) the inequality 

yUx s
T
r

1
)(ˆ  

which proves the property. ■
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Badanie związków między niezawodnością wewnętrzną i zewnętrzną a uwarunkowaniem 
układu w modelach Gaussa-Markova z nieskorelowanymi obserwacjami

Witold Prószyński

Politechnika Warszawska
Wydział Geodezji i Kartografi i

Pl. Politechniki 1, 00-661 Warszawa

Streszczenie 

Badany jest związek między niezawodnością wewnętrzną bazującą na odpowiedziach modelu a uwarun-
kowaniem układu dla modeli Gaussa-Markova z obserwacjami nieskorelowanymi. Rozpatrywane są przy 
tym modele z macierzami projektu pełnego i niepełnego rzędu. Wzory wyprowadzone przy użyciu roz-
kładu macierzy ze względu na wartości szczególne (SVD) wskazują wyraźnie, że te dwa badane pojęcia 
są wzajemnie niezależne. Przedstawione są metody konstruowania dla danej macierzy projektu macierzy 
równoważnych pod względem niezawodności wewnętrznej oraz macierzy równoważnych pod względem 
uwarunkowania. Aby umożliwić analizę uwarunkowania modeli GM stanowiących w ogólności układy 
sprzeczne, wyprowadzono pseudo-wskaźnik zastępujący wskaźnik uwarunkowania układu powszechnie 
stosowany w numerycznej algebrze liniowej. Także na podstawie rozkładu SVD zaproponowano wzór 
określający niezawodność zewnętrzną bazujący na 2-giej normie wektora zniekształceń parametrów in-
dukowanych przez minimalny wykrywalny błąd w danej obserwacji. Dla układów z jednakowymi nie-
zerowymi wartościami szczególnymi wzór ten może być wyrażony poprzez wskaźnik niezawodności 
wewnętrznej oraz pseudo-wskaźnik uwarunkowania. Z tymi miarami występującymi w postaci jawnej, 
wzór ukazuje, chociaż jedynie dla powyższych specyfi cznych układów, charakter wpływu niezawodno-
ści wewnętrznej i uwarunkowania modelu na jego niezawodność zewnętrzną. Dowody uzupełniających 
własności dotyczących pseudo-wskaźnika uwarunkowania oraz 2-giej normy wektora zniekształceń pa-
rametrów w układach z minimalnymi ograniczeniami, zamieszczone są w Dodatkach. Teoria ilustrowana 
jest na przykładach numerycznych.


