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Abstract: The paper presents empirical methodology of reducing various kinds of 
observations in geodetic network. A special case of reducing the observation concerns 
cartographic mapping. For numerical illustration and comparison of methods an 
application of the conformal Gauss-Krüger mapping was used. Empirical methods are 
an alternative to the classic differential and multi- stages methods. Numerical benefi ts 
concern in particular very long geodesics, created for example by GNSS vectors. In 
conventional methods the numerical errors of reduction values are signifi cantly dependent 
on the length of the geodesic. The proposed empirical methods do not have this 
unfavorable characteristics. Reduction value is determined as a difference (or especially 
scaled difference) of the corresponding measures of geometric elements (distances, 
angles), wherein these measures are approximated independently in two spaces based on 
the known and corresponding approximate coordinates of the network points. Since in the 
iterative process of the network adjustment, coordinates of the points are systematically 
improved, approximated reductions also converge to certain optimal values.

Keywords: cartographic mapping, reducing of geodetic observations, empirical 
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1. Introduction and formulation of the issues

The problem of reducing observations in geodetic networks can be treated as 
a conversion of observations from a physical measuring space to certain mathematical 
space, where a network adjustment or computation should be realized. Mathematical 
space may be represented, for example, by geodetic (ellipsoidal) coordinates system 
(B, L, H), three-dimensional Cartesian geocentric system (X, Y, Z) or Cartesian system 
(x, y) on the plane of a cartographic mapping. Formulas for all kinds of observational 
reductions (corrections to direct observations) are usually derived as differential 
form of elementary conversions, defi ned with a numerical approximation (see about 
classic ellipsoidal reductions e.g. in Czarnecki, 1994; Szpunar, 1982; Warchałowski, 
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1952; Zakatow, 1976 or classic mapping reductions e.g. in Balcerzak, 1994, 1995; 
Gajderowicz, 2009; Kadaj, 2001). Unfortunately, numerical accuracy of these 
formulas is not always enough in contemporary observation systems, where, next 
to terrestrial observations, there are very long GNSS vectors or pseudo-observations 
(for example, the length and azimuth of the geodesic, ellipsoidal heights differences) 
related to them. Some extreme examples are shown in Section 5.

Empirical methods are presented in this paper as an alternative to conventional 
ways of reducing the observations as they guarantee the highest precision, irrespective 
to the spatial location of points and their mutual distances. The idea of empirical 
methods is that the measures of reductions (observational corrections) are obtained 
as differences between measures of network elements computed in two coordinates 
systems by using approximate coordinates of network points and relationship between 
two systems, known a priori. Furthermore, unlike conventional methods where 
reductions of observations consist of many components (for example for measured 
distances: reduction to a level, reduction on the ellipsoid and on the mapping 
plane), in the empirical methods reduction is a direct (one-step) conversion from the 
observational space to a specifi c mathematical space.

A special case of observational reductions are mapping reductions, used for 
example in the Gauss-Krüger (transverse Mercator) projection. Explicit forms of this 
type of observational reductions are inseparable elements of mapping procedures. 
Unfortunately, they are usually limited in terms of numerical error (truncation of 
Taylor series), thus not suitable for very long geodesics, created from GNSS vectors.
The correspond examples are discussed in Section 5.

Empirical algorithms, exclusively for the mapping reductions, were constructed 
in 2001 (Kadaj, 2001, in Section 5.11) with the use of the procedures of calculating 
length and azimuth of geodesics. The similar ideas and algorithms can be found in 
the new editions of the books: Leick, 2004 – in Section 9.2, Gajderowicz, 2009 – in 
Section 10.9.

This paper presents a generalized approach to empirical methodology of 
observational reductions in geodetic networks, relating to different types of 
geometrical or physical reductions, not only for cartographic mapping. An important 
part of the work was dedicated to the practical verifi cation of the proposed methods 
and their comparison with classic methods (e.g. Balcerzak, 1994, 1995; Czarnecki, 
1994; Gajderowicz, 2009; Szpunar, 1982; Warchałowski, 1952; Zakatow, 1976) .

2. Theoretical grounds of observational reduction in empirical methodology

2.1. General principle

A geodetic network, in general, can be a set of different kinds of observations or 
pseudo-observations (for example, processed from the GNSS vectors), which, through 
appropriate analytical compounds, including reference conditions, stochastic models 
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and adjustment methods, defi ne the position of points in a conventional frame of 
coordinates or in a mathematical space. In specifi c cases it may be, for instance, 
geodetic (ellipsoidal) coordinate system (B, L, h), Cartesian geocentric coordinates 
system (X, Y, Z) or Cartesian system (x, y) based on a cartographic mapping. Direct 
observations defi ning a geodetic network come from the measurement space, different 
to the defi ned mathematical space, not only in terms of geometry or its dimension 
and metric, but also in terms of deformation under the infl uence of physical fi elds of 
the Earth, such as gravity fi eld or atmospheric refraction. This is with geodesy the 
universal knowledge – see e.g. in Czarnecki (1994). Therefore, the problem to reduce 
(mapping, transformation) the observations from the physical measurement space 
to a specifi c mathematical space occurs. In a conventional approach of this issue, 
measurements (observations) are subject to many kinds of observational reductions, 
for instance, a measured slant distance is reduced to horizontal position and then to 
the ellipsoid (reduction due to the ellipsoidal height) and fi nally put on the model of 
cartographic mapping (see e.g. Fig. 1, 2).

In comparison to the classic methodology, in the proposed empirical methodology 
of observational reductions, a direct (one-step) conversion of observation measures 
between two spaces can be realized. For this purpose, the approximate coordinates 
of points are used as they allow to obtain (approximate) independent observation 
measures in two spaces. Based on the difference of approximated measures in both 
spaces and after some non essential scaling, an empirical reduction as a correction of 
original observation measures is fi nally obtained.

Assuming that ΘI is an elementary observation (e.g. a distance, an angle) in 
a measured space of geodetic network, we will reduce the observation to a measure 
ΘII in the mathematical space where an adjustment and calculation of the network 
should be carried out. For this purpose, we need the quantity δΘI-II as a reduction 
of an observation value between two spaces (in here named symbolically: I, II), 
ΘII = ΘI + δΘI-II. The reduction δΘI-II can be calculated using classic explicit form 
(see also in Section 3.1 and 6.1). In general, it is the sum of any components: 
δΘI-II 

(class)
 = δ1 + δ2 + ...  δΘI-II. The proposed empirical methodology leads to the 

direct approximation of a full quantity δΘI–II with use of approximate coordinates 
of network points corresponding in both spaces. Empirical reduction approximates 
corresponding theoretical quantity δΘI-II 

(emp)  δΘI-II and it is particularly defi ned as 
follows.

Let X(0) be the vector containing coordinates of points representing the approximate 
geometric model of a given observation in a network. For example, if the observation 
is a slant distance, the vector X(0) includes approximate coordinates of two points in 
any three-dimensional space. It may be for example a geocentric Cartesian or three-
dimensional topocentric system. The measure ΘI 

(0) of a geometric network element, 
corresponding to the approximate coordinates, as a model of observation ΘI in the 
measurement space, is expressed as a certain (known a priori) function fI :

 I 
(0)  =  fI (X(0) c1, c2, ... )   (1)
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where c1, c2, .... parameters representing physical parameters of measurement space 
relative to an adopted coordinate system (e.g. local components of vertical deviations). 
The counterpart of the vector X(0) in the mathematical space, such as a mapping plane, 
is a vector x(0) obtained by a known a priori transformation (mapping) function F:

 x(0)  =  F (X(0) )  (2)

Now, the measure of the corresponding geometric elements in the defi ned mathematical 
space is denoted as ΘII

(0), using a known function f1I :

 II
(0)  =  fII (x(0) )  (3)

Designating δΘI-II 
(0) = ΘII 

(0) – ΘI 
(0) we defi ne the empirical reduction in two cases:

 

                          I-II 
(0)                             ions                

 I-II 
(emp)  =                                                                              

                           ( I-II 
(0) / I 

(0) )   I       for distances     (5) 
 

Where: ΘI (without upper index) is an initial observation measure and ΘI 
(0) 

corresponding measure computed with approximated point coordinates. Why has 
the form (5) differed since (4)? In case of angles (azimuths, directions) the quantity 
δΘI-II 

(0) is a relative measure (e.g. in radian, if α = s/r = arc / radius the differential 
is δα = δs/r), however in case of distances, the analogue relative measure will be 
δΘI-II 

(0)/ΘI 
(0). Yet, signifi cant inequality between values (5) and (4) can be observed 

in case of short distances and big errors of approximated coordinates. In turn, in 
case of long distances and bounded errors of coordinates, the difference between (4) 
and (5) should be, in principle, numerically not signifi cant, especially if we assume 
that the approximate coordinates of the network points are successively improved in 
the nonlinear iterative process of network computation. For the nonlinear adjustment 
problem of geodetic networks is usually the Gauss – Newton iterative method 
implemented. The theoretical basis to the Gauss-Newton method can be found e.g. 
in Deutsch (1965), Sections 6.3, 6.4 and 7.4. The general theorems for the nonlinear 
optimization problems can be found e.g. in Zangwill (1969).

Of course, natural question about the accuracy of such approximation in 
terms of its maximum error e: |δΘI-II 

(emp) – δΘI-II | ≤ e, dependent on the accuracy 
of the approximate coordinates arises. However, it is known that the adjustment 
of observation and computation of coordinates of network points is a nonlinear 
least squares problem, solved with iterative procedures. In the properly defi ned 
task, the iterative process should be converged to the unknowns estimator x^ of : 
lim(x(k)) = x^, where x(k) is the vector of coordinates of network points in k-th cycle 
of iterative process (Gauss-Newton procedure, characterized by the convergence of 
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square type). Consider now the relationship (2). In typical tasks of observational 
reductions, the function F is at least conditionally invertible (invertible under 
special conditions for the components of the vector coordinates), therefore similar 
convergence for the coordinates in the measurement space lim (X(k)) = X^ should 
occur, where X(k), X^ are, corresponding to x(k), x^, vectors in measurement space. 
Hence, the empirical measurements of reductions defi ned by (4), (5) and (1), (3) can 
be computed as functions of optimal coordinates (vectors x^, X^).

2.2. Empirical reduction limited to the task of a mapping

A special task of an observational reduction is related to the same stage of a cartographic 
mapping. It is, therefore, a situation where the observations in the network are already 
reduced to the ellipsoid and the adjustment of the observations should be realized 
on the mapping plane. Reducing original observations to the ellipsoid means that 
the corresponding geometric elements on the ellipsoid are determined by geodesics: 
lengths of vectors (e.g. as lengths of GNSS vectors) are reduced to the lengths of 
geodesics segments, directional angles of GNSS vectors are mapped in the geodetic 
azimuths, measure angles are defi ned as the angle between the geodesics. We assume 
that for a given mapping of an ellipsoid, coordinate transformation formulas with the 
inverse task are known (are available in the form of practical procedures):

 (x, y) = F(B, L), (B, L) = F–1(x, y). (6)

For numerical examples we will use the application of Gauss-Krüger (transverse 
Mercator) mapping of GRS80 ellipsoid, defi ning Polish cartographic system PL-1992 
(Balcerzak, 1994, 1995) .

Line in a general task, we assume that the approximate coordinates of points 
on the ellipsoid are known. In this case, these are geodetic coordinates (Bi

(0), Li
(0)) 

(i – conventional index of network points), which, by the formula (6) of the mapping, 
provide the appropriate coordinates in a mapping plane (xi

(0), yi
(0)) = F(Bi

(0), Li
(0)). 

Let Θe mean the measure of observation reduced to the ellipsoid. Then, in particular 
to (1),

 Θe
(0) = fe (..., (Bi

(0), Li
(0) ), ... ) (7)

is an approximation measure Θ of a network element, based on the approximate 
coordinates, and also in particular to (3),

 Θm
(0) = fm (..., (xi

(0), yi
(0)), ...) (8)

is an approximation of an observation measure, reduced to the mapping plane.
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Finally, the mapping reductions, according to (4) and (5) express the form:

 
                        e-m

(0)                                          (9)     
e-m  

(emp)  =                                                                              

                         ( e-m
(0) / e

(0) )   e       for distances      (10)   

where Θe is an observation measure reduced to the ellipsoid (see in: Kadaj, 2001, 
p. 49-51 with table in p. 51). In Leick (2004) only the absolute difference has been 
applied for all types of observation, the same as in (9). Obviously, during iterative 
process of network adjustment, the approximate coordinates will be converged to 
some optimal values. This implies also the corresponding corrections for values of 
mapping reductions (9), (10). Based on properties of used cartographic mapping, 
elementary distortion values (in local scale and convergence) change so slowly that 
even a signifi cant point shift on the mapping plane (coordinate errors) does not cause 
measurable changes in distortion parameters that determine value of the observational 
reduction (see e.g. in Doskocz, 2007 ).

3. Reducing measured distances

3.1. Reduction components in the known classic methodology

As an example we will take the reduction of the measured slant distance to the length 
of the corresponding section of a certain mapping plane (Fig. 1). In classic terms, the 
transformation of ds  dm, is composed of several conversions:
• leveling the slant distance at the mean height of section ends, including reduction due 
to atmospheric refraction, meaning transformation ds  do (do – the leveled distance) 
realized by adding appropriate corrections (reduction) δds-o  0: do = ds +δds-o,
• conversion of the leveled distance on the length of the ellipsoid chord: do  dc, 
taking into account the relevant correction (reduction) δdo-c: dc = do + δdo-c,
• conversion of the chord length dc to the length of the corresponding geodesic 
segment dc  de, by adding the correction (reduction) δdc-e > 0: de = dc + δdc -e ,
• transforming geodesic segment de to the length of the section on the mapping plane 
de  dm, by adding the appropriate corrections (reduction) δde-m : dm = de + δde-m.
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ds 
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Fig. 1. Steps of the distance reduction
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Fig. 2. Elements of the distance reduction by the assumption of local approximation of the ellipsoid 
surfacein reference to the sphere model of an average radius of curvature of the ellipsoid

More in detail, the following designations and relationships are related to Fig. 2:
ds = |Ps Qs| – observation,
iP, sQ – offsets of measurement points Ps, Qs in relation to marked points P,Q,
iP = | Ps P | – instrument height, sQ = |Qs Q| – height of the target point,
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HP = |P Pg|, HB = |Q Qg| – normal heights of the marked points,
ζP = |Pg Pe|, ζB = |Qg Qe| – height anomalies (quasi-geoid heights),
hPs = |Ps Pe| = HP+ ζP + iP, hQs = |Qs Qe| = HQ + ζQ + sQ – geodetic (ellipsoidal) 
heights,
ΔhPs-Qs = hQs – hPs = sign(hQs – hPs) . |Q1 Qs| – difference of geodetic heights,
(½) . |ΔhPs-Qs | = |Q1 Qo| = |Ps Po|,
Δw = | Q2 Qs| (the distance of the target point Qs from leveled reference plane with 
the points Ps, Q1),
do = | Po Qo| = |Ps Q2|– leveled distance at the bisecting line of the angle ω and the 
average height, dc, de – length of the chord and arc on the reference surface between 
the projections Pe, Qe of points P, Q.

Let’s focus on the infl uence of the atmospheric refraction on the measured length, 
assuming a rough estimation of its infl uence on trigonometric leveling of territory 
of Poland. As it is known, refraction effect by the height difference determines the 
value of δr = 0.13 . δR, where δR is the infl uence of Earth curvature, δR = d0 

2 / (2 . Rs), 
Rs  –  average radius of curvature of the ellipsoid in the middle of measured distance. 
As a consequence, the radius of curvature r - curve of refraction is approximately 
the value of r = Rs / 0.13 ≈ 49 000 000 m. The difference in the arc of 10 km and 
the corresponding chord will be approx. 0.000017 m, or less than 0.02 mm, which 
means that the value is basically irrelevant. That is why we adopted the length of 
straight line section as an observed value. At present, using the modern measuring 
instruments of type the total-station, the refractions infl uences can be automatically 
eliminated, in function of temperature and atmospheric pressure.

First of all we consider the distance reduction on the reference surface (ellipsoid) 
using classic designs, which take into account already calculated ellipsoid heights of 
points, and hence the heights difference instead of zenith angle. In classic formulation, 
the ellipsoid is replaced by the sphere of an average radius of curvature defi ned with 
Euler’s formula at the midpoint of the line section with the azimuth α: (see e.g. in 
Czarnecki (1994), Section 2.1.3.):

 Rs = [ R M
–1 . cos2(α) + RN

 –1  . sin2(α)]–1 (11)

where R M, RN
 – a principal radii of curvature:

 RM = a (1– e2) / [1– e2 . sin2(B)]3/2, RN = a / [1– e2 . sin2(B)]1/2 , (12)

e2 = (a2 – b2) /a2 (fi rst eccentricity squared ),
 a, b – semi-axes of a reference ellipsoid, B = (BP+BQ) /2 (average geodetic 
latitude),
α – geodetic azimuth.

Full reduction is distributed into elementary components: leveling ds  do, what 
explains precisely Fig. 2, then conversion on the chord and on the arc of sphere: 
do  dc  de (it is also possible the slant distance reducing to geodesic without 
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leveling, see e.g. in Leick, (2004, Section 9.1); Zakatow (1976, Section 80). The fi rst 
reduction (leveling) is expressed in elementary formulas (it results easily with Fig. 2):

              do   =   ds  [1– ( w/ds)2]1/2 = ds  [1– ( h/ds)2]1/2  + dR   =  
          =   ds  –  ds   {1 – [1– ( h/ds)2]1/2 } + dR   = ds  + ds-o       (13) 
              w  = h  cos(            

           ds-o =  – ds  ( h/ds )2   {1 + [1– ( h/ds)2]1/2 }–1  + dR         
                  dR   =  ds  { [1– ( w/ds)2]1/2 – [1– ( h/ds)2]1/2}   ds   [( h2 – w2) / (2  ds

2) ]  
                   =   [ h2 /(2  ds ) ]  (1 – cos2(  /2))  = [ h2 /(2  ds ) ]  sin2(  /2) =  

                         [ h2 /(2  ds ) ]   (ds
2/4 )/Rs

2   =  h2  ds / (8  Rs
2)       

where:
ω – sphere central angle as shown in Fig. 2, 
δdR – correction resulting from the difference between Δw (the heights difference 
in case of the horizontal reference plane) and Δh (the difference of the ellipsoidal 
heights).
The correction δdR, even for very extreme geometrical conditions, e.g. ds = 10 km, 
Δh = 500 m, does not exceed the value of 0.01 mm, and therefore, with respect to the 
possible accuracy of the measurement, is insignifi cant.

We fi nd the corresponding distances: the chord dc and the arc de of the sphere as 
the reference surface:

 dc = do + δdo-c ; δdo-c = – do  . hsr / (Rs+hsr); (14)

where: Rs – average radius of curvature of the ellipsoid (according to (11)), hsr – the 
average height of the ellipsoidal distance measured points), hsr = hPs+ 0.5 . ΔhPs-Qs.

The correction (reduction) to the length of the arc is expressed as follows (see e.g. 
in Zakatow, 1976, Section 80):

δdc-e = de – dc = Rs . ω – 2 . Rs . sin(ω /2) = Rs  . [ω – 2 . sin(ω /2) ] =
≈ Rs  . {ω – 2 . [(ω /2) – (ω /2)3 / 3! + ... ] }≈ Rs . (ω3 / 24) ≈ do

3/(24 . Rs
2)  (15)

(for ω ≈ do /Rs)

This reduction, for various lengths, is presented in Table 1.

Table 1. Reduction of the chord to the length of the arc of the reference surface
d [km] δdc-e [m]

5 0.0001

10 0.0010

20 0.0082

40 0.0657
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The last of the classicly considered distance reductions applies to the conformal 
mapping, e.g. in the Polish national cartographic system PL-1992. For this purpose, 
we use formulas specifi ed for the wide Gauss-Krüger mapping area (Balcerzak, 1994, 
1995).

3.2. Reducing distances in empirical methodology

We can consider, of course, different cases of distance reductions using empirical 
methods. We can group them as follows:

A)  ds  dm : General option, containing all elementary reductions, from slant distance 
to the segment length on the mapping plane.

B)  do  dm : We assume that the initial reduction (leveling slant distance) is executed 
independently, while empirical reducing includes all elementary reductions, up to 
conversion on the mapping plane.

C)  de  dm: Includes only the reduction step from the ellipsoid to the mapping plane.
D)  ds  de : Reducing of the slant distance to the length of the geodesic segment 

on the ellipsoid. Formally includes three elementary reductions: leveling resulting 
in a length do, height reducing resulting in the chord length of the ellipsoid 
do  dc, and the reduction of the chord to the length of the geodesic on the ellipsoid 
dc  de. The described variant may relate to network adjustment on the ellipsoid. 
Then, fi nal coordinates other than geodetic (e.g. mapping system coordinates) are 
obtained by the transformation.

E)  do  de : this case differs from the previous one with the fact that the leveled 
distance is present from the beginning.
Empirical methods allow to realize direct conversion ds  dm. Let us assume 

that the approximate coordinates of the points P, Q are available. Without limiting 
the generality of issues, we can assume geodetic coordinates, P (BP

(0), LP
(0), hP

(0)), 
Q (BQ

(0), LQ
(0), hQ

(0)). If we have the heights of another type (e.g. normal heights), 
they should be transformed into ellipsoidal heights using local model of geoid 
(quasi-geoid). Calculations are made sequentially according to the following steps 
(in distance and reduction signs, network point names and index of the coordinate 
iteration are added – here in initial state):
1. We transform the approximated geodetic coordinates (B(0), L(0), h(0)) of network 
points on the corresponding Cartesian coordinates (X(0), Y(0), Z(0)),

 (BP
(0), LP

(0), hP
(0))  (XP

(0), YP
(0), ZP

(0)) 
 and (BQ

(0), LQ
(0), hQ

(0))  (XQ
(0), YQ

(0), ZQ
(0)) (16)

and then calculate the slant distance

 (d s)PQ
(0)

 = [(XQ
(0)– XP 

(0))2 + (YQ
(0) – YP

(0))2 +(ZQ
(0)

 – ZP
(0))2 ]1/2 (17)
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2. In accordance with known rules of mapping, we fi nd images of points P, Q on the 
plane of mapping

 (BP
(0), LP

(0))  (xP
(0), yP

(0)), (BQ
(0), LQ

(0))  (xQ
(0), yQ

(0)) (18)

and then we fi nd a fl at mapping distance

 (dm)PQ 
(0) = [ (xQ

(0) – xP
(0))2 + (yQ

(0) – yP
(0))]1/2 (19)

3. The expected empirical δds-m 
(emp) correction (reduction) to the measured distance 

ds, dm = ds + δds-m
(emp) (for simplicity we omit points signs):

 δds-m 
(emp) = [( dm

(0) – ds 
(0) ) / ds 

(0) ] . ds (20)

The given example shows how different kinds of conventional methods can 
be replaced by only one empirical reduction. An interesting fact of the empirical 
methodology is that while creating measurement of length on the mapping plane we 
omit determination of the geodesic length on the ellipsoid. In contrast, in the classic 
methodology, we carry out independently all kinds of reductions. Indirectly, after 
corresponding reductions, we get the length of the geodesic segment on the ellipsoid. 
In turn, while performing certain mappings, we move to a straight line segment on 
the plane.

The essential difference between options A), B) and other variants where the initial 
or fi nal coordinate system is geodetic coordinates (ellipsoidal) is that on the ellipsoid, 
length of the geodesic segment is usually considered as the distance between two 
points, while in other systems the Euclidean (Pythagorean) length determines the 
distance between points.

With option C, the empirical reduction (mapping reduction) is calculated using 
differences between the length on the mapping plane (dm)PQ

(0) (compare (19)) and the 
length of the geodesic segment on the ellipsoid:

 (de)PQ
(0) = sPQ

(0) = G1 (BP
(0), LP

(0), BQ
(0), LQ

(0)), (21)

 δde-m 
(emp) = [( dm

(0) – de 
(0) ) / de 

(0) ] . de (22)

(we omit here the point signs) where the function G1 is one of the scalar functions 
for performing inverse primary task of higher geodesy, i.e. determine the length and 
azimuth of geodesic connecting two points on the ellipsoid with known geodetic 
coordinates. The function G1 determine geodesic length and the second function (G2) 
– the starting and ending azimuth of geodesic segment. The empirical reduction for 
option C is in general formed by (9), (10).

Options A), D), will transform elementary tasks of GNSS vectors on a plane 
mapping (A) or ellipsoids (D). We apprehend this issue separately in this study.
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3.3. Numerical example

We are interested in comparing the classic and proposed (empirical) methods in 
various cases of distance reduction, for example, with certain extreme characteristics. 
In addition to the observational data, we assume location data necessary for distance 
reductions, including height anomalies (quasi-geoid height).

The measured slant distance ds = | Ps Qs | = 13273.1496 m between points Ps, 
Qs – Fig. 2. Ps is the mean point of an instrument, and Qs – mean point of the target 
signal (stabilized points, named P, Q). Geometrical quantities characterizing the 
height of points representing an observation are:
–  normal height of marked (stabilized) points (calculated e.g. in the leveling 

trigonometric network with measurement of zenith angles): HP = 422.334 m, 
HQ = 705.641m,

– height of the instrument as a distance | Ps P | = i = 1.420 m,
– height of target signal as a distance | Qs Q | = s = 0.500 m,
–  height anomalies at the points of observation (quasi-geoid heights): ζP,= 38.548 m, 

ζQ = 37.714 m.
Approximate coordinates (cut off to integer values) of the points P, Q in the coordinate 
system PL-1992 (application of Gauss – Krüger mapping, defi ned in Table 2, 
Balcerzak, 1995):

xP = 183317 m, yP = 644767 m,
xQ = 194627 m, yQ = 651695 m,

Based on these location data we calculate, corresponding to the above, approximate 
coordinates in other systems: geodetic (ellipsoidal) and Cartesian geocentric ones. 
Geodetic coordinates B, L are determined from inverse Gauss – Krüger mapping 
in PL-1992 application (Balcerzak, 1995), and ellipsoidal heights using the normal 
height and height anomalies for two points:

hP = HP + i + ζP = 462.302 m, hQ = HQ + s + ζQ = 743.855m.

Geodetic coordinates of points P, Q on the GRS80 ellipsoid are as follows (B, L 
transformed from PL-1992):

BP = 49o 30’ 0.0031027”, LP = 20o 59’ 59.9936134”, hP = 462.302m,
BQ = 49o 36’ 0.0002671”, LQ = 21o 6’ 0.0050081”, hQ = 743.855m,

Afterwards, in accordance with standard conversion algorithms (B, L, h)  (X, Y, Z) 
geocentric Cartesian coordinates are defi ned:

XP = 3874927.46281m, YP = 1487445.15369 m, ZP = 4827208.42911 m,
XQ = 3864599.02185m, YQ = 1491224.76219 m, ZQ = 4834639.11090 m.
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For classic method of observational reductions, numerical parameters are calculated, 
as follows:

B = 49o 33’ 00” = average latitude of geodesic segment;
RM

 = 6372458.3110 m, RN = 6390535.7065m (main radii of curvature of the 
ellipsoid);

α = 36.67887 [g ] = azimuth of geodesic segment;
R = 6377813.1051m= average radius of curvature in the normal section of the 

ellipsoid in the azimuth α, a = 6378137.0 m = semi–major axis; e2 = 0.00669438002290 
= fi rst eccentricity squared as GRS80 ellipsoid parameters (Moritz, 2000);
Full reduction is divided into elementary operations: leveled distance ds  do, what 
explains precisely Fig. 2, conversion on the chord and arc of the reference surface 
do  dc  de and mapping de  dm .

In the next step, we fi nd the distances: dc (chord) and de (arc) on the reference 
surface. After substituting into the formula (18) the respective numerical values, 
Rs = 6377813.1051m, hsr = hPs + 0.5 . ΔhPs-Qs = 462.3019 + 140.7767 = 603.0786m, 
we get: δdo-c = –1.2547m and dc = 13268.9084 m. Reducing the chord dc on the 
length of arc, according to (15), gives de = 13268.9108 m.

Empirical reductions enable to calculate scaled difference between measured 
distances in different confi gurations, designated on the basis of approximate 
coordinates. It is important that the coordinates taken in various systems derived from 
the precise transformation of the same data (coordinates) can be assumed with some 
errors (for example rounded to 1 m).

From the approximate geocentric coordinates we determine ds
(o)= 13272.3217 m 

while from corresponding geodetic coordinates de
(0) = 13268.0827m. Reduction value 

obtained by empirical method is δds-e
(0) =  – 4.2393 m.

The last of the conventional distance reductions applies to the cartographic 
mapping. For this purpose we use formulas specifi ed for the wide area Gauss-Krüger 
mapping (Balcerzak, 1994, 1995). As a result we obtain: δde-m = –5.7077m. It differs 
of approx. 2.7 mm to the corresponding value of the resulting empirical method (see. 
Table 2).

In empirical methodology, the conversion can be executed in one stage. For 
illustrative purposes and controls we show reductions and observational conversion 
in three variants:
a) the measured slant distance onto an ellipsoid arc,
   δds-e

(0) = [(13268.0827 – 13272.3217) / 13272.3217] . 13273.1496 = –4.2393m
b) the ellipsoid arc onto a mapping plane,
    δde-m

(0) = [(13262.3778 – 13268.0827) / 13268.0827] . 13268.9103 = –5.7053m
c) the measured slant distance directly on the mapping plane,
δds-m

(0) = [(13262.3778 – 13272.3217) / 13272.3217] . 13273.1496 = –9.9445m
Naturally, the last reduction should be equal to the sum of the fi rst two reductions. 

An important feature of the last reduction is that it does not require an intermediate 
passage through the geodesic. The reduction is simply the scaled difference between 
the measures of length in two spaces, designated by approximate coordinates.
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4. Mapping reductions of geodesic azimuth

The azimuth as well the length of a geodesic segment (considered in the previous 
Section) may result from the conversion of the Cartesian GNSS vector (see e.g. Kadaj, 
1997, 1998 – Section 3.6.5). Classic reduction of geodesic azimuth to the direction 
angle (azimuth topographic) T on the mapping plane is made of two components 
(Fig. 3): γ – convergence and curvilinear reducing δk (the difference between direction 
of the chord and the tangent to the mapped geodesic arc on the plane):

 TPQ = αPQ – γP + δkPQ = αPQ + δαPQ;  (23)

where δαPQ = – γP + δkPQ is the total reduction of the geodesic azimuth. Above, only 
the point name (P) is assigned to the convergence value, assuming, a conformal 
mapping, typical in geodesy applications (then the convergence is constant at a given 
point).

P 

TPQ 

PQ 

kPQ 

x 

P 
Q

Fig. 3. Geodesic and topographic azimuth

The classic approach of the azimuth reduction by conformal mapping therefore 
require a separate designation of convergence and reduction of direction. These two 
components are essential elements of any cartographic mapping, determined by means 
of appropriate differentials formulas.

Empirical methodology leads to, similarly as distance reductions, to determination 
of the overall reduction based on the models (measurement approximations) of azimuths 
(geodetic and topographic) determined on the basis of approximate coordinates:

 αPQ
(0) = G2 (BP

(0), LP
(0), BQ

(0), LQ
(0)) (24)

(here G2 is a function determining initial azimuth of the geodesic segment on the 
ellipsoid)

 TPQ 
(0) = Arg ( zPQ ) ; zPQ = (xQ

(0) – xP
(0)) + i . (yQ

(0) – yP
(0)); (25)
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(argument of a complex number as the directional angle of the vector PQ on the 
mapping plane),

 δαPQ 
(0) = TPQ

(0) – αPQ
(0) (26)

where the cartographic and geodetic coordinates are in unambiguous relation:

 (BP
(0), LP

(0))  (xP
(0), xP

(0)); (BQ
(0), LQ

(0))  (yQ
(0), yQ

(0)).

5. Numerical test for empirical method of the mapping reductions on the 
example of the geodesic vectors created from GNSS- vectors, by the application 
of the Gauss-Krüger mapping

A set of 10 points located on the ellipsoid GRS80 they way that the distance of 
consecutive points from the point 1 were increasing from 2 to approx. 523 km was 
adopted. For further pairs of points 1-2, 1-3, 1-4, ..., 1-10 independent lengths and 
azimuths of geodesic were determined. Next, we calculated the reduction of vectors 
mapping to the system PL-1992 (Gauss – Krüger mapping with axial meridian 
λ o =19o and scale on the axial meridian m = 0.9993), using two methods, conventional 
one – according to the formulas PL-1992 (Balcerzak, 1995 ) and empirical one, 
described in this paper.

Table 3 summarizes data, and in Table 4 mapping reductions are calculated by 
two methods. The symbol [1] refers to the classic method based on application of 
analytical (classic) models for reduction, while the symbol [2] describes in this 
paper empirical method. For the above mentioned two methods reductions both 
for distances and azimuths of geodesics were calculated. In columns marked with 
“numeric error of [1]” there are the differences of given reductions in both methods. 
As it turned out, these differences are at the same time numerical errors of classic 
methods, as it can be easily verifi ed what should be measurements of correct pseudo-
observations calculated by the Cartesian coordinates (with Tab. 4) on the mapping 
plane. These measures are exactly equal (with an error of rounding the last digit) to 
values   (corrections) calculated using empirical method. Based on these results it can 
be concluded that the reduction values obtained with use of classic analytical methods 
for long GNSS vectors (vectors after transformation into a geodesic) can be defl ected 
by signifi cant numerical error.

For vectors with a length of approx. 2 km a numerical error of approx. 1 mm is 
marked in a reduction in length, what may have a meaning in practice, e.g. in precise 
realization networks. For vectors with a length of approx. 20 km numerical errors of 
lateral and longitudinal vectors already have signifi cant value of 1-2 cm. In practice, 
the distances between points of geodetic network can be also greater than 20 km.

In this paper we do not deal with a matter of choice of the method of a network 
calculation. We do present safe alternative to the method of calculating observational 
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reductions (pseudo-observation), especially for the cartographic mapping. We also 
show that the classic (analytical) methods of determining these reductions for long 
observation vectors are subject to signifi cant numerical errors. The presented empirical 
methods are free from such errors.

6. Reducing directions or angles

6.1. Classic and empirical methods – general comparative aspects

Reducing angles, for instance from physical measurement space to the ellipsoid 
surface or on a mapping plane, may be treated as the difference of corresponding 
reduction types for two directions of the angle arms. Reduction of direction as n 
original observation, consists of several components (the forms can be found in 
textbooks of higher geodesy, e.g. in: Czarnecki, 1994; Szpunar, 1982; Warchałowski, 
1952) :

 directional or azimuth reduction due to the vertical deviation from the ellipsoid:

 δkg = [ η ∙ cos(α) – ξ ∙ sin(α) ] ∙ ctg(z) (27)

(analogous component is used in reduction of astronomical azimuth on the Laplace 
azimuth, but then the component is added due to deviation of meridian plane 
– η ∙ tg(B), which is eliminated as independent from directions in angular reduction);

 reduction due to ellipsoidal height of the target point:

 δkh  [e’2 ∙ h /(2∙ RN)] ∙ cos2(B) ∙ sin(2∙ α); (28)

 reduction due to angular deviation of the geodesic from the normal section of the 
ellipsoid:

 δke   – [e2 ∙ s2 / (12∙ RN
2)] ∙ cos2(B) ∙ sin(2∙ α), (29)

where:
ξ, η – components of vertical defl ections,
e, e’ – fi rst and second eccentricities of the ellipsoid: e2= (a2 – b2)/a2, e’2= (a2 – b2)/b2

a, b – semi-axes of a reference ellipsoid,
RN – radius of curvature of the prime vertical in the station position (defi ned in (12)),
B – geodetic latitude of station positions,
h – ellipsoidal height for the marked target point,
s, α – length and azimuth of the geodesic.
The quantities (28) and (29) are expressed in radians and (27) in units of components 
ξ, η.
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Additionally, when applying cartographic mapping, corresponding directional 
reduction δkm (reducing the geodesic to the chord on the plane) is taken into account. 
This value defi nes the formula of a mapping – in the examples we use the Gauss-
Krüger conformal mapping.

s 

space of observations 

m 

space of a net adjustment, 
for example the plane of a mapping  

P 

S 

Q 

S’ 

P’ 

Q’ g 

SP 

SQ 
N 

Fig. 4. Conversion of the angle to the mapping plane

Introducing the point names P, S, Q in the angle designation (target left, the 
station, the target right) as an element of a geodetic network (Fig. 4), we create the 
angle reduction as the difference of appropriate directional reductions

 δβ(.) (P,S,Q) = δk(.) (S, Q) – δk(.) (S,P), (30)

where the symbol (.) replaces conventional designation of the reduction.
Afterwards, we are considering empirical methodology to reduce the observation 

angle in particular. As we know from general considerations included in p. 2, the 
observational reduction of any kind consists on the direct transformation from 
measurement space to a mathematical space, where the network adjustment, based on 
the approximation of the observation measures in two spaces, is made with the use of 
the approximation coordinates. As a result, empirical reduction is determined by the 
difference of these measures.

Let us consider the situation of the measured angle on the surface of Earth 
(Fig. 4), and its image on the mapping plane. The same as with distance reductions, we 
arrange major variants of angle reductions (index points were omitted for simplicity):
A)  βs  βm : a variant which includes all elementary reductions from the measured 

angle to the angle reduced to the mapping plane.
B)  βs  βe : Reduction of measured angle only on the reference ellipsoid (e.g. to 

network adjustment on the ellipsoid).
C)  βe  βm : Variant represents only reduction of the angle mapping, i.e. the conversion 

from the ellipsoid on a mapping plane.
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6.2. Formulas of empirical methodology

Directional observations can be considered as readings on the horizontal circle 
(protractor) of theodolite at a random zero position. In this case we can also assume 
that zero coincides with any direction (we often tell that the directions are reduced 
to the initial). Then the readings in other directions will be single angles measured in 
relation to the adopted target. Therefore, the reduction of directions can be brought to 
reductions of angles.

Another problem are functional and stochastic models in a process adjusting 
networks with directional observations. In the traditional models and adjustment 
methods for horizontals geodetic networks, each subset of directional observations 
introduces one additional unknown to the observational system – an orientation 
parameter (as the azimuth of zero-reading on protractor). The orientation parameters 
(so-called nuisance parameters) can be eliminated, creating the angles as differences 
of directions. There is a combination of those pseudo-observations (angles set) that 
leads to the identical adjustment results as in the original system by the application 
of least squares solution. It is so-called Schreiber’s set of angles (see: Kadaj, 2008). 
In this case the problems of reduction of directional observations lead equivalently to 
the reduction of angles.

ellipsoid 

topo-surface N 

g 
geoid  

Fig. 5. The normal vector of the ellipsoid and the vector of gravity

Just like with any use of empirical methods we assume that the known approximate 
coordinates of the points defi ning the geometric element, as well as parameters for 
measuring the physical space to bind with a specifi c mathematical space. Let us, 
for example, assume approximate geodetic coordinates (BS

(0), LS
(0), hS

(0)), (BP
(0), 

LP
(0), hP

(0)), (BQ
(0), LQ

(0), hQ
(0)) of three points defi ning the geometric element of the 

measured angle (Fig. 4) and vertical deviation component (ξ, η) at the point position 
as a local physical feature of a measuring space (Fig. 5).

Approximate geodetic coordinates can be converted to the corresponding 
geocentric Cartesian coordinates (XS

(0), YS
(0), ZS

(0)), (XP
(0), YP

(0), ZP
(0)), 

(XQ
(0), YQ

(0), ZQ
(0)). In Cartesian geocentric coordinates – we can also specify the 

vector parallel to the vertical one at the point position – we denote it as follows: 
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g = [gx, gy, gz]T. This vector will be calculated using the known relation between the 
topocentric system specifi ed on the surface of the ellipsoid at the point of coordinates 
(B, L) (we substitute the appropriate coordinates of the station), and the geocentric 
system:

 g = U ∙ z  (31)

where  

 
             – sin(B)  cos(L)   –sin(L)    cos(B)  cos(L)   
U   =    – sin(B)  sin(L)     cos(L)     cos(B)  sin(L)   
                       cos(B)             0                  sin(B)        

 (32)

is orthonormal rotation matrix (see e.g. Thomson (1976, Section 2.1.3) and Kadaj 
(2001, Section 4.3)):

 UT ∙ U = I (unit matrix) => U–1 = UT => z = UT∙ g,  (33)

however, z is the unit vector with components created by vertical deviation components 
(Fig. 6):

z = [u, v, w]T ;
u =  c ∙ tg(ξ ), v =  c ∙ tg(η), w = c, c = 1/sqrt [tg2(ξ ) + tg2(η ) + 1]. (34)

From the properties (36) of the transformation (34) it can be concluded that the 
resultant vector g of the vertical direction as well as the vector z are both unit vectors, 
i.e. gx

2+ gy
2+ gz

2 =1.

North  

East  

– g   vertical vector 
normal            N 
vector  
of ellipsoid 
  

Fig. 6. Components of vertical deviations in a topocentric system

The obtained components of the vector g can be easily verifi ed, by calculating 
the angle Θ between the vector g, and the ellipsoid normal vector N at the station 
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position (Fig. 5). This angle should be near to the value (only for small angles) 
sqrt(ξ2 + η2). Previously, we determine the normal vector N normalizing it to the unit 
length (n vector);

N = (Nx, Ny, Nz) = (1/2) ∙ a∙ (2∙Xe / a2, 2∙Ye /a2, 2∙ Ze /b2 ) = (Xe /a, Ye /a, Ze ∙ a /b2); (35)

 n = N / |N|; |N | = (Nx
2+Ny

2+Nz
2)1/2 (36)

where Xe, Ye, Ze – orthogonal projected coordinates of the station on the ellipsoid, 
resulting from the conversion of approximate geodetic positions (B(0), L(0), 0) => (Xe, 
Ye, Ze). The angle between the indicated vectors (these are the unit vectors) will be 
calculated, e.g. by the scalar product:

 Θ = arccos [– (n  g)] (37)

(  symbol of the scalar product).

Now we can easily obtain an approximation of the angle measurement in the 
measurement space as the dihedral angle between two vertical planes, intersecting 
along the edge parallel to the vector g. The angle between the planes replace the angle 
between the normal vectors of planes. Thus, we determine the normal vectors of 
respective planes fi rst – in any case, as the vector product of a vector g and a vector 
formed from the respective coordinate differences (vector lying in the vertical plane):

wSP = SP  g = ((XP
(0) – XS

(0)), (YP
(0) – YS

(0)), (ZP
(0) – ZS

(0)))  (gx, gy, gz) =
= (((YP

(0) – YS
(0)) ∙ gz – (ZP

(0) – ZS
(0)) ∙ gy),

– ((XP
(0) – XS

(0)) ∙ gz + (ZP
(0) – ZS

(0)) ∙ gx),
((XP

(0) – XS
(0)) ∙ gy – (YP

(0) – YS
(0)) ∙ gx))      (38)

wSQ = SQ  g = ((XQ
(0) – XS

(0)), (YQ
(0) – YS

(0)), (ZQ
(0) – ZS

(0)))  (gx, gy, gz) =
= (((YQ

(0) – YS
(0)) ∙ gz – (ZQ

(0) – ZS
(0)) ∙ gy ),

– ((XQ
(0) – XS

(0)) ∙ gz + (ZQ
(0) – ZS

(0)) ∙ gx ),
((XQ

(0) – XS
(0)) ∙ gy – (YQ

(0) – YS
(0)) ∙ gx ))     (39)

 – symbol of the vectorial product) wSP , wSQ denote normal vectors of vertical 
planes, SP, SQ are the vectors created respectively of the coordinates differences. 
As a result, the angle between the normal vectors can be determined from the scalar 
product:

 (βs)PSQ
(0) = arccos (wSP  wSQ / (|wSP| ∙ |wSQ|) ) (40)
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Depending on the destination system of the angle transformation (ellipsoid or 
mapping plane), according to the options presented in Section 5.1., we determine 
a corresponding approximate measure for the transformed angle. In the case of 
an ellipsoid, we use the algorithms, based on tasks of higher geodesy, calculating 
azimuths for two geodesic (some numerical methods can be found e.g. in Czarnecki, 
1994; Szpunar, 1982; Zakatow, 1976). Then, the measure of the angle is expressed as

(βe)PSQ
(0) = αSQ

(0) – αSP
(0) = G2 (BS

(0), LS
(0), BQ

(0), LQ
(0)) – G2 (BS

(0), LS
(0), BQ

(0), LQ
(0)) 

           (41)

(βm)PSQ
(0) = TSQ

(0) – TSP
(0) = Arg[(xQ – xS) + i∙ (yQ – yS)] – Arg[(xP – xS) + i∙ (yP – yS)]  

           (42)

where Tjk
(0), Tji

(0) – directional angle of vectors SQ, SP on the mapping plane as 
the arguments of the corresponding complex coordinates – we count them with the 
coordinates of the points obtained from the transformations resulting from the adopted 
mapping system:

 (B(.)
(0), L(.)

(0) ) => (x(.)
(0), y(.)

(0) ), (43)

where the symbol (.) replaces points names: P, S, Q.
For individual variants A), B), C), included in Section 6.1 empirical values of 

angle reduction will be:

(δβs-m)PSQ
(0) = (βm)PSQ 

(0) – (βs)PSQ 
(0) and (βm)PSQ

(obs) = (βs)PSQ
(obs) + (δβs-m)PSQ

(0) (A)
(δβs-e)PSQ

(0) = (βe)PSQ
(0) – (βs)PSQ

(0) and (βe)PSQ
(obs) = (βs)PSQ

(obs) + (δβs-e)PSQ
(0) (B)

(δβe-m)PSQ
(0) = (βm)PSQ

(0) – (βe)PSQ
(0) and (βm)PSQ

(obs) = (βe)PSQ
(obs) + (δβe-m)PSQ

(0) (C)     

(symbol „(obs)“ means that the appropriate measure is the observation angle or its 
reduced value, while the symbol „(0)“ – as it has already been explained, means the 
empirical measure, determined using the approximate coordinates).

6. 3. Numerical example of reductions of angles

Just like in Section 3.3, we assume the approximate coordinates (Cartesian 
– geocentric) for three points defi ning a model of angle in observational space. In 
order to implement the observational reduction (target: to the ellipsoid or onto the 
plane of a mapping), we accept additional elements representing the gravity fi eld: 
the vertical deviation component at the point position and height anomalies (quasi-
geoid height) on all three points. The input data and calculation results are shown in 
Table 5.
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As we can see from the description of the table, the classic reduction was 
determined as multi step reductions and the empirical method is shown in three 
different cases. Indirect empirical reductions (consisting of 4 or 2 components) are 
presented for testing and comparison with the classic methodology. In any case, 
empirical method allows direct conversion of an observation from the measurement 
space to a specifi c target system. If this transformation is supposed to take place on 
the mapping plane, going through the procedure of geodesic calculating is omitted. 
This is the essential difference to the classic principles that assume that reductions of 
observations to the geodesic precede the reductions on the projection plane.

Some intermediate results of sample calculations, not given in Table 5, are as 
follows:
The components of the unit vector z:
u = 6.02086231529398e-05, v = 4.13590672216337e-05, w = 0.99999999733217

Transformation matrix S:
  7.09900125675893E-01 -3.58367949545300E-01  6.06311985947868E-01 
 -2.72505126714097E-01  9.33580426497202E-01  2.32741365416285E-01 
  6.49448048330184E-01  0.00000000000000E+00  7.60405965600031E-01 

The unit vector of vertical direction g:
gx = 0.606254420457072, gy = 0.232763569652505, gz = 0.760445065944196

The normalized normal vector n of ellipsoid:
nx = 0.606311985947878, ny = 0.232741365416051, nz = 0.760405965600092
The angle between the vectors Θ = 46.49[cc]
The value of the resultant vertical deviation (38.332+26.332)1/2 = 46.50 [cc]

Vectors of coordinate differences:
SP = (-10328.0, 3779.0, 7431.0)

SQ = ( 4993.0, 10988.0, -7048.0)

The unit normal vectors of vertical planes:
wSP = SP  g = (8.62129966380252E-02, 9.31337769725911E-01, -3.53804010566101E-01)

wSQ = SQ  g = (7.15317597776904E-01, -5.77460157308181E-01, -3.93523189954911E-01)

The angle between these vectors βo
(0)

 =121.876409 [g].

Similarly, the normal vectors of planes of the ellipsoid normal section:
uSP = SP  n = (8.62141869785415E-02, 9.31338204103903E-01, -3.53802577068265E-01)

uSQ = SQ  n = (7.15275921188159E-01, -5.77475431277768E-01, -3.93576527296771E-01)

The angle between these vectors: βg
(0)

 =121.876336 [g] (the angle reduced due to 
the vertical deviation).

Vector of coordinate differences assuming that the target points are projected 
orthogonally on the ellipsoid:
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SPe = (-10777.61707, 3605.50729, 6864.73572)

SQe = ( 4566.65138, 10823.34330, -7581.23706)

The normal vectors of normal sections planes, passing through the projections Pe, 
Qe (orthogonal projections of target points P, Q on the ellipsoid surface):
uSPe = SPe  n = (8.62143062851846E-02, 9.31338161835913E-01, -3.53802659260592E-01 )

uSQe = SQe  n =(7.15275973733384E-01, -5.77475312956758E-01, -3.93576605408977E-01)

The angle between these vectors, being also the angle reduced due to the ellipsoidal 
target points:
βh

(0)
 =121.876317 [g]

Another reduction comes from the difference between normal sections of 
the ellipsoid and tangents of geodesic – arms of the angle. The reduced angle as 
the difference between geodesic azimuths obtained on the basis of approximate 
coordinates, will be: βe

(0)
 = αSQ

(0) – αSP
(0) = 121.876317 [g] which basically means 

(with an accuracy of rounding errors 0.01cc) that it is identical to the angle obtained 
from geodesic azimuths.

The greatest values achieved by the angle reduction due to cartographic mapping. 
Even if it is the conformal mapping, the reduction defi nes the angle change due to 
non-rectilinear mapping of geodesics on the plane. We assume, for example, the 
conformal Gauss – Krüger (transverse Mercator) projection in the special Polish 
implementation: PL-1992. Determination of the angle reduction using the empirical 
method will lead to the comparison of the relevant angles measures computed in 
the two systems based on the corresponding approximate coordinates. The initial 
approximate geocentric or geodetic coordinates will be transformed to the PL-1992 
and then (on a plane) the angle between two chords will be calculated. We receive 
in this way the measure of the mapped angle: βm

(0)
 =121.878876 [g]. The difference 

δβe-m
(0)

 = βm
(0)

 – βe
(0)

 = 25.59 [cc] is the empirical value of the angle reduction.
As shown in Table 5, the empirical determination of reduction leads to approximate 

measure angle in various systems based on the approximate coordinates, and then 
the formation of the corresponding differences of those measurements. In particular, 
direct reduction of observations from the measurement space on the mapping plane is 
thus possible. In this case, the calculation of azimuth of geodesic is not necessary. In 
comparison with classical multi stage reducing, the empirical methods can be used in 
one step. It implies so the essential decrease the quantity and the cost of calculations. 
Moreover, the high numerical exactitude of empirical methods is independent from 
mutual distance of network points.
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7. Conclusion

Empirical method of observational reducing (on the ellipsoid or on the mapping 
plane) is characterized by high accuracy, superior to classic methods, in particular 
regarding distance mapping. As shown in the test in Section 5, the published classic 
forms and algorithms are not suitable for a use of a very long GNSS vector, leading 
to unacceptable numerical error.

In application of empirical methods, approximate coordinates of all the points 
that defi ne the geometry of the network elements are necessary. Regardless reduction 
problems, the approximate coordinates of the network points are a input subset of 
data to solve the problem of a non-linear network adjustment. During the iterative 
solving (the Gauss-Newton procedure is typically used), the approximate coordinates 
are successively (iteratively) improved. At the same time, the empirically determined 
reductions converge to certain optimum values, despite being a relatively large 
change of approximate coordinates, but suffi cient for the convergence of Gauss-
Newton process, should not have any signifi cant infl uence on the values of the same 
reductions.

Empirical methods can be applied to a sequence of elementary reductions, not 
necessarily only at the mapping stage. Starting from the physical observational space 
we need to use, in addition to the approximate coordinates, additional information 
arising from physical fi elds (eg. characteristic curve of refraction, the components 
of vertical deviations, height anomalies), also included in the classic methods of 
reduction.

This paper did not attempt to cover all possible cases of reductions of 
geodetic observations. The aim was mainly to show the capabilities and properties 
(especially in terms of precision) of empirical methodology for the observational 
reductions. These examples, that also serve as models for all other analogies, could 
be applied.
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