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Abstract: The paper presents empirical methodology of reducing various kinds of
observations in geodetic network. A special case of reducing the observation concerns
cartographic mapping. For numerical illustration and comparison of methods an
application of the conformal Gauss-Kriiger mapping was used. Empirical methods are
an alternative to the classic differential and multi- stages methods. Numerical benefits
concern in particular very long geodesics, created for example by GNSS vectors. In
conventional methods the numerical errors of reduction values are significantly dependent
on the length of the geodesic. The proposed empirical methods do not have this
unfavorable characteristics. Reduction value is determined as a difference (or especially
scaled difference) of the corresponding measures of geometric elements (distances,
angles), wherein these measures are approximated independently in two spaces based on
the known and corresponding approximate coordinates of the network points. Since in the
iterative process of the network adjustment, coordinates of the points are systematically
improved, approximated reductions also converge to certain optimal values.

Keywords: cartographic mapping, reducing of geodetic observations, empirical
methods of reducing the observations, mapping of long geodesics

1. Introduction and formulation of the issues

The problem of reducing observations in geodetic networks can be treated as
a conversion of observations from a physical measuring space to certain mathematical
space, where a network adjustment or computation should be realized. Mathematical
space may be represented, for example, by geodetic (ellipsoidal) coordinates system
(B, L, H), three-dimensional Cartesian geocentric system (X, Y, Z) or Cartesian system
(x, y) on the plane of a cartographic mapping. Formulas for all kinds of observational
reductions (corrections to direct observations) are usually derived as differential
form of elementary conversions, defined with a numerical approximation (see about
classic ellipsoidal reductions e.g. in Czarnecki, 1994; Szpunar, 1982; Warchatowski,
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1952; Zakatow, 1976 or classic mapping reductions e.g. in Balcerzak, 1994, 1995;
Gajderowicz, 2009; Kadaj, 2001). Unfortunately, numerical accuracy of these
formulas is not always enough in contemporary observation systems, where, next
to terrestrial observations, there are very long GNSS vectors or pseudo-observations
(for example, the length and azimuth of the geodesic, ellipsoidal heights differences)
related to them. Some extreme examples are shown in Section 5.

Empirical methods are presented in this paper as an alternative to conventional
ways of reducing the observations as they guarantee the highest precision, irrespective
to the spatial location of points and their mutual distances. The idea of empirical
methods is that the measures of reductions (observational corrections) are obtained
as differences between measures of network elements computed in two coordinates
systems by using approximate coordinates of network points and relationship between
two systems, known a priori. Furthermore, unlike conventional methods where
reductions of observations consist of many components (for example for measured
distances: reduction to a level, reduction on the ellipsoid and on the mapping
plane), in the empirical methods reduction is a direct (one-step) conversion from the
observational space to a specific mathematical space.

A special case of observational reductions are mapping reductions, used for
example in the Gauss-Kriiger (transverse Mercator) projection. Explicit forms of this
type of observational reductions are inseparable elements of mapping procedures.
Unfortunately, they are usually limited in terms of numerical error (truncation of
Taylor series), thus not suitable for very long geodesics, created from GNSS vectors.
The correspond examples are discussed in Section 5.

Empirical algorithms, exclusively for the mapping reductions, were constructed
in 2001 (Kadaj, 2001, in Section 5.11) with the use of the procedures of calculating
length and azimuth of geodesics. The similar ideas and algorithms can be found in
the new editions of the books: Leick, 2004 — in Section 9.2, Gajderowicz, 2009 — in
Section 10.9.

This paper presents a generalized approach to empirical methodology of
observational reductions in geodetic networks, relating to different types of
geometrical or physical reductions, not only for cartographic mapping. An important
part of the work was dedicated to the practical verification of the proposed methods
and their comparison with classic methods (e.g. Balcerzak, 1994, 1995; Czarnecki,
1994; Gajderowicz, 2009; Szpunar, 1982; Warchatowski, 1952; Zakatow, 1976) .

2. Theoretical grounds of observational reduction in empirical methodology
2.1. General principle
A geodetic network, in general, can be a set of different kinds of observations or

pseudo-observations (for example, processed from the GNSS vectors), which, through
appropriate analytical compounds, including reference conditions, stochastic models
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and adjustment methods, define the position of points in a conventional frame of
coordinates or in a mathematical space. In specific cases it may be, for instance,
geodetic (ellipsoidal) coordinate system (B, L, h), Cartesian geocentric coordinates
system (X, Y, Z) or Cartesian system (x, y) based on a cartographic mapping. Direct
observations defining a geodetic network come from the measurement space, different
to the defined mathematical space, not only in terms of geometry or its dimension
and metric, but also in terms of deformation under the influence of physical fields of
the Earth, such as gravity field or atmospheric refraction. This is with geodesy the
universal knowledge — see e.g. in Czarnecki (1994). Therefore, the problem to reduce
(mapping, transformation) the observations from the physical measurement space
to a specific mathematical space occurs. In a conventional approach of this issue,
measurements (observations) are subject to many kinds of observational reductions,
for instance, a measured slant distance is reduced to horizontal position and then to
the ellipsoid (reduction due to the ellipsoidal height) and finally put on the model of
cartographic mapping (see e.g. Fig. 1, 2).

In comparison to the classic methodology, in the proposed empirical methodology
of observational reductions, a direct (one-step) conversion of observation measures
between two spaces can be realized. For this purpose, the approximate coordinates
of points are used as they allow to obtain (approximate) independent observation
measures in two spaces. Based on the difference of approximated measures in both
spaces and after some non essential scaling, an empirical reduction as a correction of
original observation measures is finally obtained.

Assuming that ©;is an elementary observation (e.g. a distance, an angle) in
a measured space of geodetic network, we will reduce the observation to a measure
®,,in the mathematical space where an adjustment and calculation of the network
should be carried out. For this purpose, we need the quantity 6@, as a reduction
of an observation value between two spaces (in here named symbolically: I, 1I),
O, = 0,1+ 60, ; The reduction d6@,; can be calculated using classic explicit form
(see also in Section 3.1 and 6.1). In general, it is the sum of any components:
00,8 =5, + 5, + ... = 60, The proposed empirical methodology leads to the
direct approximation of a full quantity 0@, ; with use of approximate coordinates
of network points corresponding in both spaces. Empirical reduction approximates
corresponding theoretical quantity 5@, €™ = §@, ;and it is particularly defined as
follows.

Let X be the vector containing coordinates of points representing the approximate
geometric model of a given observation in a network. For example, if the observation
is a slant distance, the vector X includes approximate coordinates of two points in
any three-dimensional space. It may be for example a geocentric Cartesian or three-
dimensional topocentric system. The measure @, of a geometric network element,
corresponding to the approximate coordinates, as a model of observation @, in the
measurement space, is expressed as a certain (known a priori) function f; :

0,9 = X9 ¢, 5 .0) (1)
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where ¢, ¢,, .... parameters representing physical parameters of measurement space

relative to an adopted coordinate system (e.g. local components of vertical deviations).
The counterpart of the vector X(¥ in the mathematical space, such as a mapping plane,
is a vector x(¥ obtained by a known a priori transformation (mapping) function F:

X = F(X%) @

Now, the measure of the corresponding geometric elements in the defined mathematical
space is denoted as @,?, using a known function f;;:

" = fu(x?) 3)

Designating 60, ,;,© = 0, — 8, we define the empirical reduction in two cases:

OO © for azimuths, angles and directions 4)
00, (emp) _

(60,770, . ©  for distances (5)

Where: @, (without upper index) is an initial observation measure and @, (V)
corresponding measure computed with approximated point coordinates. Why has
the form (5) differed since (4)? In case of angles (azimuths, directions) the quantity
00,,© is a relative measure (e.g. in radian, if « = s/ = arc / radius the differential
is da = 8s/r), however in case of distances, the analogue relative measure will be
00,,/0, . Yet, significant inequality between values (5) and (4) can be observed
in case of short distances and big errors of approximated coordinates. In turn, in
case of long distances and bounded errors of coordinates, the difference between (4)
and (5) should be, in principle, numerically not significant, especially if we assume
that the approximate coordinates of the network points are successively improved in
the nonlinear iterative process of network computation. For the nonlinear adjustment
problem of geodetic networks is usually the Gauss — Newton iterative method
implemented. The theoretical basis to the Gauss-Newton method can be found e.g.
in Deutsch (1965), Sections 6.3, 6.4 and 7.4. The general theorems for the nonlinear
optimization problems can be found e.g. in Zangwill (1969).

Of course, natural question about the accuracy of such approximation in
terms of its maximum error e: |60, ;€™ — 60, | < e, dependent on the accuracy
of the approximate coordinates arises. However, it is known that the adjustment
of observation and computation of coordinates of network points is a nonlinear
least squares problem, solved with iterative procedures. In the properly defined
task, the iterative process should be converged to the unknowns estimator x* of :
lim(x") = x*, where x¥) is the vector of coordinates of network points in k-th cycle
of iterative process (Gauss-Newton procedure, characterized by the convergence of
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square type). Consider now the relationship (2). In typical tasks of observational
reductions, the function F is at least conditionally invertible (invertible under
special conditions for the components of the vector coordinates), therefore similar
convergence for the coordinates in the measurement space /im (X)) = X* should
occur, where X%, X* are, corresponding to x), x*, vectors in measurement space.
Hence, the empirical measurements of reductions defined by (4), (5) and (1), (3) can
be computed as functions of optimal coordinates (vectors x*, X*).

2.2. Empirical reduction limited to the task of a mapping

A special task of an observational reduction is related to the same stage of a cartographic
mapping. It is, therefore, a situation where the observations in the network are already
reduced to the ellipsoid and the adjustment of the observations should be realized
on the mapping plane. Reducing original observations to the ellipsoid means that
the corresponding geometric elements on the ellipsoid are determined by geodesics:
lengths of vectors (e.g. as lengths of GNSS vectors) are reduced to the lengths of
geodesics segments, directional angles of GNSS vectors are mapped in the geodetic
azimuths, measure angles are defined as the angle between the geodesics. We assume
that for a given mapping of an ellipsoid, coordinate transformation formulas with the
inverse task are known (are available in the form of practical procedures):

(x, y) = F(B, L), (B, L) = F'(x, y). (6)

For numerical examples we will use the application of Gauss-Kriiger (transverse
Mercator) mapping of GRS80 ellipsoid, defining Polish cartographic system PL-1992
(Balcerzak, 1994, 1995) .

Line in a general task, we assume that the approximate coordinates of points
on the ellipsoid are known. In this case, these are geodetic coordinates (B, L?)
(i — conventional index of network points), which, by the formula (6) of the mapping,
provide the appropriate coordinates in a mapping plane (x, y(©) = F(B®, L®).
Let ©, mean the measure of observation reduced to the ellipsoid. Then, in particular
to (1),

0,9 =f (.., (BO, L®), ...) (7

is an approximation measure @ of a network element, based on the approximate
coordinates, and also in particular to (3),

@m(O) :fm (, (xi(0)7 yi(O))a ) (8)

is an approximation of an observation measure, reduced to the mapping plane.
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Finally, the mapping reductions, according to (4) and (5) express the form:

5@.”1(0) for azimuths, angles and directions )
5@&7'1 Eme) =

(5@_,,,(0) / @(O)) - 06, for distances (10)

where O, is an observation measure reduced to the ellipsoid (see in: Kadaj, 2001,
p. 49-51 with table in p. 51). In Leick (2004) only the absolute difference has been
applied for all types of observation, the same as in (9). Obviously, during iterative
process of network adjustment, the approximate coordinates will be converged to
some optimal values. This implies also the corresponding corrections for values of
mapping reductions (9), (10). Based on properties of used cartographic mapping,
elementary distortion values (in local scale and convergence) change so slowly that
even a significant point shift on the mapping plane (coordinate errors) does not cause
measurable changes in distortion parameters that determine value of the observational
reduction (see e.g. in Doskocz, 2007 ).

3. Reducing measured distances
3.1. Reduction components in the known classic methodology

As an example we will take the reduction of the measured slant distance to the length
of the corresponding section of a certain mapping plane (Fig. 1). In classic terms, the
transformation of d; = d,,, is composed of several conversions:

* leveling the slant distance at the mean height of section ends, including reduction due
to atmospheric refraction, meaning transformation d, = d, (d, — the leveled distance)
realized by adding appropriate corrections (reduction) dd,, < 0: d, = d, +dd
 conversion of the leveled distance on the length of the ellipsoid chord: d, = d_,
taking into account the relevant correction (reduction) dod, .: d, = d, + dod,,_.,

» conversion of the chord length d. to the length of the corresponding geodesic
segment d. = d, by adding the correction (reduction) éd.,> 0: d, =d,. + od, _,,

« transforming geodesic segment d, to the length of the section on the mapping plane
d, = d,, by adding the appropriate corrections (reduction) déd, ., : d,, = d, + dd,,.

§-0°
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slant distance

horizontal distance for equal ellipsoidal

heights: |P’P”| =0 Q"]
: P plane of a mapping
arc of o
P 299
Fig. 1. Steps of the distance reduction
:":.:Q.v

refraction curve_s

topo-surface

€0,

quasi-geoid

sphere with the radius R,

Fig. 2. Elements of the distance reduction by the assumption of local approximation of the ellipsoid
surfacein reference to the sphere model of an average radius of curvature of the ellipsoid

More in detail, the following designations and relationships are related to Fig. 2:
d; = | P, Q| — observation,

ip, o — offsets of measurement points P, @, in relation to marked points P,Q,

ip = | Py P| — instrument height, s, = |Q, Q| — height of the target point,
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Hp = |P P,|, Hy = |Q Q,| — normal heights of the marked points,

(p = |Py P,|, {5 = |0, Q.| — height anomalies (quasi-geoid heights),

hps = |Pg P,| = Hpt (p + ip hgy = |Qy Q| = Hy + (p + 5o — geodetic (ellipsoidal)
heights,

Ahpgos = hos— hps = sign(hg,— hpy) * |Q; Q] — difference of geodetic heights,

(1/2) * |AhPs—Qs | = |Q1 Qo| = |PsPo|’

Aw = | Q, Q,| (the distance of the target point Q, from leveled reference plane with
the points P, Q)),

d,=|P, 0, =|P; Q,— leveled distance at the bisecting line of the angle w and the
average height, d., d, — length of the chord and arc on the reference surface between
the projections P, Q, of points P Q.

Let’s focus on the influence of the atmospheric refraction on the measured length,
assuming a rough estimation of its influence on trigonometric leveling of territory
of Poland. As it is known, refraction effect by the height difference determines the
value of 6,= 0.13 + 5z, where J is the influence of Earth curvature, 5= d,?/ (2 * R,),
R, — average radius of curvature of the ellipsoid in the middle of measured distance.
As a consequence, the radius of curvature r - curve of refraction is approximately
the value of » = R, / 0.13 = 49 000 000 m. The difference in the arc of 10 km and
the corresponding chord will be approx. 0.000017 m, or less than 0.02 mm, which
means that the value is basically irrelevant. That is why we adopted the length of
straight line section as an observed value. At present, using the modern measuring
instruments of type the total-station, the refractions influences can be automatically
eliminated, in function of temperature and atmospheric pressure.

First of all we consider the distance reduction on the reference surface (ellipsoid)
using classic designs, which take into account already calculated ellipsoid heights of
points, and hence the heights difference instead of zenith angle. In classic formulation,
the ellipsoid is replaced by the sphere of an average radius of curvature defined with
Euler’s formula at the midpoint of the line section with the azimuth a: (see e.g. in
Czarnecki (1994), Section 2.1.3.):

R.=[ Ry "« cos’(a) + Ry~ + sin’(a)]! (11)
where R, Ry— a principal radii of curvature:
Ry=a(I-¢&)/[I-¢& -« sin(B)*? Ry=al[I- e - sin’(B)]"?, (12)

e’ = (a’ — b°) /a’ (first eccentricity squared ),

a, b — semi-axes of a reference ellipsoid, B = (Bp+By) /2 (average geodetic

latitude),

o. — geodetic azimuth.
Full reduction is distributed into elementary components: leveling d; = d, what
explains precisely Fig. 2, then conversion on the chord and on the arc of sphere:
d,= d.= d, (it is also possible the slant distance reducing to geodesic without
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leveling, see e.g. in Leick, (2004, Section 9.1); Zakatow (1976, Section 80). The first
reduction (leveling) is expressed in elementary formulas (it results easily with Fig. 2):

d, = d-[I-(Mw/d)1"? =d,-[I-(Ah/d)’]"* + &dp =
= d —d, - {1 —[1-(M/d))? } + odp =d, + & (13)
Aw = Ah -cos(w /2);
&Moo= —d, -(A/d,Y - {1+ [1- (AW/d)" 1" V" + dy
oy = dy - { [1- (Aw/d)’]"* = [I- (AW/d) 1"} = dy - [(AW = aw?) 1 (2-d)) ]
(AR /(2-d,) ] - (I = cos™ (@ /2)) = [AW’ /(2-d,) ] - sin’(@w/2) =
~ (A /2-d))] - (d/4)RS = AW -d,/(8-RS)

where:
@ — sphere central angle as shown in Fig. 2,
ddy — correction resulting from the difference between Aw (the heights difference
in case of the horizontal reference plane) and 44 (the difference of the ellipsoidal
heights).
The correction dd, even for very extreme geometrical conditions, e.g. d; = 10 km,
Ah = 500 m, does not exceed the value of 0.01 mm, and therefore, with respect to the
possible accuracy of the measurement, is insignificant.

We find the corresponding distances: the chord d. and the arc d, of the sphere as
the reference surface:

dc = do + 5do—c ; 5do—c == do : hsr / (Rs+hsr); (14)
where: R; — average radius of curvature of the ellipsoid (according to (11)), 4, — the
average height of the ellipsoidal distance measured points), A, = hp;+ 0.5 * Ahp ;.

The correction (reduction) to the length of the arc is expressed as follows (see e.g.
in Zakatow, 1976, Section 80):

od.,=d,—d.=R;,*w—2-R,*sin(w/2)=R, * [w—2"*sin(w/2)]=
=R, c{wo-2[(w/2)—(w/2P /3! + .. ] }=R,* (0 24) = dj/(24 - R?) (15)
(for = d,/R,)

This reduction, for various lengths, is presented in Table 1.

Table 1. Reduction of the chord to the length of the arc of the reference surface

d [km] dd.., [m]
5 0.0001
10 0.0010
20 0.0082
40 0.0657
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The last of the classicly considered distance reductions applies to the conformal
mapping, e.g. in the Polish national cartographic system PL-1992. For this purpose,
we use formulas specified for the wide Gauss-Kriiger mapping area (Balcerzak, 1994,
1995).

3.2. Reducing distances in empirical methodology

We can consider, of course, different cases of distance reductions using empirical
methods. We can group them as follows:

A) d, = d,, : General option, containing all elementary reductions, from slant distance
to the segment length on the mapping plane.

B) d, = d,, : We assume that the initial reduction (leveling slant distance) is executed
independently, while empirical reducing includes all elementary reductions, up to
conversion on the mapping plane.

C) d,= d,,: Includes only the reduction step from the ellipsoid to the mapping plane.

D) d; = d, : Reducing of the slant distance to the length of the geodesic segment
on the ellipsoid. Formally includes three elementary reductions: leveling resulting
in a length d,, height reducing resulting in the chord length of the ellipsoid
d, = d,, and the reduction of the chord to the length of the geodesic on the ellipsoid
d. = d,. The described variant may relate to network adjustment on the ellipsoid.
Then, final coordinates other than geodetic (e.g. mapping system coordinates) are
obtained by the transformation.

E) d,= d,: this case differs from the previous one with the fact that the leveled
distance is present from the beginning.

Empirical methods allow to realize direct conversion d; = d,,. Let us assume
that the approximate coordinates of the points P, Q are available. Without limiting
the generality of issues, we can assume geodetic coordinates, P (Bp?, Ly, hy®),
0 (B, Ly, hy). If we have the heights of another type (e.g. normal heights),
they should be transformed into ellipsoidal heights using local model of geoid
(quasi-geoid). Calculations are made sequentially according to the following steps
(in distance and reduction signs, network point names and index of the coordinate
iteration are added — here in initial state):

1. We transform the approximated geodetic coordinates (B, L©®, 4(®) of network

points on the corresponding Cartesian coordinates (X, Y0 7)),

(BP(O)a LP(O), hP(O)) = (XP(O), Y, P(O)’ ZP(O))
and (B Q(O)’ L Q(O), h Q(O)) = ( XQ(O), YQ(O), ZQ(O)) (16)

and then calculate the slant distance

(d)pg® = [(Xg0~ Xp O + (YO — YO H(Z, ~ Z,0)* 17 (17)
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2. In accordance with known rules of mapping, we find images of points £, Q on the
plane of mapping

(B, L) = (0, 340, (B, Lg®) = (30, 7o) (18)
and then we find a flat mapping distance

(dpo? = [ (g = xp0)? + (g = yp ]2 (19)

3. The expected empirical dd,., “™ correction (reduction) to the measured distance
d, d, =d, + oéd_, ™ (for simplicity we omit points signs):

§ds-m (emp) = [( dm(O) - ds © ) / ds (O)] : ds (20)

The given example shows how different kinds of conventional methods can
be replaced by only one empirical reduction. An interesting fact of the empirical
methodology is that while creating measurement of length on the mapping plane we
omit determination of the geodesic length on the ellipsoid. In contrast, in the classic
methodology, we carry out independently all kinds of reductions. Indirectly, after
corresponding reductions, we get the length of the geodesic segment on the ellipsoid.
In turn, while performing certain mappings, we move to a straight line segment on
the plane.

The essential difference between options A), B) and other variants where the initial
or final coordinate system is geodetic coordinates (ellipsoidal) is that on the ellipsoid,
length of the geodesic segment is usually considered as the distance between two
points, while in other systems the Euclidean (Pythagorean) length determines the
distance between points.

With option C, the empirical reduction (mapping reduction) is calculated using
differences between the length on the mapping plane (dm)PQ(O) (compare (19)) and the
length of the geodesic segment on the ellipsoid:

(de)PQ(O) = SPQ(O) =G, (BP(O)a LP(O), BQ(O)a LQ(O)): (21)
Sde-m (emp) = [( dm(O) - de © ) / de © ] : de (22)

(we omit here the point signs) where the function G, is one of the scalar functions
for performing inverse primary task of higher geodesy, i.e. determine the length and
azimuth of geodesic connecting two points on the ellipsoid with known geodetic
coordinates. The function G, determine geodesic length and the second function (G,)
— the starting and ending azimuth of geodesic segment. The empirical reduction for
option C is in general formed by (9), (10).

Options A), D), will transform elementary tasks of GNSS vectors on a plane
mapping (A) or ellipsoids (D). We apprehend this issue separately in this study.
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3.3. Numerical example

We are interested in comparing the classic and proposed (empirical) methods in

various cases of distance reduction, for example, with certain extreme characteristics.

In addition to the observational data, we assume location data necessary for distance

reductions, including height anomalies (quasi-geoid height).

The measured slant distance d, = | P, Q,| = 13273.1496 m between points P,

0O, — Fig. 2. P,is the mean point of an instrument, and @, — mean point of the target

signal (stabilized points, named P, Q). Geometrical quantities characterizing the

height of points representing an observation are:

— normal height of marked (stabilized) points (calculated e.g. in the leveling
trigonometric network with measurement of zenith angles): Hp = 422.334 m,
Hy = 705.641m,

— height of the instrument as a distance | P, P| =i = 1.420 m,

— height of target signal as a distance | @, @ | =s = 0.500 m,

— height anomalies at the points of observation (quasi-geoid heights): {p,= 38.548 m,
(o= 37.714 m.

Approximate coordinates (cut off to integer values) of the points P, Q in the coordinate

system PL-1992 (application of Gauss — Kriiger mapping, defined in Table 2,

Balcerzak, 1995):

Xp = 183317 m, yp= 644767 m,
Xg = 194627 m, y, = 651695 m,

Based on these location data we calculate, corresponding to the above, approximate
coordinates in other systems: geodetic (ellipsoidal) and Cartesian geocentric ones.
Geodetic coordinates B, L are determined from inverse Gauss — Kriiger mapping
in PL-1992 application (Balcerzak, 1995), and ellipsoidal heights using the normal
height and height anomalies for two points:

hp=Hp+i+(p=462.302m, hy = Hy + s + (= 743.855m.

Geodetic coordinates of points P, @ on the GRS80 ellipsoid are as follows (B, L
transformed from PL-1992):

Bp =49°30"0.0031027", Lp = 20° 59°59.9936134", hp = 462.302m,
By = 49°36°0.0002671", Ly = 21° 6" 0.0050081", hy = 743.855m,

Afterwards, in accordance with standard conversion algorithms (B, L, h) < (X, ¥, Z)
geocentric Cartesian coordinates are defined:

Xp=3874927.46281m, Yp = 1487445.15369 m, Zp = 4827208.4291] m,
Xo = 3864599.02185m, Y, = 1491224.76219 m, Z, = 4834639.11090 m.
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For classic method of observational reductions, numerical parameters are calculated,
as follows:

B =49° 33" 00" = average latitude of geodesic segment;

Ry = 6372458.3110 m, Ry = 6390535.7065m (main radii of curvature of the
ellipsoid);

o = 36.67887 2] = azimuth of geodesic segment;

R=6377813.1051m= average radius of curvature in the normal section of the
ellipsoid in the azimuth a, @ = 6378137.0 m = semi—major axis; e’ = 0.00669438002290
= first eccentricity squared as GRS80 ellipsoid parameters (Moritz, 2000);

Full reduction is divided into elementary operations: leveled distance d, = d, what
explains precisely Fig. 2, conversion on the chord and arc of the reference surface
d,= d.= d, and mapping d,= d,,, .

In the next step, we find the distances: d. (chord) and d, (arc) on the reference
surface. After substituting into the formula (18) the respective numerical values,
R, = 6377813.1051m, hy, = hp; + 0.5 * Ahpg o, = 462.3019 + 140.7767 = 603.0786m,
we get: od, . = —1.2547m and d, = 13268.9084 m. Reducing the chord d. on the
length of arc, according to (15), gives d, = 13268.9108 m.

Empirical reductions enable to calculate scaled difference between measured
distances in different configurations, designated on the basis of approximate
coordinates. It is important that the coordinates taken in various systems derived from
the precise transformation of the same data (coordinates) can be assumed with some
errors (for example rounded to 1 m).

From the approximate geocentric coordinates we determine d, )= 13272.3217 m
while from corresponding geodetic coordinates d,(¥) = 713268.0827m. Reduction value
obtained by empirical method is dd, (© = — 4.2393 m.

The last of the conventional distance reductions applies to the cartographic
mapping. For this purpose we use formulas specified for the wide area Gauss-Kriiger
mapping (Balcerzak, 1994, 1995). As a result we obtain: dd,_,, = —5.7077m. It differs
of approx. 2.7 mm to the corresponding value of the resulting empirical method (see.
Table 2).

In empirical methodology, the conversion can be executed in one stage. For
illustrative purposes and controls we show reductions and observational conversion
in three variants:

a) the measured slant distance onto an ellipsoid arc,
od, 0 = [(13268.0827 — 13272.3217) / 13272.3217] + 13273.1496 = —4.2393m
b) the ellipsoid arc onto a mapping plane,

od,.,, 0 = [(13262.3778 — 13268.0827) / 13268.0827] + 13268.9103 = —5.7053m
c) the measured slant distance directly on the mapping plane,
od, 0 = [(13262.3778 — 13272.3217) | 13272.3217] + 13273.1496 = —9.9445m

Naturally, the last reduction should be equal to the sum of the first two reductions.
An important feature of the last reduction is that it does not require an intermediate
passage through the geodesic. The reduction is simply the scaled difference between
the measures of length in two spaces, designated by approximate coordinates.
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4. Mapping reductions of geodesic azimuth

The azimuth as well the length of a geodesic segment (considered in the previous
Section) may result from the conversion of the Cartesian GNSS vector (see e.g. Kadaj,
1997, 1998 — Section 3.6.5). Classic reduction of geodesic azimuth to the direction
angle (azimuth topographic) 7 on the mapping plane is made of two components
(Fig. 3): y — convergence and curvilinear reducing Jk (the difference between direction
of the chord and the tangent to the mapped geodesic arc on the plane):

TPQ = aPQ — ')}P + 5kPQ: aPQ + 50(PQ; (23)

where dapg = — yp + Jkpg is the total reduction of the geodesic azimuth. Above, only
the point name (P) is assigned to the convergence value, assuming, a conformal
mapping, typical in geodesy applications (then the convergence is constant at a given
point).

Fig. 3. Geodesic and topographic azimuth

The classic approach of the azimuth reduction by conformal mapping therefore
require a separate designation of convergence and reduction of direction. These two
components are essential elements of any cartographic mapping, determined by means
of appropriate differentials formulas.

Empirical methodology leads to, similarly as distance reductions, to determination
of' the overall reduction based on the models (measurement approximations) of azimuths
(geodetic and topographic) determined on the basis of approximate coordinates:

app® = Gy (B0, L\, B0, L,0) (24)

(here G, is a function determining initial azimuth of the geodesic segment on the
ellipsoid)

Trp 0= Arg ( Zp0) 5 Zpo = (xQ(O) —xp ) +i- (J’Q(O) =) (25)
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(argument of a complex number as the directional angle of the vector PQ on the
mapping plane),

Satpy @ = Tp® — a1y (26)
where the cartographic and geodetic coordinates are in unambiguous relation:

(BAO, L) & (5%, x50); (Bo®, Lo®) < (16, 36 ).

5. Numerical test for empirical method of the mapping reductions on the
example of the geodesic vectors created from GNSS- vectors, by the application
of the Gauss-Kriiger mapping

A set of 10 points located on the ellipsoid GRS80 they way that the distance of
consecutive points from the point 1 were increasing from 2 to approx. 523 km was
adopted. For further pairs of points 1-2, 1-3, 1-4, ..., 1-10 independent lengths and
azimuths of geodesic were determined. Next, we calculated the reduction of vectors
mapping to the system PL-1992 (Gauss — Kriiger mapping with axial meridian
A, =19° and scale on the axial meridian m = 0.9993), using two methods, conventional
one — according to the formulas PL-1992 (Balcerzak, 1995 ) and empirical one,
described in this paper.

Table 3 summarizes data, and in Table 4 mapping reductions are calculated by
two methods. The symbol [1] refers to the classic method based on application of
analytical (classic) models for reduction, while the symbol [2] describes in this
paper empirical method. For the above mentioned two methods reductions both
for distances and azimuths of geodesics were calculated. In columns marked with
“numeric error of [1]” there are the differences of given reductions in both methods.
As it turned out, these differences are at the same time numerical errors of classic
methods, as it can be easily verified what should be measurements of correct pseudo-
observations calculated by the Cartesian coordinates (with Tab. 4) on the mapping
plane. These measures are exactly equal (with an error of rounding the last digit) to
values (corrections) calculated using empirical method. Based on these results it can
be concluded that the reduction values obtained with use of classic analytical methods
for long GNSS vectors (vectors after transformation into a geodesic) can be deflected
by significant numerical error.

For vectors with a length of approx. 2 km a numerical error of approx. 1 mm is
marked in a reduction in length, what may have a meaning in practice, e.g. in precise
realization networks. For vectors with a length of approx. 20 km numerical errors of
lateral and longitudinal vectors already have significant value of 1-2 cm. In practice,
the distances between points of geodetic network can be also greater than 20 km.

In this paper we do not deal with a matter of choice of the method of a network
calculation. We do present safe alternative to the method of calculating observational
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reductions (pseudo-observation), especially for the cartographic mapping. We also
show that the classic (analytical) methods of determining these reductions for long
observation vectors are subject to significant numerical errors. The presented empirical
methods are free from such errors.

6. Reducing directions or angles
6.1. Classic and empirical methods — general comparative aspects

Reducing angles, for instance from physical measurement space to the ellipsoid
surface or on a mapping plane, may be treated as the difference of corresponding
reduction types for two directions of the angle arms. Reduction of direction as n
original observation, consists of several components (the forms can be found in
textbooks of higher geodesy, e.g. in: Czarnecki, 1994; Szpunar, 1982; Warchatowski,
1952) :

e directional or azimuth reduction due to the vertical deviation from the ellipsoid:
oky = [ n - cos(a) — ¢ - sin(a) | - ctg(z) (27)

(analogous component is used in reduction of astronomical azimuth on the Laplace
azimuth, but then the component is added due to deviation of meridian plane
—# - tg(B), which is eliminated as independent from directions in angular reduction);

e reduction due to ellipsoidal height of the target point:
Ok, = [e’? - h A2 Ry)] - cos’(B) - sin(2- a); (28)

e reduction due to angular deviation of the geodesic from the normal section of the
ellipsoid:

Ok,= —[€°-s°/(12- R\Y)] - cos’(B) - sin(2- ), (29)

where:

¢ n — components of vertical deflections,

e, e’ — first and second eccentricities of the ellipsoid: e’=(a’—b?)/a’, e*=(a’—b°)/b*
a, b — semi-axes of a reference ellipsoid,

Ry — radius of curvature of the prime vertical in the station position (defined in (12)),
B — geodetic latitude of station positions,

h — ellipsoidal height for the marked target point,

s, o. — length and azimuth of the geodesic.

The quantities (28) and (29) are expressed in radians and (27) in units of components

¢
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Additionally, when applying cartographic mapping, corresponding directional
reduction ok, (reducing the geodesic to the chord on the plane) is taken into account.
This value defines the formula of a mapping — in the examples we use the Gauss-
Kriiger conformal mapping.

P’
ﬂ"l
s’
Q’
i . space of a net adjustment,
! space of observations for example the plane of a mapping

Fig. 4. Conversion of the angle to the mapping plane

Introducing the point names P, S, @ in the angle designation (target left, the
station, the target right) as an element of a geodetic network (Fig. 4), we create the
angle reduction as the difference of appropriate directional reductions

o) (P.S,Q) = ok, (S, Q) — Ik, (S.P), (30)

where the symbol (.) replaces conventional designation of the reduction.

Afterwards, we are considering empirical methodology to reduce the observation
angle in particular. As we know from general considerations included in p. 2, the
observational reduction of any kind consists on the direct transformation from
measurement space to a mathematical space, where the network adjustment, based on
the approximation of the observation measures in two spaces, is made with the use of
the approximation coordinates. As a result, empirical reduction is determined by the
difference of these measures.

Let us consider the situation of the measured angle on the surface of Earth
(Fig. 4), and its image on the mapping plane. The same as with distance reductions, we
arrange major variants of angle reductions (index points were omitted for simplicity):
A) f; = p,, : a variant which includes all elementary reductions from the measured

angle to the angle reduced to the mapping plane.

B) 5, = p. : Reduction of measured angle only on the reference ellipsoid (e.g. to
network adjustment on the ellipsoid).

C) .= p,, : Variant represents only reduction of the angle mapping, i.e. the conversion
from the ellipsoid on a mapping plane.
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6.2. Formulas of empirical methodology

Directional observations can be considered as readings on the horizontal circle
(protractor) of theodolite at a random zero position. In this case we can also assume
that zero coincides with any direction (we often tell that the directions are reduced
to the initial). Then the readings in other directions will be single angles measured in
relation to the adopted target. Therefore, the reduction of directions can be brought to
reductions of angles.

Another problem are functional and stochastic models in a process adjusting
networks with directional observations. In the traditional models and adjustment
methods for horizontals geodetic networks, each subset of directional observations
introduces one additional unknown to the observational system — an orientation
parameter (as the azimuth of zero-reading on protractor). The orientation parameters
(so-called nuisance parameters) can be eliminated, creating the angles as differences
of directions. There is a combination of those pseudo-observations (angles set) that
leads to the identical adjustment results as in the original system by the application
of least squares solution. It is so-called Schreiber’s set of angles (see: Kadaj, 2008).
In this case the problems of reduction of directional observations lead equivalently to
the reduction of angles.

»Qf topo-surface

Fig. 5. The normal vector of the ellipsoid and the vector of gravity

Just like with any use of empirical methods we assume that the known approximate
coordinates of the points defining the geometric element, as well as parameters for
measuring the physical space to bind with a specific mathematical space. Let us,
for example, assume approximate geodetic coordinates (By?, LJ?, h®), (B,
L0, hp,0), (BQ(O), LQ(O), hQ(O)) of three points defining the geometric element of the
measured angle (Fig. 4) and vertical deviation component (¢, 7) at the point position
as a local physical feature of a measuring space (Fig. 5).

Approximate geodetic coordinates can be converted to the corresponding
geocentric Cartesian coordinates (X9, Y9, Z) (X, vy, Z,0)
(XQ(O), YQ(O), ZQ(O)). In Cartesian geocentric coordinates — we can also specify the
vector parallel to the vertical one at the point position — we denote it as follows:
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g =[g. g g]" This vector will be calculated using the known relation between the
topocentric system specified on the surface of the ellipsoid at the point of coordinates
(B, L) (we substitute the appropriate coordinates of the station), and the geocentric
system:

g=U"¢ (31)
where
—sin(B) -cos(L) —sin(L) cos(B) -cos(L)
U = |—sin(B) -sin(L) cos(L) cos(B) -sin(L) (32)
cos(B) 0 sin(B)

is orthonormal rotation matrix (see e.g. Thomson (1976, Section 2.1.3) and Kadaj
(2001, Section 4.3)):

UT - U = I (unit matrix) => U = UT => 7 =UT g, (33)

however, z is the unit vector with components created by vertical deviation components
(Fig. 6):

z=[u v wl";
u=—c-1g&) v=—c-1gn),w=—c c=1sqrt [1g(&) + 1g°(n ) + 11. (34)

From the properties (36) of the transformation (34) it can be concluded that the
resultant vector g of the vertical direction as well as the vector z are both unit vectors,

ie. g’+ g+ g’ =1

—g vertical vector
normal N 6,
vector :

of ellipsoid

North

FEast

Fig. 6. Components of vertical deviations in a topocentric system

The obtained components of the vector g can be easily verified, by calculating
the angle @ between the vector g, and the ellipsoid normal vector /V at the station
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position (Fig. 5). This angle should be near to the value (only for small angles)
sqri(& + ). Previously, we determine the normal vector N normalizing it to the unit
length (n vector);

N=(N, N, N)=(1/2) - a- (2:X,/ &% 2:Y,/d%, 2 Z,/B*) = (X, /a, Y,/a, Z," a /b?); (35)
n=N/|N;IN|=(N+N/+N7)""? (36)

where X, Z, — orthogonal projected coordinates of the station on the ellipsoid,
resulting from the conversion of approximate geodetic positions (B?, L©®, 0) => (X,
Y,, Z,). The angle between the indicated vectors (these are the unit vectors) will be

calculated, e.g. by the scalar product:

Y,

e’

O = arccos [— (n o g)] (37)
(e — symbol of the scalar product).

Now we can easily obtain an approximation of the angle measurement in the
measurement space as the dihedral angle between two vertical planes, intersecting
along the edge parallel to the vector g. The angle between the planes replace the angle
between the normal vectors of planes. Thus, we determine the normal vectors of
respective planes first — in any case, as the vector product of a vector g and a vector
formed from the respective coordinate differences (vector lying in the vertical plane):

wsp = SP x g = (X0 = X{0), (YO = ¥{9), (Zs* — Z{V) x (g, 8 &)=

= (0 - Y - g. = (20 - Z{0) - gy),

(G0 - X0 g+ (20— Z0) - g,

(X0 - X - g, = (0~ Y%) - ) (38)

wso =80 x g = ((XQ(O) - X0, (7, Q(O) - Y0, (ZQ(O) - Z$M) x (g, 8 8) =

= (Y - ¥ - g. = (29 - Z{©) - g,),

— (X0 = X0 - g. + (2,0 — Z{0) - g),

(« XQ(O) — X{0) - g - (YQ(O) — Y0y - g (39)

(x — symbol of the vectorial product) wgp, wg, denote normal vectors of vertical
planes, SP, SO are the vectors created respectively of the coordinates differences.
As a result, the angle between the normal vectors can be determined from the scalar
product:

(ﬂs)PSQ(O) = arccos (wgp ® Wso I (Iwgpl - |WSQ|) ) (40)
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Depending on the destination system of the angle transformation (ellipsoid or
mapping plane), according to the options presented in Section 5.1., we determine
a corresponding approximate measure for the transformed angle. In the case of
an ellipsoid, we use the algorithms, based on tasks of higher geodesy, calculating
azimuths for two geodesic (some numerical methods can be found e.g. in Czarnecki,
1994; Szpunar, 1982; Zakatow, 1976). Then, the measure of the angle is expressed as

(ﬁe)PSQ(O) = aSQ(O) —asp V= G, (B4, Ly, BQ(O)a LQ(O)) - G, (B, Ly, BQ(O)a LQ(O))
(41)

(ﬂm)PSQ(O) = TSQ(O) — TV = Arg[(xg—xs) +i- (o= ys)] — Argl(xp—xg) + i - (yp— ys)]
(42)

where T, T,(® — directional angle of vectors SQ, SP on the mapping plane as
the arguments of the corresponding complex coordinates — we count them with the
coordinates of the points obtained from the transformations resulting from the adopted
mapping system:

(B(.)(O)a L(.)(O)) == (x(.)(o), y(.)(o) ), (43)

where the symbol (.) replaces points names: P, S, Q.
For individual variants A), B), C), included in Section 6.1 empirical values of
angle reduction will be:

(5:Bs—m)PSQ(O) = (:Bm)PSQ ©_ (ﬁs)PSQ © and (:Bm)PSQ(ObS) = (:BS)PSQ(ObS) + (5ﬁs-m)PSQ(O) (A)
(5,5s-e)PSQ(O) = (ﬂe)PSQ(O) - (:BS)PSQ(O) and (:Be)PSQ(ObS) = (ﬁs)PSQ(ObS) + (5ﬁs-e)PSQ(O) (B)
(5ﬂe-m)PSQ(O) = (ﬁm)PSQ(O) - (/))e)PSQ(O) and (ﬂm)PSQ(ObS) = (ﬂe)PSQ(ObS) + (5ﬂe-m)PSQ(O) ©)

(symbol ,,(obs)*“ means that the appropriate measure is the observation angle or its
reduced value, while the symbol ,,(O* — as it has already been explained, means the
empirical measure, determined using the approximate coordinates).

6. 3. Numerical example of reductions of angles

Just like in Section 3.3, we assume the approximate coordinates (Cartesian
— geocentric) for three points defining a model of angle in observational space. In
order to implement the observational reduction (target: to the ellipsoid or onto the
plane of a mapping), we accept additional elements representing the gravity field:
the vertical deviation component at the point position and height anomalies (quasi-
geoid height) on all three points. The input data and calculation results are shown in
Table 5.



www.czasopisma.pan.pl P N www.journals.pan.pl

s

36 Roméﬁkﬁdﬁ

As we can see from the description of the table, the classic reduction was
determined as multi step reductions and the empirical method is shown in three
different cases. Indirect empirical reductions (consisting of 4 or 2 components) are
presented for testing and comparison with the classic methodology. In any case,
empirical method allows direct conversion of an observation from the measurement
space to a specific target system. If this transformation is supposed to take place on
the mapping plane, going through the procedure of geodesic calculating is omitted.
This is the essential difference to the classic principles that assume that reductions of
observations to the geodesic precede the reductions on the projection plane.

Some intermediate results of sample calculations, not given in Table 5, are as
follows:

The components of the unit vector z:
u = 6.02086231529398e-05, v = 4.13590672216337¢-05, w = 0.99999999733217

Transformation matrix S

2.72505126714097E-01 9.33580426497202E-01 2.32741365416285E-01

7.09900125675893E-01 -3.58367949545300E-01 6.06311985947868E-01
6.49448048330184E-01 0.00000000000000E+00 7.60405965600031E-01

The unit vector of vertical direction g:
g, = 0.606254420457072, g, = 0.232763569652505, &, = 0.760445065944196

The normalized normal vector n of ellipsoid:

N, = 0.606311985947878, N, = 0.232741365416051, N, = 0.760405965600092

The angle between the vectors @ = 46. 49|

The value of the resultant vertical deviation (38.332+26.33%)!? = 46.50[]
Vectors of coordinate differences:

SP = (-10328.0, 3779.0, 7431.0)

SO = (4993.0, 10988.0, -7048.0)

The unit normal vectors of vertical planes:
wep = SP X g = (8.62129966380252E-02, 9.31337769725911E-01, -3.53804010566101E-01)
Wso = 8Q X g = (7.15317597776904E-01, -5.77460157308181E-01, -3. 9352318995491 1E-01)
The angle between these vectors 5, =121.876409 [£].

Similarly, the normal vectors of planes of the ellipsoid normal section:
usp = SP x n = (8.62141869785415E-02, 9.31338204103903E-01, -3.53802577068265E-01)
Ugo=S8SQ X n = (7.15275921188159E-01, -5.77475431277768E-01, -3.93576527296771E-01)
The angle between these vectors: ﬁ‘g(o) =121.876336 [?] (the angle reduced due to
the vertical deviation).

Vector of coordinate differences assuming that the target points are projected
orthogonally on the ellipsoid:
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SP, = (-10777.61707, 3605.50729, 6864.73572)
SO, = (4566.65138, 10823.34330, -7581.23706)

The normal vectors of normal sections planes, passing through the projections P,
0. (orthogonal projections of target points P, Q on the ellipsoid surface):
Ugp, = SP, X n =(8.62143062851846E-02, 9.31338161835913E-01, -3. 53802659260592E-01 )
Usg. = SO, X 1 =(7.15275973733384E-01, -5. 77475312956758E-01, -3. 9357660540897 7E-01)

The angle between these vectors, being also the angle reduced due to the ellipsoidal
target points:
B0 =121.876317 [¢]

Another reduction comes from the difference between normal sections of
the ellipsoid and tangents of geodesic — arms of the angle. The reduced angle as
the difference between geodesic azimuths obtained on the basis of approximate
coordinates, will be: £, = ag)® — ag? = 121.876317 [€] which basically means
(with an accuracy of rounding errors 0.01°) that it is identical to the angle obtained
from geodesic azimuths.

The greatest values achieved by the angle reduction due to cartographic mapping.
Even if it is the conformal mapping, the reduction defines the angle change due to
non-rectilinear mapping of geodesics on the plane. We assume, for example, the
conformal Gauss — Kriiger (transverse Mercator) projection in the special Polish
implementation: PL-1992. Determination of the angle reduction using the empirical
method will lead to the comparison of the relevant angles measures computed in
the two systems based on the corresponding approximate coordinates. The initial
approximate geocentric or geodetic coordinates will be transformed to the PL-1992
and then (on a plane) the angle between two chords will be calculated. We receive
in this way the measure of the mapped angle: S, ”) =121.878876 [¢]. The difference
3, O =pO0_p 0 =" 5559 [°]is the empirical value of the angle reduction.

As shown in Table 5, the empirical determination of reduction leads to approximate
measure angle in various systems based on the approximate coordinates, and then
the formation of the corresponding differences of those measurements. In particular,
direct reduction of observations from the measurement space on the mapping plane is
thus possible. In this case, the calculation of azimuth of geodesic is not necessary. In
comparison with classical multi stage reducing, the empirical methods can be used in
one step. It implies so the essential decrease the quantity and the cost of calculations.
Moreover, the high numerical exactitude of empirical methods is independent from
mutual distance of network points.
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7. Conclusion

Empirical method of observational reducing (on the ellipsoid or on the mapping
plane) is characterized by high accuracy, superior to classic methods, in particular
regarding distance mapping. As shown in the test in Section 5, the published classic
forms and algorithms are not suitable for a use of a very long GNSS vector, leading
to unacceptable numerical error.

In application of empirical methods, approximate coordinates of all the points
that define the geometry of the network elements are necessary. Regardless reduction
problems, the approximate coordinates of the network points are a input subset of
data to solve the problem of a non-linear network adjustment. During the iterative
solving (the Gauss-Newton procedure is typically used), the approximate coordinates
are successively (iteratively) improved. At the same time, the empirically determined
reductions converge to certain optimum values, despite being a relatively large
change of approximate coordinates, but sufficient for the convergence of Gauss-
Newton process, should not have any significant influence on the values of the same
reductions.

Empirical methods can be applied to a sequence of elementary reductions, not
necessarily only at the mapping stage. Starting from the physical observational space
we need to use, in addition to the approximate coordinates, additional information
arising from physical fields (eg. characteristic curve of refraction, the components
of vertical deviations, height anomalies), also included in the classic methods of
reduction.

This paper did not attempt to cover all possible cases of reductions of
geodetic observations. The aim was mainly to show the capabilities and properties
(especially in terms of precision) of empirical methodology for the observational
reductions. These examples, that also serve as models for all other analogies, could
be applied.
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