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Abstract: The paper describes the estimation of covariance parameters in least squares 
collocation (LSC) by the cross-validation (CV) technique called leave-one-out (LOO). 
Two parameters of Gauss-Markov third order model (GM3) are estimated together 
with a priori noise standard deviation, which contributes signifi cantly to the covariance 
matrix composed of the signal and noise. Numerical tests are performed using large set 
of Bouguer gravity anomalies located in the central part of the U.S. Around 103 000 
gravity stations are available in the selected area. This dataset, together with regular grids 
generated from EGM2008 geopotential model, give an opportunity to work with various 
spatial resolutions of the data and heterogeneous variances of the signal and noise. This 
plays a crucial role in the numerical investigations, because the spatial resolution of the 
gravity data determines the number of gravity details that we may observe and model. 
This establishes a relation between the spatial resolution of the data and the resolution 
of the gravity fi eld model. This relation is inspected in the article and compared to the 
regularization problem occurring frequently in data modeling.

Keywords: gravity anomaly, least squares collocation, leave-one-out, covariance, 
noise

1. Introduction

Least squares collocation (LSC) is a spatial technique used in geodesy and related 
fi elds for estimating values of physical fi eld at the positions, where it is unknown. 
The estimates are based on the measured values in some other individual points of 
the analyzed, spatially correlated fi eld. LSC is used in geodesy for the interpolation 
or the interpolation combined with the transformation between different quantities, 
e.g. different functionals of anomalous gravity potential. This paper investigates the 
interpolation of gravity anomalies by planar LSC, which is a frequent technique used 
with gravity and other geodetic data. A special attention in this paper is put on the 
covariance parameters estimation for the planar covariance model, with particular 
focus on a priori noise standard deviation.
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LSC is applied with the use of the local planar covariance function. Different 
spherical or planar covariance models are often investigated in geoid or gravity fi eld 
modeling (Arabelos and Tscherning, 2003; Forsberg, 1987), however quite simple one 
is selected here. It has two parameters and is easy in the investigation of the problem. 
This study investigates a local covariance model with typical, local parameters, so that 
the model is in some sense intuitively chosen, as an example. Although the model is 
planar, the planar distance is replaced with spherical. The description and practical 
sense of this replacement is explained in the next section. The estimation of two 
covariance parameters and a priori noise standard deviation is performed by the leave-
one-out (LOO) validation (Arlot and Celisse, 2010; Kohavi, 1995; Kusche and Klees, 
2002). This technique is a cross-validation (CV) technique and the description of its 
current application is provided in the next section. LOO validation is proposed in the 
article despite its time-consuming nature, because this method is very straightforward 
and accurate. The aim of current paper is to fi nd a priori noise standard deviation 
(δn), signal variance (C0) and correlation length (CL) using the smallest RMS of 
misfi t between data and the prediction.

A special attention is focused on a priori noise variance estimation and all 
considerations are compared to the regularization problem, which may be found 
frequently in least squares applications. The regularization method in LSC prediction 
equations is equivalent to Tikhonov regularization (Eshagh and Sjöberg, 2011; Koch 
and Kusche, 2002; Moritz, 1980). Sometimes this technique is also associated with 
the name of D. L. Philips (Rummel et al., 1979; Kotsakis, 2007). The presented 
investigations follow the same mathematical rule and provide some observations 
related to LSC of the correlated, scalar data in 2D space. The problem of the 
regularization is known in geodetic literature for years, usually in the context of 
improperly posed problems. Rummel et al. (1979) apply the regularization to LSC and 
fi nd its signifi cant relation with the number and geographical distribution of the data. 
They also inspect data spacing in the downward continuation problem in the context 
of the regularization. The downward continuation and its regularization are frequently 
investigated together in the geodetic literature (Eshagh and Sjöberg, 2011; Kusche 
and Klees, 2002; Kotsakis, 2007; Jekeli and Garcia, 2002; Xu and Rummel, 1994). 
The applications of Tikhonov regularization in least squares techniques different than 
LSC, refer often to the spatial distribution of the data, which is main subject of this 
work. For example, (Eshagh and Sjöberg, 2011) apply various spatial resolutions and 
noises in the downward continuation of the satellite gravity gradiometry data and 
show their infl uence on the estimation results. Some authors use regularized approach 
to the data combination, which assumes the regularization together with variance 
component estimation (Koch and Kusche, 2002; Xu, 2009). Trojanowicz (2012) 
applies weighting in the quasigeoid modelling using gravity data inversion in a way 
that is close to above mentioned works. 

Returning to implementation of the regularization in the LSC technique, an 
interesting example is provided by Pail et al. (2010), who fi nd Tikhonov regularization 
as suitable for covariance model correction in the combination of the global and local 
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data used in collocation. Arabelos and Tscherning (1998) have applied an increasing 
error variance in the LSC of altimeter data and found that optimum prediction is 
attained with the error variance larger a few times than the measurment error. They 
have also compared fi nite and infi nite functions in LSC and found an advantage of the 
correlated errors in some applications (Arabelos and Tscherning, 1999). This article, 
however, investigates the local function and uncorrelated a priori noise only, because 
these are convenient to handle and present the problem with ease.

The paper focuses on relations between the spatial resolution, actual data noise 
and the regularization factor. The data for the numerical experiment are selected to 
be approximately regular in the horizontal direction and therefore the gravity fi eld 
resolution is individually limited in each of four sets. Strykowski (2000), in turn, 
applies the circular cutoff fi lter to remove some high frequency gravity signal from 
the gravity fi eld model. Such fi lter is approximately equivalent to the assumption of 
some minimal distance limit to the closest point used in LSC. Both operations exclude 
the nearest gravity information from the interpolated model. This rule is applied in 
selection of data for the current LSC study. Some basic knowledge in the fi eld of 
spectral data analysis may be helpful for the understanding of the stated problem, 
because although there is no spectral analysis in the numerical part, the discussion 
on the LSC problems is related with the spectrum of gravity data (Forsberg, 1984; 
Schwarz, 1984).

A very closely related investigation of the simple covariance models may be found 
in Smith and Milbert (1999). They, however, do not use regularization parameter, but 
match assigned noise and misfi t of the prediction in the iterative process. The results 
of the current study may be also inspected this way, because some similar coherency 
will be also visible in the later sections. Marchenko et al. (2003) apply Tikhonov 
regularization parameter to collocation in the same way as it is presented here, but 
avoid time-consuming iterations using its simplifi ed estimation. The current study, 
however, applies iterative LOO to show some details occurring in the process. The 
noise standard deviation is regarded as entire parameter, rather, than the product of 
the noise and regularization factor and this choice will be illustrated in the numerical 
part.

2. Trend removal, LSC and LOO validation

The scalar fi eld of gravity anomalies in 2D plane may be represented by the addition 
of the trend and residuals of the signal (Moritz, 1980; Rao and Toutenburg, 1995):

 rX  (1)

where ∆g is the observed gravity, β includes the vector of unknown trend parameters 
and X is design matrix of the trend. ∆gr represents residual gravity fi eld after the 
subtraction of the long-wavelength signal. Various theoretical assumptions and 
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numerical techniques are used for its derivation. The spherical or ellipsoidal harmonic 
expansion is always regarded as an effi cient method for signal analyses and may 
provide an excellent trend model. Such model constitutes an accurate mathematical 
approximation of the long wavelength signal part, however, simpler models of the 
trend are are often effi cient in the local investigations. Spatially limited areas may 
have similar representations of the long-wavelength part from harmonic expansion, as 
well as from the simple polynomial trend. Moreover, polynomial trend or even mean 
subtraction may be suffi cient for some purposes. Various trend orders are often used 
in practice (Kryński and Łyszkowicz, 2006; Osada et al., 2005). The second order 
polynomial trend is applied in this paper, because this is found as suffi cient to attain 
graphically acceptable normal distribution of the residuals and no evident bias. The 
matrix X used for detrending of the data reads:

  

nnnnnn
22

22

X , (2)

where n is the number of the observations. This form of the trend depends on the 
spatial data distribution and is in many cases suffi cient to obtain residuals representing 
approximately normal distribution. The trend removal is performed using orthogonal 
projection:

 r . (3)

The creation of the Λ is based on singular value decomposition (SVD) of some 
combination of X, i.e. UΣVT of the square block matrix [X:0] is realized where 0 
is a matrix of zeros with dimensions n × (n-p) (Golub and Van Loan, 1989; Rao and 
Toutenburg, 1995). Assuming U to be composed of [U1:U2], U2 with dimensions 
n × (n-p) is used to construct Λ as follows:

 T
2U  . (4)

V is the unitary matrix, as well as U and both are orthogonal for real numbers in X. 
Σ is the diagonal matrix with singular values in main diagonal. The obtained matrix Λ 
meets the conditions:

  . (5)

and

 IT  . (6)
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We know from Eq. (4) that the number of detrended data is n-p now and we lose 
fi rst p points from the dataset. This number has no signifi cance in terms of accuracy 
since all used sets have almost 300 points. Then the residuals can be computed using 
Eq. (3). The LSC equation for detrended gravity data reads:

 rTr
~

DCC , (7)

where 
~

r is predicted vector of residuals. C is the covariance matrix of the 
residuals, CP is the covariance matrix between the predicted points and the data and 
D represents noise covariance matrix. We investigate a case, when average a priori 
noise is homogeneous and uncorrelated, i.e.:

 nn ID 2
 , (8)

where δn represents a priori noise standard deviation and is equal for all points. 
Regularized LSC equation in the case, when error covariance matrix needs a factor α 
to attain CV minimum will be:

 rTr
~

DCC  . (9)

The factor α is usually selected empirically, because it is dependent on the local data 
sample. Some methods of its derivation are described in the literature given in the 
previous section. This work, however, does not attempt to estimate α, but D matrix 
with a priori noise.

The choice of the covariance model is arbitrary in some sense, but it is based on 
the frequent applications of Gauss-Markov third order model (GM3) in the literature 
in geoid (Kavzoglu and Saka, 2005) or gravity interpolation (Moreaux, 2008). GM3 
model is

 
CL

s
CL
s

CL
sCsCLCGM3 00 2

2

 , (10)

where s is replaced by the spherical distance between data points. Although spherical 
distance is a typical variable in the spherical covariance models it is adopted here 
to work as a variable in the planar model (Eq. 10). This combination is applied, 
because no advantage is expected from the cartographic projection, since the area 
of the regional data extends to several degrees. The maximum distance between the 
prediction point and the data that is used in the LSC is 1˚. This implies CL values 
(Figs 3 and 4) that are often used with the planar models (Andersen and Knudsen, 
1998; Smith and Milbert, 1999). Sometimes, a better modeling of the long-wavelength 
signal is considered as an advantage of the spherical models (Arabelos and Tscherning 
1998). However, the long-wavelength signal is correlated at particularly long distances 
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and therefore is not expected to fi nd it in the matrix D, which cannot store correlated 
data parts. On the other hand, the second order trend (Eq. 2) removes much from the 
long-wavelength part. Summarizing, the signal covariance matrix C may be assumed 
as more affected by long-wavelength errors, than D, which holds the uncorrelated part 
that comes from the survey. The variable distance s is therefore calculated using the 
spherical distance formula in Eq. (10), as well as in the empirical covariance function 
(ECF) and s = ψ in the article. GM3 results in the following covariance values for 
the signal:

 
forC

forCLCGM3
C

0

0
 . (11)

The parameters of this or similar covariance models may be estimated by fi tting 
the analytical model into the empirical covariance values calculated in the following 
way:

  (12)

 k

gg
EC

i,j
k

ji

r
j

r
i

jijiji

r|:

|

,

 

where θi = π/2 – φi and ψ is the spherical distance. Calculated values are usually 
grouped using intervals of uniformly increasing spherical distance. It should be noted 
here, that the length of the interval, which may be also treated as the sampling rate, 
plays a signifi cant role in the fi nal shape of ECF and should be consistent with the 
actual resolution of the data.

The collocation formula by Eq. (7) is used in the validation test by LOO. The 
noise standard deviation δn is treated as third parameter of the data covariance matrix 
(C+D). LOO validation rule is quite frequently applied in the literature (Darbeheshti 
and Featherstone, 2009; Kusche and Klees, 2002), but other, similar CV technique may 
be also effi cient. In LOO, the vector 

~
r estimated by Eq. (7) is compared to Δgr via 

computation of the RMS and this is repeated for each set of the covariance parameters. 
The original, residual data vector in the Eq.(7) is always replaced by the vector 

r
 , i.e. the analyzed point i is omitted in the vector Δgr as well as in the matrices 

Cp, C and D. The formula of root mean square (RMS) in LOO (RMSL) may be 
written as:
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RMSL is a measure of prediction precision with the chosen parameter set, therefore 
the smallest RMSL is assumed as indicating the optimum parameter set out of all 
combinations that are tested. This kind of estimation provides optimal δn, which 
is hard to determine by the covariance function fi tting. A posteriori error of the 
prediction, which is strongly related to δn is (Hofmann-Wellenhof and Moritz, 
2005)

 iiiP Cm T2 CDCC  , (14)

assuming, that CPi is a vector representing covariance for one point only.

3. Gravity samples and test assumptions

Gravity data for numerical test originate from the U.S. gravity database, which is 
available at the website of University of Texas at El Paso (Hildenbrand et al., 2002). 
Large, regional area of Bouguer gravity data (around 6˚×9˚) is useful for work with 
various resolutions of the gravity signal. This is an important matter of the current 
LSC test. Although the numerical studies of the covariance parameters by LOO 
are performed solely in the space domain, the horizontal resolution of the data has 
some relation with with the sampling in the frequency domain. The relation of the 
LSC with the actual spectrum of gravity anomalies leads to the discussion on the 
spectral properties of used data. All local data are characterized by specifi c variances 
of the signal at individual resolutions, which may be expressed by their own power 
spectrum (Forsberg 1984). Particular frequencies of sampling that correspond to 
spatial resolutions compose the gravity signal. The global gravity signal, which is 
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also used in this study is nowadays expanded in spherical or ellipsoidal harmonics 
(Hofmann-Wellenhof and Moritz, 2005; Pavlis et al., 2012). 

Gravity anomalies have signifi cant signal variance at lower and higher degrees of 
harmonic expansion, oppositely to geoid, where larger part of the signal is cumulated 
at lower degrees. We may expect some gravity variance at harmonic degrees 
equivalent to the highest possible resolution of the analyzed data and signifi cantly 
larger variances at lower degrees related with the trend in case of set 1, set 2 and set 
3. The trend is here a very rough approximation of the lower frequency signal. The 
rule of its removal is the same for all four sets and therefore particular sets obtain 
different lower limit of the spectrum, due to different sizes. The sampling density is 
completely different for every dataset, which results in the various upper limits of 
the gravity spectrum. The lower limit of the data spectrum is then roughly defi ned by 
the trend surface. The upper limit is related with the spatial resolution and therefore 
sampling rate plays a crucial role in the experiment. Four datasets are sampled from 
the full dataset of gravity anomalies, presented in Fig. 1a. Figure 1b describes the 
sampling scheme and shows four subsets: set 1 - largest with approximate resolution 
0.5˚, set 2 – 0.25˚, set 3 – 0.1˚ and set 4, which covers the smallest area and has 
original resolution of about 0.03˚ (Fig. 1b). The intervals of one degree in north and 
east have different lengths at the current latitude. However, although angularly equal 
sampling may affect accuracy of the fi nal results, it is assumed to be negligible for 
principal fi ndings in the paper. Consequently, the intervals are angularly equal and 
this is convenient in further subsets description.

Fig. 1. Gravity data and scheme of sampling (four datasets)

Simply polynomial trend of the second order (Eq. 2) has been removed separately 
for each set to produce residuals, which represent approximately normal distribution. 
This condition is often used in the assessment of the data samples. The residuals 
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should suffi ciently well represent the assumed distribution if the proper variance and 
covariance values are desired from e.g. ECF estimation. This is checked and shown in 
the Fig. 2. All four sets of the residuals represent graphically acceptable distribution, 
as no bias or signifi cant discontinuity may be found. However, the infl uence of the 
incorrectness in respect to the normal distribution is not known here in numbers.

Fig. 2. Histograms of data residuals and normal distribution curves fi tted

ECFs of the residuals are calculated to provide rough estimates of C0 and 
CL parameters. The GM3 model is graphically fi tted to the estimated empirical 
covariance values neglecting δn. C0 of the residuals may be approximately estimated 
as the covariance at the distance zero. The individual CL parameters are obtained 
from the fi tting of analytical model (Fig. 3). Fitting is a widely used technique in the 
estimation of the covariance parameters (Arabelos and Tscherning, 2003; Darbeheshti 
and Featherstone, 2009; Smith and Milbert, 1999). Some authors use advanced 
analytical fi tting methods, however an important factor is the sampling rate, because 
it may affect the shape of the ECF, especially at shorter distances.
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Fig. 3. ECFs of residuals and approximate fi t of GM3 model

Too dense sampling results in the variations of ECF values at short distances. The 
sampling rate has also a general infl uence on the empirical covariance values. The 
sampling of ECFs for respective sets is different here and dependent on approximate 
data resolution. It should be stressed, that δn is not estimated from Fig. 3. The noise 
is treated as uncorrelated part of the data and it is analyzed only by LOO.

4. Numerical test and discussion

LOO validation of the LSC results is performed with four datasets using different 
ranges of CL and δn parameters, because different ones are expected to be estimated. 
The minimum RMSL indicates the optimal values of covariance parameters CL and 
δn. C0 is constant in this test for one dataset and is based on the residuals variance. 
The LSC process is repeated with different pairs of CL and δn to fi ll assumed grid 
of RMSL values. RMSL is computed by Eq. 13, i.e. by subtracting estimates from 
respective original values. The variable, average a priori error and CL result in RMSL 
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values for particular pairs of parameters. The one of those combinations provides the 
minimum RMSL.

CL optimums based on minimum RMSL in Fig. 4 are close to those from 
fi tting (Fig. 3), although δn was neglected in the fi tting. Some factors affect CL 
approximation by LOO, however a general conclusion may be drawn that LOO 
search of CL values gives close results to those from the GM3 model fi tting. The 
horizontal resolution of the data increases starting from set 1 and ending at set 4. The 
parameter δn, which represents noise standard deviation decreases respectively from 
about 7.5 mGal (Fig. 4a) to 1.0 mGal (Fig. 4d). Set 2 needs intermediate value of 
around 5.5 mGal (Fig. 4b) and set 3 requires 3.0 mGal for minimum RMSL. The δn 
step size in LOO is 0.5 mGal for set 1 and 2, 0.25 for set 3 and 0.05 for set 4. The 

Fig. 4. LOO estimation of CL and δn based on optimal RMSL (C0 is approximated by the residuals 
variance)
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parameters from the regions of small CL or δn are especially inapplicable, because 
RMSL rises rapidly in these places, especially for the lower resolution data (Figs. 
4a-c). This indicates that the spatial resolution or some factors closely related may 
substantially contribute to a priori noise of the data. The fact that the observational 
error is not suffi cient to represent a priori noise was previously observed and reported 
in the literature (Arabelos and Tscherning 1998, Sadiq et al. 2010).

The examples of LSC with optimal CL and δn used are given in the Table 1 
in terms of RMSL and the statistics related to a posteriori error estimate mP. The 
computation with the same C0 and CL, but decreased δn is also provided to show 
an infl uence of too small δn on RMSL and mP. A posteriori error is in some cases 
more sensitive to covariance parameters change, than the result itself. This effect was 
reported before e.g. by Sansó et al. (1999), however RMSL also varies noticeably.

Table 1. RMSL and a posteriori standard deviation (mP) of the predictions with optimal parameters and 
with decreased δn (Eq. 14)

[mGal] δn RMSL Min. mP Mean mP Max. mP

SET 1 (232 points)

C0 = 315 mGal2
CL = 0.330˚

7.50 9.94 5.53 6.09 9.34

1.00 12.17 2.95 3.44 6.23

SET 2 (273 points)

C0 = 115 mGal2
CL = 0.240˚

5.50 6.02 3.55 4.23 6.18

1.00 7.06 1.88 2.48 4.19

SET 3 (259 points)

C0 = 74 mGal2
CL = 0.100˚

3.00 3.41 2.75 3.28 4.91

0.50 3.93 1.80 2.33 4.04

SET 4 (202 points)

C0 = 10 mGal2
CL = 0.024˚

1.00 1.49 0.76 1.23 2.43

0.10 1.74 0.39 0.91 2.36

The estimated δn value is subsequently compared with some spectrum of gravity 
anomaly under some assumption. More precisely, it is necessary to fi nd this part 
of the gravity signal, which is present in the data, however the limited horizontal 
resolution excludes it from the correlated fi eld. The global geopotential model 
EGM2008 is used for this purpose. The maximum spatial resolution in each dataset 
limits the upper signal frequency to the degree, which is approximately equivalent to 
average minimum distance between the neighboring points. Of course, we need quite 
homogeneous horizontal resolution of the data to discuss the problem. The maximum 
harmonic expansion of EGM2008 corresponds to 5’ of the horizontal resolution 
(Pavlis et al., 2012). 5’ is around 0.08333˚, so it is decided to use EGM2008 with 
the smallest grid spacing equal 0.05˚, which does not exceed much the maximum 
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resolution. Three grids of gravity anomalies are calculated online using ICGEM 
website to limited harmonic degree expansion (set 1 – 360, set 2 – 720, set 3 - 1800). 
The limited degrees correspond to the approximate maximum resolutions of the sets 
1, 2 and 3. The gravity residuals are next computed for all three areas, by subtracting 

Fig. 5. Residual gravity from differences between roughly gridded point data and EGM2008 limited to 
degree that corresponds to datasets resolution (samples 1, 2, 3 – horizontal scales are different)
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the degree-limited gravity signal from the grids calculated from all available gravity 
information in the involved point data. The grids of maximum frequency have been 
made by the simple triangulation to keep maximum available gravity information and 
avoid smoothing. EGM2008 grids and residual gravity anomalies are computed using 
different grid spacing for particular sets in order to be graphically representative and 
computationally effi cient i.e.: set 1 – 0.2˚, set 2 – 0.1˚ and set 3 – 0.05˚. The residuals 
for set 4 have been not calculated, since the resolution of set 4 (0.03˚) is maximum 
resolution available in the frame of this work and EGM2008 has also no degrees 
corresponding to 0.03˚. Fig. 5 shows residual gravity signal for the areas of sets 1, 2 
and 3.

The standard deviation of the residuals in Fig. 5 can be compared to the noise 
standard deviation δn, since the correlation of these signal frequencies cannot be 
recognized by the ECF. The sampling of the empirical covariance cannot be much 
smaller than the data resolution, because improper values may occur at small distances, 
due to the insuffi cient number or even lack of data pairs representing small distances. 
LSC cannot fi nd some parts of the signal (Fig. 5) as correlated, since the smallest 
distance used to compute C matrix corresponds to minimum distance between the 
neighboring points. To resume, the signal can be interpolated also between the data 
points, but will be smoothed to the frequency dependent on the data resolution. In 
other words, it’s hard to interpolate the signal at frequency 0.03˚, when the prediction 
point is situated between two data points and 0.25˚ from each one. The optimum 
δn parameter based on RMSL in Fig. 4 is always slightly larger than the standard 
deviations of gravity residuals in Fig. 5. This should be explained in the further 
studies, as the limited resolution may be not only factor that infl uences δn.

Fig. 6. CL and δn for minimum RMSL computed with variable C0 parameter applied to set 3.

The test described above is based on the assumption that C0 in the matrix C 
has to be equal or approximately equal to the residuals variance. This is reasonable, 
since the covariance function should represent actual variance and covariance of the 
residuals. However, in the case of inaccurate removal of the long-wavelength part 
of the signal, some bias from the lower harmonics may affect actual variance. An 
additional test is shown in Fig. 6, where variable C0 is applied to gravity residuals 
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in set 3. CL and δn values are derived in 2D plane in the same way as in Fig. 4, for 
minimum RMSL. This iteration is performed for the set 3 only. Fig. 6 presents CL 
and δn found as optimal at local minimums of RMSL. Some correlation is observed 
between C0 and δn, but CL remains apparently constant in relation to variable C0.

5. Conclusions

Numerical test with large dataset allows for different sampling of surveyed data, which 
may have an unknown, heterogeneous measurement error. LSC of variously spaced 
data reveals large infl uence of the factors related with the data spatial resolution. The 
measurement error is presumably smaller than the estimated δn values, at least in sets 
1, 2 and 3. The values of δn, which enable optimum RMSL, are different for different 
data resolutions. These δn are also very similar to minimum RMSL obtained, which 
additionally emphasizes their advance amongst different δn used. It can be suspected, 
that sparse data (e.g. GNSS/leveling, satellite data from short missions) may require 
taking into account their spectrum and the horizontal or spatial resolution when 
estimating a priori noise variance. These observations lead to the conclusion that if 
the data sampling is corresponding to accuracy or denser, δn may represent indeed 
the survey error. The loss of the accuracy related with the change of δn is smallest 
in Fig. 4d, which may be caused by small data variance at frequency corresponding 
to 0.03˚.

Supplementary test with variable C0 shows scaling effect that exists between C0 
and δn. This suggests fi xing variance of the functional covariance model to have δn 
in its original spatial scale. Some least squares applications however, use normalized 
covariance matrices or normalized semi-variograms. It is obvious then, that the 
parameter representing noise variance will be also scaled and non-comparable with 
the actual noise.

In the future work, the spectral analysis of the local signals should be considered. 
It may be a helpful tool in the assessment of the variance of the higher frequency 
signal, which has no correlation due to the limited horizontal or spatial resolution.
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Streszczenie

Artykuł opisuje estymację parametrów kowariancji w kolokacji najmniejszych kwadratów (LSC) przy 
pomocy techniki kroswalidacji nazywanej leave-one-out (LOO). Wyznaczane są dwa parametry modelu 
Gaussa-Markova trzeciego rzędu (GM3) wraz z odchyleniem standardowym szumu a priori, które ma 
znaczny wpływ na macierz kowariancji złożoną z sygnału i szumu. Testy numeryczne przeprowadzono 
na dużym zbiorze anomalii grawimetrycznych Bouguera z obszaru centralnej części USA. Obszar ten 
mieści około 103000 pomiarów grawimetrycznych. Dane te wraz z regularnymi siatkami wygenerowa-
nymi z modelu geopotencjalnego EGM2008 pozwalają na pracę z różną rozdzielczością przestrzenną 
i różnymi wariancjami sygnału i szumu. Odgrywa to kluczową rolę w badaniach numerycznych, ponie-
waż rozdzielczość przestrzenna danych grawimetrycznych wyznacza liczbę szczegółów pola siły ciężko-
ści, które możemy obserwować i modelować. Oznacza to relację pomiędzy rozdzielczością przestrzenną 
danych i rozdzielczością modelu pola siły ciężkości. Związek ten jest w artykule analizowany i porów-
nywany z problemem regularyzacji, występującym często w modelowaniu danych przestrzennych.


