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Abstract: The relationship between internal response-based reliability and conditionality
is investigated for Gauss-Markov (GM) models with uncorrelated observations. The models
with design matrices of full rank and of incomplete rank are taken into consideration.
The formulas based on the Singular Value Decomposition (SVD) of the design matrix
are derived which clearly indicate that the investigated concepts are independent of each
other. The methods are presented of constructing for a given design matrix the matrices
equivalent with respect to internal response-based reliability as well as the matrices
equivalent with respect to conditionality. To analyze conditionality of GM models, in
general being inconsistent systems, a substitute for condition number commonly used
in numerical linear algebra is developed, called a pseudo-condition”number. Also on
the basis of the SVD a formula for external reliability is proposed, being the 2-norm
of a vector of parameter distortions induced by minimal detectable error in a particular
observation. For systems with equal nonzero singular values of the design matrix, the
formula can be expressed in terms of the index of internal response-based reliability
and the pseudo-condition“number. With these measures appearing in explicit form, the
formula shows, although only for the above specific systems, the character of the impact
of internal response-based reliability and conditionality of the model upon its external
reliability. Proofs for complementary properties concerning the pseudo-condition”number
and the 2-norm of parameter distortions in systems with minimal constraints are given in
the Appendices. Numerical examples are provided to illustrate the theory.

Key words: internal reliability, external reliability, system conditionality, singular
value decomposition, uncorrelated observations

1. Introduction

The internal and external reliability together with the system conditionality are the
features that should all be taken into account in characterizing the quality of Gauss-
Markov (GM) models. Since each of them is based on the properties of the design
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matrix of a GM model, they are expected to be interrelated. The objective of the
present paper is to investigate links between the above features, by establishing
explicit relationships containing the corresponding measures. By this the paper aims
at specifying closer links of the theory of reliability with the sensitivity analysis of
linear systems established in numerical linear algebra.

In this paper the approach to “internal reliability” does not follow the traditional
line of Baarda (1968), continued and developed by contributions from Wang and
Chen (1994), Schaffrin (1997), Teunissen (1996), Knight et al. (2010) and others. It
concentrates entirely on the properties of network responses to observation gross errors
(Proszynski, 1994; 1997), characterized for uncorrelated observations by redundancy
numbers. So, the approach does not operate with Minimal Detectable Biases (MDBs)
for individual observations as the internal reliability measures. This corresponds to
treating by Caspary (1988) the redundancy numbers (otherwise called the redundancy
contributions) as measures of internal reliability. Therefore, for distinction from the
traditional concept it is referred to as “internal response-based reliability” as used in
Proszynski (2012). However, for saving space in the present paper the “response-
based” specification will in most places be omitted. For external reliability Baarda’s
approach is followed, although the arbitrary vectors of observation disturbances are
also taken into account.

The concept of conditionality of a linear system is well established in numerical
linear algebra (e.g. Kielbasinski and Schwetlick, 1992; Meyer 2000; Cheney and
Kincaid, 2008; Kalitkin et al. 2010, and others). It describes sensitivity of the solution
vector to disturbances in the input data. Such is also the sense of external reliability,
so both the features are expected to have a direct connection. However, in the course
of the present studies it turned out that the condition number commonly used as
a measure of the system conditionality, is not applicable to inconsistent systems of
equations. Therefore, a substitute measure called a pseudo-condition”number had to
be developed for the purposes of the analysis.

The relationships between various types of measures of internal and external
reliability have already been thoroughly studied by Caspary (1988). But to the
knowledge of the present author, a relationship between the measures of internal
response-based reliability and conditionality of the system as well as a relationship
between the measures of external reliability and those of internal response-based
reliability and conditionality have so far not been given a separate attention and
reported in geodetic research publications. As regards the former relationship there
are some implications that there may even be no dependence between the concepts.
First of them is the fact that for systems with design matrices of full rank and of
incomplete rank, the average reliability index depends only on the dimensions and
rank of these matrices. Other implications are connected with invariance of the
reliability matrix to the choice of minimal-constraint datum in observation systems
with design matrices of incomplete rank. For every chosen datum we have the same
reliability matrix but different magnitudes of eigenvalues of the covariance matrix for
parameters, that decide about a level of the system conditionality.
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In view of the above implications, the present paper seeks a theoretically grounded
answer to the question of dependence between the internal response-based reliability
and the conditionality of a system, both for the full-rank and rank-deficient systems.
The author has not found any direct matrix operations that might provide answer to
this question. That is why the analysis is based on the use of the SVD of a design
matrix, since it discloses the inner structure of the matrix. Also with the use of SVD
the relationship will be looked for, linking the external reliability with the measures
of internal response-based reliability and the system conditionality.

A general objective of the present paper can be summed up as making an
attempt to interrelate, in terms of the corresponding measures, the basic concepts that
characterize quality of GM models with uncorrelated observations. It is also expected
that this knowledge will help better understand and interpret the results of analyses of
such models, especially in the course of their design.

2. Recalling basic concepts and auxiliary properties

We provide brief presentation of the concepts together with some auxiliary properties
necessary for the analyses in the present paper. Some of the properties were developed
deliberately for this purpose.

2.1. Observation model and basic formulas for least squares estimation
of parameters

Let us consider a standardized Gauss-Markov model
Ax+e=y; e~(0,l) (1a)
and its form with minimal constraints
Ax+e=y; e~(0,l) (1b)
Sx=10

where:

y — the nx1 vector of standardized uncorrelated observations;

A — the nxu design matrix; rank A =r; r < u for (1a), » < u for (1b);
x - the unknown ux 1 vector of parameters;

e — the unknown n x 1 vector of standardized random errors;

S - the dxu coefficient matrix in constraint equations,

d =u —rank A; rank S = d; rank [AT ST} =y, 1.e. each row-vector of S belongs to
the null-space of A (Koch, 1999).
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The least squares (LS) solutions of the system (la) and (1b) will be denoted,
respectively

x=A'y orequivalenly X=(ATA)"A'y
X=Agy orequivalenly X=(ATA)JA'y

where:

()" — the pseudo-inverse, ()5 — a reflexive g — inverse, satisfying S(-)s =0 (Rao and
Mitra, 1971). The g — inverse (A"A)g is a symmetrical matrix (Meyer 2000). With
a specified S, Ag yields a unique solution.

The above cases are not disjoint, since with S=S,, such that AS; =0, we have
AT = A,

2.2. Singular Value Decomposition of the design matrix
The SVD of the matrix A of incomplete rank, will be denoted by

A=UzV' )
where:

U(nxn), V(uxu) — orthogonal matrices containing the left-hand side and right-hand
side singular vectors, respectively;
Y(n*u) — the matrix of singular values,

c 0
Y o—| ™ rx(u—r)
nxu (3)
(n=r)xr  (n—r)x(u-r)
o(rxr) — a diagonal matrix of nonzero singular values, i.e.
o = diag (04,05,...,0,), witho; >0 (i =1, 2,..., r)
Partitioning the matrices U and V according to the rank of A, as below
U = [UI' Un—r] V = [VI' Vu—r] (4)

and substituting them into the formula (2), we get its equivalent reduced forms (see
e.g. Golub and Reinsch, 1970)

: T A
A=UocV] A=[Usc 0]V" A=U X (5)
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2.3. A pseudo-condition"number developed for the purposes of analysis

The condition number as defined in numerical linear algebra (eg. Kietbasinski and
Schwetlick, 1992; Meyer, 2000), applies only to nonsingular systems of equations.
Additionally, in (Meyer, 2000) a generalized condition number is introduced, that
allows for the analysis of consistent systems with the design matrices being rectangular
or singular. So, neither of the above condition numbers is applicable for the systems
of the type (la) and (1b) that are, in general, inconsistent, i.e. do not have exact
solution. Although a generalized condition number could be used for singular normal
equations, but we do not operate there with a vector of observation disturbances in
explicit form, necessary for seeking the links between conditionality and external
reliability.

For the purpose of the analysis undertaken in the present paper we introduce
a substitute for conventional concept of conditionality, called here a “pseudo-
conditionality”. We make an assumption that the model is exact, i.e. the matrices
A or A, S are known exactly and all the disturbances reside only in the observation
vector y.

We shall introduce a general form of unique solution for the systems (la) and
(1b), denoted by

k=A% (6)
where A® stands for either of A* or Ay (with a specified S).

It follows from (6), that the disturbances in y will cause distortions in X, as shown
below

Ax=A" Ay (7)

Expressing equation (7) in terms of the 2-norm and using the property given in
(Meyer 2000), we get

Jax]=| oyl ®)

A° -Ay” < HA'

where HA'H denotes the 2-norm of the matrix A®.

NE (MJ ©)
[Av]), o

we shall assume “A'H as a pseudo-condition”number for inconsistent systems of

Since it follows from (8) that

linear equations (either rank-deficient or of full rank), and denote it by
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k(A')z‘A' (10)

It serves here as a substitute for a condition number k(A) used for consistent
systems of equations. The condition number A(A) is defined as a ratio of relative
disturbances in solution and relative disturbances in observations, the former being
referred to the exact solution. The pseudo-condition“number, due to the lack of exact
solution, is defined as a ratio of absolute disturbances in solution and in observations,
where the disturbances in solution are referred to the unique but approximate solution.

Moving the derivations to Appendix A, we present here the final detailed formulas
for k(A®), 1.c.

k(A+)=\/>‘max (ATA) |=[omin(A)]" forall A,>00r ;>0 (lla)

k(Ag) = \/)\‘max (ATA)g for all ki >0 (1 ]b)

For S=S,, we have Ag, = A" and hence, k(Ag,)=k(A")
It follows from the derivations in Appendix B that for S #S_, we have
k(Ag)>k(A™) (12)

which means that the solution of the system 1b) is worse conditioned than that of the
system la).

For the sake of simplicity, anywhere in the text when referring to a pseudo-
condition”number, we shall be using a general term “conditionality”.

2.4. Internal response-based reliability of a model and its measures

The model internal reliability as presented in this paper, more properly termed the
internal response-based reliability of a model, has as its basis the “disturbance/
response relationship” (Proszynski, 1994; 1997), written as

AV =—-H- Ay (13)

where:

Ay — the nx 1 vector of the standardized observation disturbances (standardized gross
errors),
AV — the nx 1 vector of increments in the standardized LS residuals,
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H — the nxn reliability matrix, for a model with uncorrelated observations being an
operator of orthogonal projection, given by the formula

H=1-AATA)TA" (14)
The expression (14) can be written in an equivalent generalized form
H=1-AA"A) A" (15)

which is invariant to the choice of generalized inverse (ATA)” (Rao, 1973), e.g.
(ATA); =(ATA)", (ATA),(ATA)S, ...
o 1 2

The diagonal elements of H, h;; <0, 1),1=1,...,n, known as redundancy numbers,
are indices of the model internal reliability, their sum being Tr H = n — r. The average
index is h;; =1—r/n. The reliability criterion for the case of a single outlier is h;;> 0.5
(Proszynski, 1994).

3. SVD-based representation of reliability matrix and its invariance properties

Coming back to reliability matrix H we derive other representation of the formula
(14), basing on the SVD of the matrix A as in (2).

The reliability matrix will take the form
H=1-AQATA)"AT=1-UzZvT(VZTUTUZV")" VZTU" =

=I-UZV'(VH'E")y ' vIvElu = 1-UZE' D)’ 2'U" =

0o 0 I 0
—r-ul® Ve 0 Vyropoul U (16)
0 0/ 0o o0 O 0 0,
Partitioning the matrix U as in (4) and substituting into the formula (16), we get
H=I1-[U, U {I‘” 0 } U —1-U, U’ (17)
T n-r 0 On_r Ug_r r-r

Since HU, =(I1-U,UNU, =U, - U, =0, each column vector in U, belongs to
R(A) and therefore, we shall call U, the left active singular vectors of the matrix A.
Hence, we say that the operator H depends entirely on the left active singular vectors
of the matrix A.

To create a basis for further analysis, we also recall a specific property of
the reliability matrix H being, in the case that rank A = u, its invariance to non-
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singular transformations. The property is extended here for rank A < u onto singular
transformations that are non-singular in the subspace R(A).

The property reads, that for a transformed matrix A, denoted by A,, such that
A, =AG (18)

where G(u*xu) is a singular matrix with SVD as below

o 0
G=V| v ’X(‘(‘)_r) Vg (19)

(u—ryxr  (u—r)x(u-r)
with V being identical with that in (2),
we have H, = H.

The proof is as follows,

H,=1-A,(ATA) Al =1-AG(GTATAG)"GTAT = 20)
=1-AGG"(ATA)"GG'A!

where GG™ is a symmetrical matrix.

Finding that

T 2 -2
ATA=V|%Y [us, ovT=v|® Ot aTA) =v[% Olyr
o | " 0 0
0 . I 0
GG =v|% Vlviv |% Oty Ty
0 0 0 0 0 0

and substituting into (20), we obtain

T
6rUI'

H,:I—[Urcs;1 0{ )

}:I—UrUf:H

We can explain the above invariance property by stating that any singular
transformation A, = AG, being non-singular in a subspace R(A) and compatible with
A as regards the orientation of r — principal axes in a parameter space (R¥), maintains
the matrix of left active singular vectors U,.

The proof is immediate.
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The transformed matrix takes the form

A.=AG=[U,c O]V' .V[GOG :ﬂvg

and we get

A- = [UrGGG O]VS = Ur(GGG)V(T,,r

For matrices A of full rank the transformation matrix G can be any arbitrary non-
singular matrix.

4. Generating reliability-equivalent and conditionality-equivalent matrices

The invariance property (18) enables one to generate for a given matrix A the matrices
equivalent with respect to internal reliability. Using any transformation matrix G, we
obtain a matrix A, having U, as that in A, but the components ¢ and V of different
values than those in A. Now, we show how to generate A, that has the a priori
specified ¢ and V.

Denoting these elements by o, and V, respectively, we write the required matrix
A, in the SVD form

c, 0
L ”(’6") VI=[Ue, 0]-V] Q1)

o (n—r)xr (n—r)x(u—r)

Since we change the structural components of the initial matrix A, we denote the
corresponding transformation matrix G as in (18) by G,.

The derivation of the matrix G, is as follows:

expressing the transformation formula AG, = A, in terms of the SVD, and
assuming the structure of G, as that of G in (19), we get

c 0 . c, 0 T
U VG,=U -V,
00 0 0

Then, premultiplying both sides by UT and decomposing V and V, as in (5), we

obtain
T 0
["Vr }GA: r‘ }V.T :
0 0 0

Finally, premultiplying both sides by [Vrc_l 0]‘, we get
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G,= [Vro*c, o]v,T (22)

This, after taking into account the eigenvectors V,_. complementary to V,, can be
considered as an equivalent reduced form of the matrix

-1
Go=V o, 0 V7 (23)
0 0
In the case that » = u, we have
Ga= Ve o, V] (24)

Substituting into (24) 6, = I, and V, = I, we get G, that generates the matrix A,
with unit singular values, i.e.

G,=Vo ' and hence, A, =U,6V'Ve' =0, (25)

We can see that the matrix A, is equivalent to A with respect to internal reliability,
being equal to that structural component of A which determines the internal reliability
of the system.

To extend the analysis we shall consider the transformation carried out on the
rows of the matrix A, i.e.

A, =KA (26)
where K is an arbitrary nonsingular matrix.
We can check that in general we have o(A.)#6(A) and H, # H. However, for
K being orthogonal, we get

c 0 T 0 T T
A, =KU- -V =U - -V =Ug 0V,
0 0 0 0 '

where: Uy = KU (orthogonal); Uy, = KU,

Since Uy Uy, =KUUK"'#UU_, we have H, = H. But, since A A, =
=A'K'KA =A"A | therefore 6(A.)=6(A) and hence, k(A])=k(A")

We notice that the resulting matrix A, is of different internal reliability but the
same conditionality as the initial matrix A.
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Therefore, using orthogonal transformation matrices K, we can generate the
conditionality-equivalent matrices of different reliability characteristics.

The structure of matrices equivalent to a given design matrix A with respect to
internal reliability or with respect to conditionality is shown in Fig. 1.

P A=U,6V] f-------mmmmme- -
: :
A =UsoV/, A,=Uso,V],, .. A, =U_ 6V, A,=U 0V, ..
reliability-equivalent conditionality-equivalent

Fig. 1. The SVD structure of reliability-equivalent and conditionality-equivalent matrices

As the reliability characteristics contained in the matrix H can be obtained for
an infinite number of systems with different conditionality characteristics (i.e. 6(A),
k(A™"), and reversely, the specified conditionality characteristics can be obtained
for an infinite number of systems with different reliability characteristics, we may
conclude, that in terms of the above characteristics the concepts of internal reliability
and conditionality are not interrelated. It is shown on a scheme in Fig.2, by referring
the SVD of the design matrix A to that of the coefficient matrix ATA in normal
equations.

[AzUr GVrT] [ATAer ¢’ VIT]
i 1 u‘
internal reliability y, conditionality v
H 6(A)

Fig. 2. Lack of interrelation between the concepts of internal response-based reliability
and conditionality of the system

The measures of system conditionality are, in general, based on the eigenvalues of
the matrix ATA, each being a square of the corresponding singular value of the design
matrix A. Instead, the measures of internal reliability are determined on the basis of
the matrix U,, being the component of A which disappears when passing to ATA.
Since passing to normal equations means transforming the initial inconsistent system
of observation equations into a consistent system of normal equations, the internal
reliability is not covered by the existing definition of a condition number.

The above considerations can be summarized as follows:
— in GM models the internal reliability and conditionality are defined on different
components of the SVD of a design matrix, so these features are not interrelated.
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Hence, a GM model may have low internal reliability and also be well-conditioned,
and reversely, may have a high internal reliability and also be ill-conditioned;

— since adding or removing an observation in a GM model changes the structure
of the design matrix and hence, affects both the internal reliability and the
conditionality, we have to check each feature in the design separately;

— it can be proved that the transformations AG, and KA of the design matrix, can
be applied to a GM model so that we get its modified forms being equivalent
with respect to the LS estimation. However, it was not investigated in the present
research whether the transformed models can be helpful in the design of networks.

5. Seeking links of external reliability with the internal reliability
and conditionality of a model

We shall try to determine the relationship linking external reliability of a model with
its internal reliability and conditionality. As in the preceding sections, for derivation
of the relationship we shall use the SVD of the design matrix A.

The Baarda concept of external reliability as applied to the system (1a) is based
on a formula

Ax=(ATA)"AT - Ay 27)

where:

Ay — the vector of standardized observation disturbances as in (13)
AX — the vector of distortions in the LS solution X, induced by the disturbances Ay.
In the case of a single disturbance, (27) takes the form

where Ay, =[0 .. 0 Ay; 0 .. 0]..

Baarda considers a specific single disturbance case, i.e.

Ay; = iMDBi = i ; (29)
Oj hy;
where:

MDB; — Minimal Detectable Bias in the i-th observation, ¢; — standard deviation of
the i-th observation, & — the non-centrality parameter.

In this specific case the corresponding vector AX() as in (28) will be denoted by
AX
(Bi) -
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Applying the SVD of A, we get (27) in the form
AX=V,67°V/V,6U; - Ay (30)
and finally
AX=V,6"'U; - Ay (31)

As could be expected, the formula (31) shows that the vector of distortions AX
depends on all the structural components of the matrix A, and hence, on the internal
reliability (U,) and conditionality (o) of the system. We can also notice that the greater
are the singular values, the smaller are the distortions in the parameters. In a single
disturbance case (see (28)), where Ay; is as in (29), we get in (31) another component
containing internal reliability, i.e. h;;.

Since formula (31) does not precisely indicate, i.e. in terms of specified measures,
the character of the influence of internal reliability and conditionality of the system
upon Ax, we shall consider the 2-norm instead, i.e.

In a specific case of systems with equal nonzero singular values, we get6 =0 - I,
and the formula (32) will take a simplified form

In the above derivation the equation (17) was used, i.e. U,U; =1-H.
Hence

2
AR* = AyTU 672U Ay = Hc-lUfAyH (32)

2

A% Ulsy[ =028y "0 Ul Ay = 6 Q|Ay||2 ~ |- Ay||2) (33)

2
=0 ‘

AX

Assuming a single disturbance, we have ||Ay||2 =(Ay;)’,
and the formula (34) takes the form

\Af‘mu=|Ayi|-é\/(l—hﬁ) (35)

Putting Ay; = /hi as in (29), we obtain for such systems the exact formula for
il

1
=l 649

H-Ay[" =h - (Ay;)?,

external reliability

Ao, | =5 hiﬁ—l (36)
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The analyzed specific case of equal singular values allows one to introduce into
the formula (36) a pseudo-condition”number k(A*) (here k(A")), by substituting

=k(A®), i.e.
| =5 -k(A®) /%—1 (37)

By this we get, although for a specific case, a formula with a clear separation
of the influence of conditionality and internal reliability, expressed in terms of the
corresponding measures. The formula (37) can be considered as an approximate
formula for the systems (1a) that have small variation in nonzero singular values.

As regards internal reliability, each of the formulas discussed above, i.e. (35),
(36), (37), indicates that the greater the reliability index for the i—th observation, the
smaller is the norm of parameter distortions. From the formula (36) or (37) we can
see that the internal reliability, at any value of its index h;;, except h;; = 0, decreases
the norm of parameter distortions. The formula (37) shows that for a disturbance
being the MDB;, the decrease in that norm occurs for h;; > 0.5, i.e. when satisfying
the reliability criterion. We may thus conclude that both the appropriately high level
of internal reliability and a good conditionality of a system are advantageous for
external reliability.

In spite of the approximate character of the formulas (35), (36) or (37) when
applied for systems with 6., # Omax, W€ may, without a further loss of accuracy,

analyze the impact of internal reliability level h;; upon HAX(B )“ with respect to that
upon HAx(l)” We shall therefore compare the following influencing factors appearing
in the formulas (29), (35) and (36), respectively

/ 1
Nay = o due to MDB;; n, =+/1-h;; ., due to the structure of A,
1

/ 1
Nay =Ng) N = o —1, due to the joint influence
ii

The corresponding graphs are shown in Fig. 3. It is only within the interval
0.5 <h;; <1, that the joint influence of internal reliability upon “Ai(Bi )“ is advantageous
(M2 < 1), and the greater are the values of hy;, the greater is the reduction in Afi(Bi) .
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Fig. 3. Relibility-dependent factors influencing the norm of parameter distortions

For the models (1b) with S # S, the formula analogous to (27) takes the form
AXg = (ATA);A" - Ay (38)

and, after applying the SVD of the factors and carrying out several matrix operations
(see appendix B), we get

A%,

=|oviv.) e Uy (39)

where V, and V., are the matrices of active eigenvectors of ATA and (ATA);
respectively.

Comparing the formulas (39) and (32), we can see that the factor (VrTV*’r )71
reflects the influence of the constraints used. For S = S, we get V'V, =1, and (39)
becomes identical with (32).

Finally, since HA)"((S)H > ||A§(
Appendix C)

, where AX is as in (27), we obtain the inequality (see

A%,

> U7 - ay| (40)

By noticing structural analogy in the formulas (39) and (32), we get a link between
the analyses of external reliability for the systems 1b) and 1a). The analogy enables us
to follow in the analyses of the systems 1b) a final general conclusion drawn for the
systems la), that the better the internal reliability and the conditionality of a system,
the smaller is the norm of parameter distortions induced by observation disturbances.
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The relations between the analyzed concepts, shown by indicating the involved
SVD components of the design matrix A, are presented on a scheme in Fig. 4. The
scheme takes into account that the external reliability can be expressed either in terms
of the vector of parameter distortions (U,6V,') or in terms of the 2-norm of this
vector (U, 6).

internal reliability conditionality
H ] k(A”)
T
{ A=U,6:V; ]
1 1
HA’A‘” or ”A’A‘(S) P A AX or A,

external reliability

Fig. 4. Links between the concepts of external reliability, internal reliability
and conditionality of a system

6. Numerical examples

Example 1. For a given design matrix A (3x2) of full rank, find a matrix equivalent
to A with respect to internal reliability, having equal singular values and a matrix
equivalent to A with respect to conditionality, obtained with the use of an arbitrary
orthogonal transformation matrix. Make a graphical presentation of the systems
generated by the 3 matrices.

We get for this matrix:

0.58088 —0.78464 -0.21662 | |2.43243 0
A = UXVT=|0.55306 0.18519 0.81230 |-| © 0.075916 |- 073626 =0.67670
’ ’ ) ' 0.67670  0.73626
0.59724 0.59165 —0.54153 0 0

(left active singular vectors are marked in bold); pseudo-condition“number
k(A®) = k(A") = 13.2; indices of internal reliability: h;; = 0.047; h,, = 0.660;
h33 = 0293
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Solution

Option 1. Assuming 65 = I,, Vg = I, we get on the basis of formula (25) (for » = u)
the following transformation matrix Gy

G.= Vo' [0.73626 0.67670} [2.43243 0 }1 [0.30269 8.91375}
A: = . =

—-0.67670 0.73626 0 0.075916 —0.27820 9.69839

and hence,

0.58088 —0.78464
A(1) =AG,= |0.55306 0.18519
0.59724  0.59165

which, according to formula (25), is a matrix of left active singular vectors of the
initial matrix A, i.e. U,. Due to the assumptions, we have k(A('l)) =1.

Applying the formula (17) we get the reliability indices, being the same as those
for the initial matrix A.

Option 2. Assuming an arbitrary orthogonal matrix K, we transform A as in (26), i.e.

0.83391 0.01562 -0.55168 || 1 -1 0.24267 —0.32386
2= KA = |-0.15162 096762 -0.20180| 1 —0.9 [=]|0.59403 -0.52753
0.53067 0.25193 0.80927 | 1.1 -0.95 1.67280 -1.52621

A

We can readily check that the resulting matrix A, is conditionality-equivalent to
the initial matrix A, i.e. k(A('z)) = 13.2, but of different internal reliability (h;; =0.017;
h,, = 0.861; hsy3 = 0.122).

Graphical presentation of the results is given in Fig. 5. For each of the analyzed
cases an ellipse representing (ATA)"! and the gradients of positional lines are shown.

a) b) c)
X1 X1 X1
Z
7 74
. //// =+ ////
L //// 1:50 1 as ///// 1:50
& 0 e XY 7
7 3y ER a1 7
7 X 1 x 7 Xo
o 2 2 o
Vo /7
27 77
27 7
/4 /A
Y Y

Fig. 5. Graphical presentation of the results: a) initial matrix, b) a matrix reliability—equivalent to that
in a), a matrix, conditionality-equivalent to that in a); (major axis in a) and c) is shown at scale 1:50)
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As could be expected, both the lengths and the orientation of the gradients in the
case b) vary considerably from those in the case a). The lengths of the gradients in c)
vary considerably from those in a), whereas their orientation is roughly maintained.

Example 2. For a given matrix A (6x5) of incomplete rank (r = 4), being a design
matrix for a simple local levelling network,

-1 1 0 0 0
0 -1 1 0 0

A—| O -1 1 0
0 0 0 -1 1
10 0 0 -1

0 -1 0 0 1|

and the following options of coefficient matrices S (S # S,) in constraint equations as
in a system (1b), i.e.

S=f1t11o; s=f1ooo; S=oooo,

find the nonzero eigenvalues and pseudo-conditionnumbers for a system la) and
a system 1b).

Solution

For a system 1a)
A, =4.618; A, =3.618; A, =2.382; A, =1.382; k(A®) =k(A")=0.85
For a system 1b)
To verify the property A;(A'A)g >A;(A"A)" and hence k(Ag)>k(A") (see

Appendix B), we precede the eigenvalues of (A" A)g with those of (ATA)*, denoted
by A, and A, respectively:

A =0.724; A =0420; AT =0.276; A} =0.216; k(A*) = 0.85
A, =0.734; A, =0.443; A, =0302; A, =0232; k(A5,) = 0.86
A =1.456; L, =0.446; A, =0281; A, =0.250; k(Ag,) = 1.21

A =4217; X, =2.618; X,=0420; A, =0.382; k(Ag,) = 2.05
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The above listing of eigenvalues and the corresponding pseudo-conditionnumbers
verifies the property in Appendix B.

7. Conclusions

The SVD of the design matrix proved to be useful in seeking the relationships between
the measures of internal reliability, external reliability and conditionality of GM models
with uncorrelated observations. The analysis concerning the model conditionality had
to be based on a substitute measure called pseudo-condition”number, developed in
this paper for inconsistent systems of linear equations.

And so, the following properties of GM models with respect to interrelations
between the above mentioned concepts could be established, covering both the case
of the full-rank and the rank-deficient design matrices:

- the concepts of internal response-based reliability and conditionality of a model
are not interrelated. Hence, in the design of observation systems each feature can
be considered independently of each other. The design operations such as adding
or removing observations change both the features, so the lack of interrelation
between these features does not seem to offer advantage for the design process, at
least at this state of research,

- as could be expected, the external reliability, expressed either as a vector of
parameter distortions (as in Baarda definition) or in the form of the 2-norm of
this vector (as in this paper), depends on both the conditionality and the internal
reliability of a model. The newly derived auxiliary formula for external reliability,
although being exact only for the systems with the design matrices having equal
singular values, contains the measures of internal reliability and the conditionality
in explicit form. It shows in terms of these measures that the appropriately high
level of internal reliability and a good conditionality of a system are advantageous
for external reliability. Such a general conclusion applies also to systems with
minimal constraints on parameters, however the detailed analysis based on the
measures of internal reliability and conditionality did not prove possible for such
systems.

It seems to the present author that research in this area is worth continuing and
should cover the systems with correlated observations. The approach to reliability
measures for the systems with singular both the design matrices and the covariance
matrices as in Wang and Chen (1999), paves the way for further extension of the
research.
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APPENDIX A
Derivation of the formulas (11a) and (11b)

By definition of the 2-norm of the matrix A®, we get

N ENTOUS (41)

Using the equality as below (e.g. Kielbasinski and Schwetlick 1992)

A.

kmax [(A.)TA.]:}"max [A.(A.)T] (42)

we may express (41) in the equivalent form

‘ =y Amax |A°(A')T 43)

Applying (43) for each of the two types of the inverse A®, i.e. A" and Ag, we get
after several operations

A.

=V AT A= Vi aTa) ATATAY =

Al ATA A B (AT = [0 (A

forall A;> 0 or 6; > 0 (43a)

A+

A5~ A5 (A5) 1= Y (A A ATAGA ) | = V(A4
for all % > 0 (43b)

This ends the derivations. m
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APPENDIX B

Derivation of the relationship between the eigenvalues of (A'A); and (A'A)"

Applying to (ATA); a basic property of generalized inverses, i.e.
ATA(ATAATA=ATA (44)

and expressing it in terms of SVD, we shall write

o] . [a, 0] . [a 0] . _[a 0],
\% vy, A% Vi=v \%
00 0 0 00 00

and, since det V # 0
A0 A O A0 A0
V'V, \AAY = (45)
0 0 0 0 00 0 0

Partitioning V and V= as in (4), we get

V.. V., V..V

VTV _ [ VrTV*,r VrTV*,u—r :l

and after substituting it into (45) and considering the < r blocks only, we obtain the
equality

AV!V, LV V=2 (46)

After a simple modification of (46), we get

V'V, LV V. =27 (47)

#1001

where A" = L denotes the matrix of eigenvalues of the pseudo-inverse (ATA)".

The matrix VrTV,‘,r can be expressed with the use of its i,j—th element (Meyer 2000),
as

V'V, = [cos a(vr,i,v*r’j)] Lj=12,...,r (48)

where:

Viis Vij — the column-vectors of V,, Vs respectively,
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o — the angle between the column-vectors v, V.

Applying the simplified notation V'V, = [cij] in (48) and substituting it into (47),
we obtain after carrying out several operations a consistent system of » equations in
unknowns, i.€. As j, As o, ..o, As_

2 2 2 4
CZ by +Chhay ot €y =) (49)

2 2 2 =7
Cohuy H A, ot Co A = A

2 2 2 A+
Coluy ek, +ot ey, =4

where:
Mg >0, A7 >0; 0<ci<I, x¢c/ <, chj <l ij=12,...r
(i*), (¢j) indicate that summation runs in a column or a row of the coefficient matrix,

respectively.

It can be proved that with the limitations for the values of coefficients, the unknowns
and the free terms as listed above, the solution of the system satisfies the inequalities

My 2N, i=1,...r,
excluding A,; =] for all “4” and (M) o = (A7) oy
To verify the appropriateness of excluding the equality (A). = (A )pay, WeE carry

out the reasoning presented below.
Since AX as in (27) is a minimum norm solution, we have for S # S, ”Ai(s)

and hence
HA)’\((S)H N E"A_YAKJ
layl ) \layl),,,,

Taking into account (9) and (43a), (43b) we get

> A%

2

}"max (ATA)g > }"max (ATA)+

which verifies the above exclusion.

Due to (11a) and (11b), we get k(Ag) > k(A™), which ends the derivations. m
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APPENDIX C
Proof for the property (40)
For the systems 1b) we shall write (27) in the form
AX() = (ATA);A"-Ay where S # S, (50)

Expressing the formula (50) in terms of the 2-norm and applying SVD for the
components, we obtain

a3 = AyTAATA) (ATAYAT - Ay

c 0 A 0 A 0 c 0
=Ay'U V'V, V.V, V'V U - Ay

0 0 0 o 0 0 00

Partitioning U, V and V.« as in (4) and carrying out several simple operations, we
obtain

= AY'UGVV, A2V] VeUT - Ay

T

A%,

Taking into account the property (47) and realizing that A =6, we get

[ =AU 6 (VIV) VIV, 6 U] - Ay

and hence

~ 7 T -1 17T :
B[ = VIV, U]y (51)

which, for a system la) where VrTV*’r =1, is consistent with (32).

Using a well known property, that ”Afi(s) > HA’A‘(SO)H for any nonzero vector Ay, we

get on the basis of (32) the inequality

A% > Ho*Uf -Ay”

which proves the property. m
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Badanie zwiazkéw miedzy niezawodnoS$cia wewnetrzna i zewnetrzna a uwarunkowaniem
ukladu w modelach Gaussa-Markova z nieskorelowanymi obserwacjami

Witold Proszynski

Politechnika Warszawska
Wydzial Geodezji i Kartografii
Pl. Politechniki 1, 00-661 Warszawa

Streszczenie

Badany jest zwiazek migdzy niezawodno$ciag wewngtrzng bazujaca na odpowiedziach modelu a uwarun-
kowaniem uktadu dla modeli Gaussa-Markova z obserwacjami nieskorelowanymi. Rozpatrywane sa przy
tym modele z macierzami projektu pelnego i niepetnego rzedu. Wzory wyprowadzone przy uzyciu roz-
ktadu macierzy ze wzglgdu na wartosci szczegolne (SVD) wskazuja wyraznie, ze te dwa badane poj¢cia
sa wzajemnie niezalezne. Przedstawione sa metody konstruowania dla danej macierzy projektu macierzy
rownowaznych pod wzgledem niezawodno$ci wewngtrznej oraz macierzy rownowaznych pod wzgledem
uwarunkowania. Aby umozliwi¢ analiz¢ uwarunkowania modeli GM stanowigcych w ogolnosci uktady
sprzeczne, wyprowadzono pseudo-wskaznik zastgpujacy wskaznik uwarunkowania uktadu powszechnie
stosowany w numerycznej algebrze liniowej. Takze na podstawie rozktadu SVD zaproponowano wzor
okreslajacy niezawodnos$¢ zewngtrzng bazujacy na 2-giej normie wektora znieksztalcen parametréw in-
dukowanych przez minimalny wykrywalny btad w danej obserwacji. Dla uktadéw z jednakowymi nie-
zerowymi warto$ciami szczegolnymi wzor ten moze byé wyrazony poprzez wskaznik niezawodnosci
wewngtrznej oraz pseudo-wskaznik uwarunkowania. Z tymi miarami wystepujacymi w postaci jawnej,
wzor ukazuje, chociaz jedynie dla powyzszych specyficznych uktadow, charakter wptywu niezawodno-
$ci wewnetrznej 1 uwarunkowania modelu na jego niezawodno$¢ zewnetrzng. Dowody uzupetniajacych
wlasnosci dotyczacych pseudo-wskaznika uwarunkowania oraz 2-giej normy wektora znieksztalcen pa-
rametrow w ukladach z minimalnymi ograniczeniami, zamieszczone sg w Dodatkach. Teoria ilustrowana
jest na przyktadach numerycznych.



