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Abstract: In marine seismic wide−angle profiling the recorded wave field is dominated by
waves propagating in the water. These strong direct and multiple water waves are generally
treated as noise, and considerable processing efforts are employed in order minimize their
influences. In this paper we demonstrate how the water arrivals can be used to determine the
water velocity beneath the seismic wide−angle profile acquired in the Northern Atlantic.
The pattern of water multiples generated by air−guns and recorded by Ocean Bottom Seis−
mometers (OBS) changes with ocean depth and allows determination of 2D model of veloc−
ity. Along the profile, the water velocity is found to change from about 1450 to approxi−
mately 1490 m/s. In the uppermost 400 m the velocities are in the range of 1455–1475 m/s,
corresponding to the oceanic thermocline. In the deep ocean there is a velocity decrease
with depth, and a minimum velocity of about 1450 m/s is reached at about 1.5 km depth. Be−
low that, the velocity increases to about 1495 m/s at approximately 2.5 km depth. Our
model compares well with estimates from CTD (Conductivity, Temperature, Depth) data
collected nearby, suggesting that the modelling of water multiples from OBS data might be−
come an important oceanographic tool.

Key words: Arctic, Atlantic Ocean, controlled source seismology, ocean bottom seis−
mometers, wave propagation, seafloor multiples.

Introduction

Seismic wide−angle profiling with use of air−guns and ocean bottom seismom−
eters (OBS) is one of the most effective techniques in investigations of the crustal
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structure beneath oceans (e.g. Mjelde et al. 2008). In August 2008, the seismic re−
fraction profile BIS−2008 (Bear Island – South) was acquired within the 4th Inter−
national Polar Year (IPY) project “The Dynamic Continental Margin Between the
Mid−Atlantic−Ridge (Mohns Ridge, Knipovich Ridge) and the Bear Island Re−
gion” (Fig. 1; Schweitzer et al. 2008a, b). The 410 km long SW−NE striking profile
crosses the boundary between the oceanic crust of the North Atlantic and the conti−
nental crust of the Barents Sea platform, and the crustal structure derived from this
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Fig. 1. Location map of the BIS−2008 seismic profile (Mohns Ridge−Bear Island) on the background
of a topography/bathymetry map (Jakobsson et al. 2000) and simplified tectonic elements of the area
(Gabrielsen et al. 1990; Faleide et al. 2008). Main fault zones and basins: BB, Bjørnøya Basin; BFC,
Bjørnøyarenna Fault Complex; FP, Finnmark Platform; HB, Hammerfest Basin; HFZ, Hornsund
Fault Zone; KF, Knølegga Fault; LDF, Leirdjupet Fault; LH, Loppa High; SB, Sørvestsnaget Basin;
SH, Stappen High; VH, Veslemøy High; VVP, Vestbakken Volcanic Province. Blue open triangles
are OBSs with their numbers (102–115). Small red circles show locations of 104 TNT shots with av−
erage distance intervals of 2 km, and black line shows 1914 air−gun shots with distance intervals of

~200 m. The red frame in insert is the area for which details are shown in the main map.
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Fig. 2. Example of amplitude−normalized, vertical−component seismic section of TNT shots recorded
by OBS110; location of the OBS is shown by black triangle. Note characteristic strong phases
recorded in the oceanic part of the profile – water waves (direct and multiples), which contain most
of the energy, relatively weak P−waves in the crust and uppermost mantle, multiples and S−phases.
Band−pass filtration is 3–17 Hz and reduction velocity is 8 km/s. The amplitude scaling factor

(ampl = 6.05) is trace normalized and corresponds to 6.05 km of the distance scale.



profile were presented by Czuba et al. (2011). The main task for deep seismic
soundings by use of the refraction technique is recognition of the sedimentary
cover structure including hydrocarbon reservoirs, crystalline basement and the
crust−mantle transition (Moho).

In addition to sedimentary and crustal arrivals, the seismic wave field re−
corded off−shore contains high−energy waves that have propagated in the water
layer only. During processing of multichannel seismic data, much effort is gener−
ally used in order to reduce such strong water reverberations. It has been shown,
however, that processing of the data aiming at imaging the water layer itself can
provide useful oceanographic information (e.g. Holbrook et al. 2009). The direct
down−going wave and seafloor multiples have very high amplitude in OBS data
(Fig. 2), but since the crustal arrivals of interest generally arrives earlier, the di−
rect wave is usually not considered in further processing and modelling of the
data. In this paper we will show, as a feasibility study, that modelling of the
seafloor multiples can provide a detailed estimate of the sound velocity in the
water layer. This new approach of handling OBS data might become an impor−
tant oceanographic tool.

Data acquisition

The seismic refraction experiment along the North Atlantic BIS−2008 profile
was performed in August 2008 with use of two ships: Norwegian R/V Håkon
Mosby and Polish R/V Horyzont II. The geographical coordinates of BIS−2008 pro−
file terminations are: �0 = 72.114�N, �0 = 9.600�E (southwesternmost air−gun
shot), �end = 74.460�N, �end = 19.263�E (Bear Island in northeast; Fig. 1). The
sources of seismic waves were air−gun and chemical shots performed in the sea.
Off−shore air−gun shooting along the whole profile length was done by R/V Håkon
Mosby with use of a system of four air−guns of volume 1200 in3 each (total volume
of 4800 in3 or 78.66 l). Altogether 1914 air−gun shots were performed with dis−
tance intervals of 200 m (corresponding to about 1 minute time interval), at a water
depth of 10–12 m. A total of 104 chemical shots (25 kg of TNT each) were fired in
the water by R/V Horyzont II along the northeastern part of the profile (distance
along profile 176.4–385.5 km), with average distance intervals of 2 km. The firing
depth of the chemical explosions was approximately 30 m.

All shots were recorded by 15 short−period, three−component ocean bottom
seismometers (OBS; station numbers 102–115) deployed by R/V Håkon Mosby.
Location determination and synchronization of all shots and seismic receivers
were obtained using the GPS satellite system. All OBSs recorded continuously
during the experiment with a sampling rate of 4 ms (256 Hz). After resampling to
10 ms (100 Hz) records of 60 s length (with zero time corresponding to original
shot time) were tied to the navigation.
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Fig. 3. Example of amplitude−normalized, vertical−component seismic section of air−gun shots re−
corded by OBS107 located in the middle of the profile. Band−pass filtration is 2–15 Hz and reduction
velocity is 1.5 km/s. Note the asymmetry of water multiples between the ca 2 km deep ocean (left part

of the section) and shallower, ca 1 km water depth (right side).



Observed seismic wave field in water

The seismic records obtained along the BIS−2008 profile are of good−quality,
which allowed detailed wave field analysis and crustal structure modelling (Czuba
et al. 2011). In the interpretation process, different bandpass filters, zooms and
amplifications were applied to record sections in order to display interesting arriv−
als as clearly as possible. Seismic wave fields recorded off−shore are usually domi−
nated by waves propagating in the sea: the direct water wave, bubble pulses and
multiples. An example for an amplitude−normalized seismic section from TNT
shots recorded by OBS110 is shown in Fig. 2. Strong water waves (direct and mul−
tiples) recorded in the oceanic part of profile contain most of the seismic energy,
while waves from the crust and uppermost mantle are much weaker.

Although records of chemical shots have the best signal−to−noise ratio, air−gun
shots have advantages in more stable pulse shape and better spatial sampling. The
short distance between shots (in this case 200 m) permits straight forward correlation
of phases from trace to trace. An example of air−gun shots recorded by OBS107 lo−
cated in the middle of the profile is shown in Fig. 3 (plotted as wiggle trace WT). The
plot shows all traces spaced every 200 m and plotted as amplitude−normalized
seismograms. The reduction velocity is 1.5 km/s and it is easily seen that the stron−
gest water phases propagate with a velocity slightly slower than 1500 m/s. The 2–15
Hz band−pass filtered seismograms are dominated by water multiples, which appear
much stronger than crustal arrivals and their multiples (seen with higher velocities
recorded closely to the OBS, in the reduced time interval from −2 to 1 s). The asym−
metry of the water multiples results from the depth to the seafloor, which changes
from ca 2 km in the left part of the section to ca 1 km depth on the right side.

Fig. 4 demonstrates the large pattern differences of the recorded water waves
between an OBS deployed at 2 km depth (OBS104) and 0.5 km depth (OBS110),
respectively. Note the much higher resolution for the dense air−gun source in com−
parison to the coarser TNT shots recorded by the same instrument (OBS110;
Fig. 2). Another visualisation has been used for OBS103, OBS109 and OBS114 in
Fig. 5. All traces are here plotted as variable area (VA) plot with band−pass filtra−
tion 2–15 Hz and reduction velocity 1.5 km/s. The amplitude−normalized, verti−
cal−component seismic sections of the air−gun shots illustrate how the pattern of
water multiples changes with ocean depth h and distance x along the profile. In the
case of a deep ocean floor, consecutive multiples are clearly separated from each
other. For OBS103, located at 2015 m depth, the direct water wave traveling from
the surface to the seafloor is recorded in reduced time at about 0.3 s. The first mul−
tiple needs to travel back to the surface and then back again to the seafloor in about
0.6 s, and is thus recorded at about 0.9 s. Subsequent multiples are also delayed by
about 0.6 s, and hence recorded at 1.5 s, 2.1 s, etc. For OBS109, located at 878 m
depth, the time difference between multiples is much shorter, and for OBS114, lo−
cated at 240 m depth, the individual multiples interfere.
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Variable area plots are adequate for demonstrating correlation of phases and are
thus preferred for visiual correlation and kinematic modelling. On the other hand,
a wiggle trace (WT) plot express the true relative amplitudes and is hence preferred
in dynamic modelling, when observed and calculated amplitudes are compared.
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Fig. 4. Example of amplitude−normalized, vertical−component seismic sections of air−gun shots re−
corded by OBS104 and OBS110 (compare with Fig. 2). Each third trace is plotted, band−pass filtra−

tion is 2–15 Hz and reduction velocity is 1.5 km/s.



382 Marek Grad et al.

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

6 5 4 3 2 1 0

S
W

N
E

D
i
s
t
a

n
c
e

x
[
k
m

]

Reducedtime[s]

O
B

S
1

0
3

O
B

S
1

0
9

O
B

S
1
1

4

x
=

6
5

.
9

k
m

,
h

=
2

0
1

5
m

x
=

2
2

2
.
6

k
m

,
h

=
8

7
8

m
x
=

3
5

3
.
0

k
m

,
h

=
2

1
0

m

Fig. 5. Example of amplitude−normalized, vertical−component seismic sections of air−gun shots il−
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Modelling method

The 2D modelling of water waves recorded along the BIS−2008 profile was
performed using a state−of−the−art ray tracing technique. Computation of travel−
−times for direct and water multiple phases, as well as ray paths and synthetic
seismograms were performed using the SEIS83 software (Červený and Pšenčík
1983). The modelling can be performed with constant velocity, or it can include
vertical and horizontal velocity gradients.

Travel−times for the direct wave and the consecutive multiples were succes−
sively altered by trial and error and recalculated until congruence was obtained be−
tween observed and model−derived travel−times. A misfit of the order of 0.05 s was
typical. The modelling was based on the 2D velocity model for sediments, consoli−
dated crust and crust−mantle transition presented by Czuba et al. (2011).

Derivation of 2D sound velocity model in water

In the modelling of ocean sound velocity distribution along the BIS−2008 profile
we used record sections plotted with a reduction velocity of 1.5 km/s. The reduced
time interval from −2 to 8 s is dominated by water waves, with exception of crustal
waves with higher velocities recorded in the vicinity of the OBSs. All record sec−
tions with water waves are of high quality, but due to their increased spatial resolu−
tion, most of the modelling was based on the recordings from the air−gun shooting.

In the first step of modelling we used models with constant water velocity. The
water depth was taken from the echo sounder, which recorded continuously along
the profile. The sea bottom depth changes from about 2400 m in the SW end of the
profile, to about 1200 m near the continental−ocean boundary at about 250 km along
the profile, and to zero at the Bear Island coast in the NE end of profile (see
bathymetry in Fig. 1). Examples of modeled water multiples for the homogeneous
water model are shown for OBS102 in Fig. 6. The figure shows the recorded section
for OBS102, and sections with calculated travel−times for constant velocities in the
water of V = 1460, 1470 and 1480 m/s, respectively. In all three cases the travel−time
of the direct water wave fits the recorded arrivals well (see distance interval 25–55
km along the profile). However, for the water multiples the fit is not satisfactory for
the 1460 and 1480 m/s cases; note late arrivals for 1460 m/s and early arrivals for
1480 m/s. For velocity V = 1470 m/s the fit is very good, which means that the aver−
age velocity of sound in this part of profile is very close to 1470 m/s. This compari−
son shows that the average sound velocity in the water can be estimated to ±3 m/s.

A different wave field is observed in the case of shallow water. The ampli−
tude−normalized, vertical−component seismic section recorded by OBS115 in very
shallow water (36 m) is shown in Fig. 7. No water arrivals can be observed in the
air−gun section (Fig. 7a), while in the TNT section (Fig. 7b), clear water arrivals
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Fig. 6. Examples of modelled water multiples for the homogeneous water model. Labeled are the re−
corded section for OBS102 and sections with calculated travel−times (blue lines) for constant veloci−
ties in water: V = 1460, 1470 and 1480 m/s, respectively. Note the late arrivals for 1460 m/s and early
arrivals for 1480 m/s. For V = 1470 m/s fitting is very good. This example shows that the average ve−
locity in the water layer can be determined to ±3 m/s. The observed cut−off of the direct wave at about

40 km offset shows the necessity of including a vertical velocity gradient in the water.



are seen. The solid lines show calculated travel−times of the water wave with con−
stant velocity V = 1440, 1460 and 1480 m/s, respectively. A constant sound veloc−
ity of about 1460 m/s seems to represent a good envelope for water phases close to
the OBS, while slightly higher speeds are required at 310–330 km distance (see the
dotted line for 1470 m/s).

The calculation with constant velocity gives travel−time branches extending to
maximum offset. The observed sections however, demonstrate termination of ar−
rivals at certain offsets. For OBS102 (Fig. 6) the direct water wave is terminated at
about 20 km distance towards SW, and at about 60 km towards NE. The first water
multiple arrival is terminated at about 80 km distance towards NE. The long
travel−time branches of the direct wave and multiples in the homogeneous model
show the necessity of including a vertical velocity gradient in the water layer.
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The initial P−wave velocity for the water layer was assumed to be 1470 m/s,
which was slightly changed during the modelling process. The final velocity val−
ues, shown in Fig. 8, were in the range of 1450–1490 m/s and represent typical
sound velocities for the Arctic waters (Walczowski 2009). Examples of the kine−
matic modelling are shown for OBS103 and OBS108 in Fig. 9. Here, theoretical
travel−times calculated for the final water velocity model are plotted on the ob−
served record sections. In addition to kinematic modelling, synthetic seismograms
were calculated in order to control the velocity gradients within the water layer, the
velocity contrast between water and the seafloor, the Vp/Vs ratio in the shallowest
sedimentary layer, as well as the quality factor (Qp) for P−wave attenuation. The
modelling of the elastic parameters for the uppermost sediments is presented by
Grad et al. (2012). Fig. 10, showing the synthetic seismogram for OBS105, dem−
onstrates good qualitative agreement between calculated and observed amplitudes
for the water arrivals, as well as refracted and reflected crustal waves.

Sound velocity model

The model of sound velocity along the BIS−2008 profile shown in Fig. 8 demon−
strates that the water velocity varies over a relatively wide range from about 1450
m/s to 1490 m/s. In the oceanic crustal part of the model (distance 0–250 km along
the profile), the velocities in the uppermost 400 m are in the range 1465–1475 m/s.
In the coastal area of Bear Island, velocities from 1455 to 1460 m/s were found in the
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depth range 0–200 m. This is significantly slower than velocities derived for the
same depth range in the open ocean. In the deep ocean, the lowest velocities of about
1450–1455 m/s are found in the depth range 0.6–1.2 km (SOFAR channel). At the
depth of about 1.5 km the sound velocity reaches a value of about 1475 m/s, and it
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increases to about 1495 m/s at approximately 2.5 km depth. The modelling thus re−
veals high velocities near the ocean surface, lower velocities at about 1 km depth,
and increasing velocities towards the deeper ocean. Vertical velocity gradients are
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needed in order to terminate the travel−time branches at the observed offsets, and lat−
eral velocity variations are also observed.

The P−wave velocities in the seafloor sediments were found along the whole
profile length west of the Bear Island (Grad et al. 2012). The modeled velocity of
1.7–1.8 km/s is only slightly larger then the velocity in water, due to high porosity.
The testing of constant velocity models for the water arrivals showed that the accu−
racy of the average velocity could be estimated as ±3 m/s, or better. Similar accu−
racy was obtained by trial and error modelling by use of the ray tracing technique.

Comparison to CTD data

CTD (Conductivity, Temperature, Depth) profiling represent the state−of−
−the−art technique in oceanographic investigations of the physical parameters of
oceanic water. The CTD acquisition results in 2D profiles along which the electric
conductivity, temperature and pressure have been measured with depth at a certain
interval. The CTD tool is generally retrieved vertically with a velocity 1 m/s veloc−
ity. A typical sampling frequency of 24 Hz thus provides one measurement for
each 4 cm, which results in a much higher resolution than provided by the OBS
technique. A typical low−frequency source used for OBS surveys has a vertical res−
olution of about 30 m for the water arrivals.

From measured electric conductivity the salinity can be determined. Using sa−
linity (S; in PSU) and temperature (T; in �C), the sound velocity in water (c; in m/s)
with depth (z; in m) can be calculated using the simple formula (Clay and Medwin
1997):

c = 1449.2 + 4.6 T – 0.055 T2 + (1.34 – 0.01 T) (S – 35) + 0.016 z (1)

To compare our sound velocity determination with CTD data we used mea−
surements of salinity and temperature made with depth in the Northern Atlantic
(Walczowski 2009). In the summer of 2001, they measured salinity and tempera−
ture down to 2 km depth along a profile at 75�N (about 200 km north of the central
part of the BIS−208 profile). Typical values of S and T are shown in Fig. 11 (solid
lines). The most significant changes are observed in the upper 600 m of the ocean
(see also Leroy et al. 2008). For larger depths the changes of both S and T are
small, and the velocity is found to increase close to linearly with depth.

The velocity values along our 2D model of the BIS−2008 profile are shown by
the grey area in Fig. 11 (minimum to maximum values). Down to 1.5 km depth the
CTD and BIS−2008 values coincide, but for larger depths the seismic velocities are
5–10 m/s larger than those derived from the CTD data. We consider the similarity
between the measurements satisfactory, taking into account the differences related
to location and time of acquisition. This shows that the water arrivals in OBS data
can be used to obtain a continuous “snapshot” of first order oceanographic proper−
ties along 2D profiles.
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Conclusions

Seismic wide−angle profiling by use of OBSs represents a widely used tech−
nique for crustal and uppermost mantle investigations. When using air−guns or
chemical sources, the recorded seismic wave field is dominated by waves propa−
gating in the water, while “useful” crustal waves are significantly weaker. Strong
direct water waves and water multiples are generally treated as noise, and large ef−
forts are used during seismic processing in order to minimize their effects.

On the other hand, well recorded water waves may contain information about
sound propagation in the ocean. We show examples of seismic sections from the
Northern Atlantic recorded along profile BIS−2008. The acquisition geometry, us−
ing a dense system of air−gun shots recorded by OBSs, permits precise correlation
of the recorded phases. The short pulse emitted by the source allows clear discrimi−
nation between arrivals of consecutive multiples. The pattern of the recorded wave
field shows significant changes of multiples with ocean depth. Consecutive travel−
−time branches of water multiples are very sensitive for the sound velocity distri−
bution, much more sensitive than the direct water wave alone. For the same geom−
etry of source and receiver each additional multiple reverberation can be used to
determine the mean velocity more precisely because of the longer ray−path.
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Fig. 11. Salinity (S) and temperature (T) distributions (solid lines) in the Northern Atlantic at 75�N,
measured in the summer of 2001 down to 2 km depth (Walczowski 2009), with extrapolation down to
3 km depth (broken lines). The sound velocity (c) was calculated using formula (1), see Clay and
Medwin (1997). The data from our 2D water model beneath the BIS−2008 profile are shown for com−
parison by the grey area (range from minimum to maximum value with depth). See text for details.



Terminations of water arrivals at certain offsets demonstrate the need to in−
clude vertical gradients and horizontal inhomogeneities in the modelling. The 2D
sound velocity distribution in the water along the BIS−2008 profile is modeled to
vary from about 1450 m/s to about 1490 m/s. The velocities in the uppermost 400
m range from 1455 to 1475 m/s, corresponding to the oceanic thermocline (e.g.
Walczowski 2009). The velocity reaches a minimum of about 1450 m/s at approxi−
mately 1.5 km depth (SOFAR channel). For larger depths the velocity increases
close to linearly to about 1495 m/s at 2.5 km depth. In the shelf area of the Bear Is−
land, the velocities of 1455–1460 m/s in depth range 0–200 m are smaller than for
the same depths in the open ocean (1465–1475 m/s).

We estimate the uncertainty in the average velocity determined from the 2D
modelling at ±3 m/s or better. The modelling provides estimates of both vertical
gradients and horizontal inhomogeneities. The derived model fits both observed
travel−times and amplitudes.

Direct and multiple waves recorded in seismic experiments provide direct in−
formation about the time of phases propagating in water. Measured time can be di−
rectly transferred to sound velocity in water. On the other hand, oceanographers
calculate sound speed from CTD data. Our sound speed determination compares
well with the speed calculated from CTD data in the Northern Atlantic (Wal−
czowski 2009). However, for a more precise comparison the location and time of
measurements should coincide.

The new method presented in this paper provides velocity measurements in the
water layer on a regional scale; much larger than the local scale provided by CTD
measurements and smaller than the global scale inherent in oceanic sound speed to−
mography (Clay and Medwin 1997). We suggest that the seafloor multiples ob−
served in OBS data provide significant oceanographic information, which could be
“regained” from many profilings done over the world ocean in last decades. We
speculate that the modelling of multiples from OBS data might become an important
tool for monitoring oceanic currents and heat transport on regional scale (Piechura
and Walczowski 2009; Walczowski et al. 2005), as well as in past. For the future, we
encourage geophysicists to include the water arrivals in state−of−the−art modelling,
and suggest that CTD measurements should be collected above each OBS location
in future surveys. Simultaneous use of the two methods needs further exploitation.
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