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Abstract: This review covers aspects of soil science and soil biology of Antarctica with special
focus on King George Island, South Shetlands, the martitime Antarctic. New approaches in
soil descriptions and soil taxonomy show a great variety of soil types, related to different parent
material, mainly volcanic origin, as well as on influences by soil biological processes. The
spread of higher rooting plants attract microorganisms, nematodes and collemboles which in
turn build new organic material and change the environment for further successors. Microbial
communities are drivers with respect to metabolic and physiological properties indicating
a great potential in a changing environment. The literature review also shows a lack of investi−
gations on processes of carbon and nitrogen turnover, despite wide knowledge on its standing
stock in different environments. Further, only few reports were found on the processes of
humification. Only few data are available which can be regarded as long term monitorings,
hence, such projects need to be established in order to follow ecological changes.
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Introduction

Soils of Antarctica are widely regarded as poor with respect to nutrients, places
for plants and habitats for organisms. Tedrow and Ugolini, pioneers in soil science
of this continent described them as young soils without horizons and raw in terms
of their functions for soil processes (Tedrow and Ugolini 1966); their material,
however, derived from the Antarctic deserts on the continent. Campbell and
Claridge (1987) made a first comprehensive attempt to review soils and soil devel−
opment on the Antarctic continent, a main focus was put to weathering processes.
Another synthesis of soils for Antarctica was published by Bockheim and Ugolini
(1990). Detailed studies in these coastal areas show a great variety of soils with
special characteristics providing various niches for plants and soil organisms from
bacteria to insects. Impacts of climate warming has been documented widely, e.g.
Guglielmin (2008). This review will focus on King George Island soils while
viewing on soil scientific steps to its actual state−of−art.
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Soils of King George Island

A view on the soils of the area of the Antarctic Peninsula and its islands gives a
more differentiated picture, which started with investigations on Signy Island and
first spots at South Shetlands (Everett 1976). Here, like in other coastal areas, soils
with developed plant stands by Deschampsia antarctica and Colobanthus quitensis,
large moss beds and turfs as well as wide lichen heaths formed by usnean species and
surface covers of Prasiola crispa at wet areas were found as significant indicators
for soil development. This restricted growth pattern, however, probably results not
only from late deglaciation, but also from climatic conditions, as burried plant debris
of sorted circles at King George Island have been dated between 720 and 4710 years
ago (Jeong 2006).

The maritime Antarctic has attracted much interest as retreating glaciers are
forming new landscapes. Plant colonization and subsequent soil formation processes
are regarded as a big natural laboratory. An eco−climatic description of the Antarctic
Peninsula and islands adjoined to the west side show soils of this region, they are af−
fected by grass−herb−fellfields, as well as turbels with different suborders (Bockheim
and Hall 2002). A recent review of Antarctic soils has been published under special
regard of climate warming (Ugolini and Bockheim 2008; Ramos et al. 2009).

King George Island has an ice−free area of about 8%, weathered soils derived
mainly from volcanic rock (andesite basalts and theirs pyroclastics), however,
sedimentary rock may be also important in few sites. The periglacial condition
with cryoturbation widely prevents active plant growth. Nevertheless, a great va−
riety of soils has been described for Arctowski region, such as Haplorthels,
Umbriturbels, Umbriorthels, Aquiturbels, Haploturbels, Sapristels, Mollorthels,
and Psammorthels as determined according to Soil Survey Stuff 1998 (Blume et
al. 2002). Cryosols, Leptosols, Regosols and Fluvisols (WRB taxonomy) are de−
scribed as main types by Francelino et al. (2006) for the Keller Peninsula region.

Soil development is generally related to actual vegetation and general environ−
mental factors (Blume et al. 1996, 1997), but it is also important to explain soil’s his−
torical role when used as data archieves (Tatur and Myrcha 1993, Fabiszewski and
Wojtuń 1993). A detailed view on soil formation in the region is presented by Blume
et al. (2002). Another attempt to characterize the soils of King George Island has
been made by Zhao and Li (1996), based on features of diagnostics of soil develop−
mental stages. Schaefer et al. (2007) identified by GIS mapping of the Arctowski re−
gion 20 units of soil scapes and typed them due to their vulnerability and thus pre−
sented a geo−environmental map, partly comparible to that of Blume et al. (2002).

Antarctic soil formation

The new version of the US Soil Taxonomy summarises the dry permafrost−af−
fected soils as Anhydrous soils (Soil Survey Staff, 2003) and Gelisols, where
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pedogenetic processes like cryoturbation, brunification and podzolization oc−
curred (Blume et al. 1997; Beyer et al. 1999). The latter process, podzolization,
originally typical for the northern boreal areas, has been under great dispute after
its first decription for soils of the continental Antarctic (Blume and Bölter 1993a,
b). Podzolization was also found in the maritime Antarctic (Blume and Bölter
1994, Blume et al. 1997; Blume et al. 2002). The proof for this process was given
by the spodic horizons formed by derivates from high molecular matter of lower
plants and chitin but other than lignin (Beyer et al. 1997).

The low temperatures hamper physical weathering processes at the level of in−
organic as well as organic matter. Clay−sized minerals are widely distributed in
soils from King George Island and its ongoing chemical weathering is enhanced
by soil dwelling organisms (Sinas et al. 2006). Frost activities are responsible for
formations of silt and clay, Feldspars and pyroxens, maine components of rock,
weathered very easily, but actual activation of nutrients is poor for the region of
Arctowski Station.

The inputs of inorganic nutrients by chemical weathering processes are small
but detectable. Nutrient leaching in form of water soluble ions is high due to the
coarse material with only few contents of humics but it is hard to state the behav−
iour of nutrients in the soil profiles, as biological and soil physical factors have to
be considered adequately (Chen and Blume 2000). Another important factor for
soil development took place while the Island’s uplifting during the Holocene. Nu−
trients rich in phosphatic remains of fossile pengiun rookeries promoted the estab−
lishment of vegetation (Tatur et al. 1997). Some spots have been accepted suitable
for humus accumulation (Beyer et al. 1997, 1998; Beyer and Bölter 1999). Under−
neath moss beds and lichen cover some humification occurs with results in brown
humus and fulvic acids (Fabiszewski and Wojtuń 1993; Vlasov et al. 2006) al−
though only little is known about the formation of humics. Sokolovska et al.
(1996) found on Livingston Island both, humic and fulvic acids, but no real humus,
they describe it as semi−humified organic material. Beyer et al. (1995) analysed or−
ganic materials from Podsols sampled on relict penguin rookeries from the conti−
nental Antarctic (Casey Station) and also found fulvic acids and humic acids.
Podsols of the Antarctic are less acid and have lower C/N−ratios than those of
lower latitudes (Blume et al. 1996; Beyer et al. 2004).

Soil forming process in relic penguin rookeries are also described by phos−
phatisation (Tatur 2002). Carbonization, salinization and alkalinization were not
found in the regions of Arctowski or Casey, present carbonate on young moraines
obviously derived from till (Blume et al. 1997).

Direct links to soil development could be established not only for organic mat−
ter, but also mainly for water relations which pose in many cases dominant limiting
factor for life reactions (Bölter 2005). Soils of glacier forelands are greatly influ−
enced by its corse structure and high stone content, combined with low contents of
humic material they provide only low water holding capacity, its dryness is further a
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result of strong winds, which enhance evaporation and erosion. Thus, especially top
layers are under strong erosion stress preventing plant colonization and subsequent
stable habitat formation. Just crust forming microalgae and cyanobacteria and here−
with connected associations can provide a kind of stability in young soils (Elster
2002), a fact which is generally described for both, poor cold and hot environments.
Inoue (1991) proposed that water relation is the dominant factor for lichen distribu−
tion on King George Island rather than temperature, as precipitation dilutes salt from
wind−blown sea spray. The variability in isotopic contents of N and C underlies that
N sources are locally of different origin and intensity (Lee et al. 2009).

Constitutive nitrogen inputs are mainly related to birds, i.e. penguin rookeries,
sea spray and nitrogen fixing autotrophs, either by free−living cyanobacteria or by
associations in symbiosis. Most of the ammonia−N in the atmosphere is derived
from volatilization in rookeries, whereas percolation and run off transports much
N directly back to the sea (Tatur and Myrcha 1983). For soils near Arctowski Sta−
tion, N−fixation rates were in the range between 1 and 6 ng N g−1 soil h−1 (Bölter
1995a), data which could be related to other Antarctic and to alpine sites. How−
ever, it remains hard to estimate the bulk N content of these soils as most of it is
present as salts and not in organic matter (Beyer et al. 1997).

Phosphates could be traced back to parent rocks (Chen and Blume 2000). Gener−
ally, phosphates are rare in this enviroment and thus limiting for biological pro−
cesses. Studies at Fildes Peninsula showed considerable weathering processes and
enrichment of phosphates Liu (1991). Relatively high values for total phosphates
were found at King George Island (>2 g kg−1, Blume et al. 2002). Penguin rookeries,
both active and abandonned, have been recognized as main sources for phophate in
soil (Juchnowicz−Bierbasz and Rakusa−Suszczewski 2002; Michel et al. 2006) and
were analysed in detail for this aspect at King George Island (Tatur 1989; Tatur and
Keck 1990; Tatur 2002; Barczuk and Tatur 2003). They significantly promote the
growth of D. antarctica by their formations of large tussocks among mosses and
mats of Prasiola crispa and Nostoc commune (Olech 2002). Although nutrient input
(both, N and P) by precipitation is lower than in other world regions, its contribution
is significant for fertilisation and thus might also promote soil biological activities in
remote places (Nędzarek and Rakusa−Suszczewski 2007).

Estimates for soil carbon contents for the region of the Antarctic Peninsula soils
are about 600 Mt (Claridge et al. 2000). Its relevant production derives from mosses
and higher plants, although they are limited by harsh environmental conditions. The
evolution of environments for soil biological communities depends on growth of
higher plants which provide food and shelter. Sites with D. antarctica and C.
quitensis were found as places with elevated levels of soil activity and active food
webs (Bölter 1995b; Bölter et al. 1997), where the root system is the dominant place
of a shared community of bacteria, nematodes and collembola. Such embedded en−
vironments are local spots with apparent biotic interctions, although they are still un−
der question for higher trophic levels (Hogg et al. 2006).
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Soil formation related to soil organisms

Biological soil forming processes in Antarctica are promoted by rooting plants
and soil dwelling organisms, i.e. microorganisms (bacteria, cyanobacteria, micro−
algae and fungi), nematodes and collemboles, soils provide them various habitats.
Despite low levels of fresh organic material in most areas, a basic community of
microbes is present working at almost lowest metabolic rates. More complex food
webs can be found in areas with plant growth, especially when rooting plants are
available, although the abundance of higher plants needs several years to influence
the soil environment (Strauss et al. 2009). Several surveys of soil microbial abun−
dances and activity were performed in soils near Arctowski Station (Bölter 1995;
Bölter et al. 1997, 2002; Bölter and Blume 2002; Beyer et al. 2002).

Mosses and lichens form associations on moraines, protecting the primary barren
soils from direct weather influences and thus forming basic environments making
them suitable for microbes and lower organisms. Such mats, as described by Lindsay
(1969) are of different associations and widely spread over the maritime Antarctic,
recent phyto−sociological reviews show their dominant role in Arctowski region with
differences in areas affected by penguin rookeries and dryness on moraines (Kappen
2000; Olech 2002; Smykla et al. 2007; Victoria et al. 2009). These mats can be re−
garded as stimulating agents for further chemical weathering processes leading to
precursors of podzolic environments (Beyer et al. 2002; Pereira et al. 2008).

The nutritional environment and moisture conditions do not only change the
phenotype of D. antarctica but is also reflected in genetic differences due to adapta−
tion processes (Chwedorzewska et al. 2004). D. antarctica and C. quitensis are typi−
cal for moraines which have been found as abandoned penguin rookeries (Tatur et
al. 1997). The spread of the two native herb plants, especially D. antarctica, has also
been used as an indicator for environmental change due to global warming (Komár−
ková 1985; Komárková et al. 1990; Smith 1994). They have been monitored as indi−
cators for soil development also on other places of the Antarctica Peninsula (Kim et
al. 2007; Strauss et al. 2009). Its growth and expansion on glacier forelands has
shown them also as primary colonists (Kozeretska et al. 2010). These plants have
formed brownish soils with high contents of organic matter providing habitats for
communities of microbes, nematodes and collemboles (Bölter et al. 1997; Mouratov
et al. 2001; Maslen and Convey 2006; Yergeau et al. 2007; Gryziak 2009). Thus,
nematodes can be regarded as main indicator of progressiv soil development.

The taxonomic diversity of microbes also has been described as low (Wynn−
Williams 1996) but this needs to be seen in the light by an euryoecious capability of
the flora to cope the conditions of environmental changes even in short times and for
divers stress factors (Bölter et al. 2002; Bölter 2005). Comparable to the findings
with D. antarctica (Chwedorzewska et al. 2004), microbes also react in their diver−
sity to environmental factors (Chong et al. 2009, 2010). But not only adaptations to
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contraints of the soil environment has been reported, also protection against UV−ra−
diation is described in spores of Bacilus subtilis (Cockell et al. 2003).

Divers communities of bacteria in the foreland of Ecology Glacier were found
by Greziak et al. (2009). The great diversity of microorganisms is also shown by
high species numbers of actinomycetes, which showed the pattern of psychro−
philes (Hu et al. 1993; Christova and Naidenova 1996) as well as by their physio−
logical capacities (Pietr 1986; Zdanowski and Węgleński 2001). The complexity
of the microbial community in glacier forelands has been studied by an example at
Svalbard and showed that cyanobacteria play an important role, the dominance of
heterotrophic bacteria are obviously more related to vegetated plots (Kastovska et
al. 2005). All three groups of microorganisms, bacteria, inclusive cyanobacteria,
microalgae and fungi have been found as primary colonizers in mineral soils
(Bölter 1997; Elster et al. 1999; Mataloni et al. 2000).

Fungi even dominate the bacterial community by biomass in soils of Living−
ston Island (Bogoev and Gyosheva (1996). High adaptability is probably also true
for fungi (Azmi and Seppelt 1998; Yergeau et al. 2007). Further, several new spe−
cies of bacteria and fungi have been isolated and determined, partly with special
properties for live in this environment, mainly psychrotolerance (e.g. Bozal et al.
2003; Yi et al. 2005). The latter property is probably also an important survival
strategy for fungi (Robinson 2001, Stchigel et al. 2001).

Microbial activity is probably less influenced by a primary plant cover, moss
(Sanionia uncinata) or grass (D. antarctica). Data of CO2−evolution show similar
levels, however, microbial biomass was found highest at sheltered locations under
the moss cover indicating, e.g. by different respiratory quotients, different eco−
physiological states of the communities (Lavian et al. 2001). Close relationships
between microbial activity, determined by soil respiration and microcalorimetry
can generally be attributed to elevated carbon levels (Bölter 1994).

Microbial processes are basically controlled by temperature, moisture and the
availability of organic matter. The control about the degradation of particulate
matter, i.e. fresh debris, to a form which makes it available to microbes passes pri−
mary steps by collemboles and nematodes and finally the extracellular enzymes of
fungi and bacteria. This serves as a main link between dead material and its return
to biomass and the food web via microorganisms (Bölter and Kandeler 2004).

During a long term experiment on the decomposition of debris from D.
antarctica an increase in fungi could be monitored, whereas the bacterial commu−
nity did not show significant changes (Malosso et al. 2004). It is further an
interesting finding, that penguin rookeries, i.e. the related microbial communities,
evolve methane and nitrous oxide in ranges like emissions from northern mesic
tundra sites (Sun et al. 2002). Such emissions, although at lower rates have also
been measured in the Dry Valley region (Gregorich et al. 2006). This high vari−
ability in physiological and metabolic properties of the microbial community, es−
pecially the copiotrophic bacteria shows a high potential of heterotrophic and
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autotrophic processes in this environment. Hence, a high potential can be seen
which can create new biological niches and soil development.

Further tasks

Onging climate warming affects Antarctic environments like others in the
world. Several indicators show these effects which can be seen in ecological stud−
ies. The spread of the endemic higher plants to new places, so far only covered by
lichens or mosses, leading to new environments with higher trophic relationships,
followed by significant changes in the soil environment and preparing it on the
long run for a change from desert to larger tundra regions. This is accompanied by
invadors of higher plants and probably animals. Further, seedlings from plants
may find better places for growth and spreading. On the other hand, not only ef−
fects by invading organisms has to be taken into account.

The changing atmospheric circulation, local and global, and human impacts
have to be taken into account as well as inputs from melting glaciers (Leal et al.
2008). The changing of general environmental conditions are more and more re−
flected in new and stabalized habitats, which can be better related and compared to
those from others regions and be categorized by ecological frames (Blume and
Bölter 2004). Thus, comprehensive monitoring programs for distinguished places or
organisms, like for crustose lichens (Sancho and Pintado 2004), successions on new
moraines after glacier retreat (Tscherko et al. 2003), or revisits to formerly analysed
places be related methods and commonly accepted protocols (Bockheim et al. 1993)
are necessary to follow the changes in soil development and ecology. An idea which
is currently developed by the Polish team in the ClicOPEN IPY project.
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