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Abstract: Spearman’s Law of Diminishing Returns (SLODR) holds that correlation between general (g)/fluid (Gf) 
intelligence factor and other cognitive abilities weakens with increasing ability level. Thus, cognitive processing in 
low ability people is most strongly saturated by g/Gf, whereas processing in high ability people depends less on g/Gf. 
Numerous studies demonstrated that low g is more strongly correlated with crystallized intelligence/creativity/processing 
speed than is high g, however no study tested an analogous effect in the case of working memory (WM). Our aim was 
to investigate SLODR for the relationship between Gf and WM capacity, using a large data set from our own previous 
studies. We tested alternative regression models separately for three types of WM tasks that tapped short-term memory 
storage, attention control, and relational integration, respectively. No significant SLODR effect was found for any of these 
tasks. Each task shared with Gf virtually the same amount of variance in the case of low- and high-ability people. This 
result suggests that Gf and WM rely on one and the same (neuro)cognitive mechanism.
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Fluid intelligence (reasoning ability; Gf) is the core 
component ability of the general factor (g) of human 
intelligence (see McGrew, 2009). Gf consists of using 
reasoning (inductive, deductive, spatial, etc.) to solve 
novel abstract problems that cannot be solved solely on the 
basis of one’s knowledge. Gf is most often assessed with 
matrix problems or visual analogies (Snow, Kyllonen, & 
Marshalek, 1984). Gf has a profound influence on human 
behavior (see Deary, 2012), predicting socio-economic 
status of people as well as their daily life successes. Gf 
also strongly correlates with many cognitive abilities, 
like reading comprehension, creativity, learning, school 
achievement etc. 

One influential hypothesis regarding g’s (and, thus, 
Gf’s) predictive power with regard to other cognitive 
abilities is Spearman’s (1927) Law of Diminishing 
Returns (SLODR), rediscovered in current psychology 
by Detterman and Daniel (1989). SLODR assumes that 
correlation between g/Gf and other cognitive abilities 
weakens with increasing ability level. Thus, cognitive 

processing in low ability people is most strongly saturated 
by g/Gf – their abilities are quite homogeneous, whereas 
processing in high ability people depends less on g/Gf – 
their abilities are more heterogeneous. Numerous studies 
confirmed the SLODR effect (e.g., Der & Deary, 2003; 
Evans, 1999; Jensen, 2003; Reynolds & Keith, 2007; 
Reynolds, Keith, & Beretvas, 2010; but see Hartmann 
& Reuter, 2006). For example, low g is more strongly 
correlated with crystallized intelligence than is high g 
(Reynolds & Keith, 2007), and an analogous relationship 
was observed for creativity (the threshold hypothesis; see 
Jauk, Benedek, Dunst, & Neubauer, 2013) and processing 
speed (Der & Deary, 2003).

Probably the strongest known neurocognitive predictor 
of g/Gf is working memory (WM) – the mind/brain’s 
mechanism responsible for the active maintenance and 
transformation of the limited amount of information for 
the purpose of the current task. WM is usually tested with 
simple tasks that require memorization and later recognition 
or recall of some items (Cowan, 2001). Specifically, 
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the average number of detected or recalled elements or 
relations is taken as the WM capacity (WMC). It has been 
demonstrated that WMC usually explains between half 
(Kane, Hambrick, & Conway, 2005) and three quarters 
(Oberauer, Schulze, Wilhelm, & Süβ, 2005) of Gf variance. 
Some studies have even reported that WMC is isomorphic to 
Gf (Chuderski, 2013; Oberauer, Süß, Wilhelm, & Wittmann, 
2008; Martínez et al., 2011). However, WM is itself quite 
a complex construct, and much research has been devoted to 
understanding what mechanisms underlie its capacity. 

One influential theory assumes that individual 
performance in both WM tasks and g/Gf tests depends 
on attention control exerted over cognitive processes, 
which includes the goal-driven directing of attention and 
the filtering out distraction (e.g., Burgess, Gray, Conway, 
& Braver, 2011; Kane & Engle, 2002). Evidence for this 
theory comes from demonstrations of associations between 
g/Gf and tests of attention control, such as tasks which 
require prolonged vigilance, coping with interference, 
or making fast antisaccades (e.g., Burgess et al., 2011; 
Unsworth, Redick, Lakey, & Young, 2010). The attention 
control theory of fluid intelligence holds that people with 
low attention control are poor test-takers because they find 
it difficult to maintain reasoning goals in WM, and thus 
their cognitive processing is prone to frequent capture by 
irrelevant stimuli.

Alternatively, it was shown that performance on 
simple short-term memory (STM) tasks, which require little 
attention control, was at least as good a predictor of g/Gf 
as performance on tasks requiring executive control, when 
rehearsal and chunking were blocked in the former tasks 
(Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008; 
Cowan, Fristoe, Elliott, Brunner, & Saults, 2006; Martínez 
et al., 2011). Moreover, Chuderski, Taraday, Necka, and 
Smolen (2012) showed that tasks tapping storage could 
explain 70% of variance in Gf, and when differences in 
storage capacity were controlled, attentional control was 
no longer a significant predictor of Gf (for a similar result 
see Martinez et al., 2011). These results suggest that sheer 
storage capacity (the number of items simultaneously 
held in WM) may be the key determinant of intelligence, 
probably as it allows an individual to keep the subproducts 
of reasoning in the most active and accessible part of WM 
(see Carpenter, Just, & Shell, 1990; Cowan et al., 2006). 

WM may also play an important role in g/Gf because it 
affects what relations can be constructed among WM items 
(e.g., Halford, Baker, McCredden, & Bain, 2005; Hummel 
& Holyoak, 2003; Viskontas, Holyoak, & Knowlton, 2005). 
Notably, Oberauer and his collaborators (e.g., Oberauer, 
Süß, Wilhelm, & Sander, 2007; Oberauer, Süβ, Wilhelm, 
& Wittmann, 2008) proposed that relational integration 
was crucial to intelligence. Relational integration consists 
of the construction of flexible, temporary bindings between 
a number of chunks held in WM, or between them and their 
corresponding mental coordinates, in order to develop a more 
complex, relational structure. This structure may include 
either concrete coordinates (e.g., serial positions in a recall 
task), or abstract placeholders (e.g., roles in a schema in 
a reasoning test). The temporary bindings allow an individual 

to integrate information into completely new relational 
structures. Oberauer et al. (2008) measured ability to process 
bindings using tasks which required participants to constantly 
monitor perceptually available stimuli so as to detect simple 
relations such as three rhyming words appearing in a row or 
column of a three-by-three matrix of words. These authors 
have demonstrated that scores in such tasks can be excellent 
predictors of WMC and g/Gf (see also Chuderski, 2014).

Important knowledge on why WMC so strongly 
predicts g/Gf may be acquired by means of testing 
whether WMC, like other cognitive abilities, is subject 
to SLODR. However, to date this issue has not been 
examined satisfactorily. Our aim consists of a preliminary 
investigation of the SLODR effect for the Gf-WMC 
relationship, using a large data set from our own previous 
studies. We conduct our tests separately for the three 
types of WM tasks, each tapping one of three crucial WM 
mechanisms (short-term memory storage, attention control, 
and relational integration) proposed by the three above 
mentioned accounts of WM. This seems a rational strategy, 
especially as some existing theoretical models predict 
different SLODR effects for different WM mechanisms 
(see below).

Four hypotheses pertaining to the relationship 
between WMC and g/Gf, depending of the g/Gf level, can 
be considered. First, the SLODR effect can be confirmed 
also in the case of WMC, with WMC predicting more 
variance in g/Gf for less intelligent participants than for 
more intelligent ones. Second (the null hypothesis), 
no SLODR effect can be found, meaning that WMC 
predicts similar part of ability variance regardless of g/Gf. 
Moreover, some evidence suggests that it is possible that 
the contribution of each WM mechanism to g/Gf depends 
on the strategy used for solving an intelligence test, and 
in consequence a given cognitive mechanism may play 
a more important role in g/Gf for some people than for 
others (see Conway, Getz, Macnamara, & Engel de Abreu, 
2011). For example, differences in reasoning strategies 
on Gf tests have been observed between people scoring 
high versus low (Vigneau, Caissie, & Bors, 2006). A more 
effective solution-construction strategy that requires the 
simultaneous integration of all elements of the solution at 
the same time might rely primarily on relational integration, 
whereas a less effective (i.e., leading to underperformance) 
response-elimination strategy that is known to be prone to 
interference might rely more on attention control. Thus, the 
third hypothesis postulates that attention control predicts 
most g/Gf variance in less intelligent participants, while 
its contribution diminishes with increasing intelligence. 
The reverse would be true of relational integration and 
short-term memory. Finally, one seminal model of Gf 
(Carpenter et al., 1900) predicted that storage capacity is 
crucial for easier Gf test items (i.e., for the scores of low 
ability people), whereas the effective strategic control (e.g., 
management of reasoning goals, preventing distraction etc.) 
is necessary for the hardest items that make up scores of 
high ability participants. Thus, given that strategic control is 
somehow related to attention control, this model implies the 
fourth possible hypothesis, stating that short-term memory 
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(and, possibly, relational integration) will predict the largest 
amount of Gf variance in low ability participants, but their 
contribution to Gf will decrease with increasing Gf level, 
whereas the reverse will be true of attentional control.

Method

Participants
A total of 610 volunteer participants (375 women 

and 235 men) were recruited via publicly accessible social 
networking websites. Each participant gave informed 
consent, was informed that she or he can freely leave the 
lab at any time, and was paid 60 Polish zloty. Six additional 
participants were excluded from analysis due to missing 
some tasks. The mean age of participants was 23.6 years 
(SD = 4.6, range 18–46). 

Measures of fluid intelligence
Two paper-and-pencil tests of reasoning were used, 

Raven’s Advanced Progressive Matrices (Raven et al., 
1983), and the figural analogy test (Orzechowski & 
Chuderski, 2007). The 36 items of the Raven’s matrices 
test consist of a three-by-three matrix of figural patterns in 
which the bottom-right pattern is missing; subjects must 
choose a potential match for the missing pattern from 
eight response options. The task is to discover the rules 
governing the configuration of the patterns and apply them 
to select the single correct response option. The analogy test 
consists of 36 figural analogies of the form ‘A is to B as C 
is to X’, where A, B and C are relatively simple patterns of 
figures. The relationship between A and B is governed by 
between two and five latent rules (applying to symmetry, 
rotation, size, color, thickness, number of objects, etc.), 
and X is an empty space. The task is to choose from four 
options the figure which is related to figure C in the same 
way that B is related to A. Scores on the Raven’s matrices 
test and the analogy test were the total number of items 
answered correctly. 

Short-term (primary) memory tasks
Two variants of an array-comparison task which 

is commonly believed to tap primary memory capacity 
(Cowan et al., 2006) were used. Both variants consisted 
of 90 trials. On each trial a virtual 4 × 4 array was filled 
with five to nine stimuli, picked from a set of ten Greek 
symbols (e.g., α, β, χ, and so on), or colored squares (i.e., 
the letter and color variants of the task, respectively). The 
array was presented for a period equal to the number of 
items multiplied by 300 ms, and then followed by a black 
square mask of the same size as the array, presented for 
1.2 s. In a random 50% of trials, the second array was 
identical to the first; in the remaining trials the second 
array differed from the first by exactly one item in one 
position, which was always a new item (not a duplicate 
of an item from another position). When the arrays were 
different, the new item was highlighted with a square red 
border. When they were identical, a random item was 
highlighted in the same way. The task was to press one 
of two response keys to indicate whether the highlighted 

item was the same or different in the two arrays (maximum 
response latency was 4 s). The tasks were self-paced. The 
score was the difference between the proportion of correct 
responses when the arrays were different and the proportion 
of incorrect responses when the arrays were the same, 
multiplied by the set size (see Cowan et al., 2006).

Attention control tasks
Two variants of the antisaccade task were applied, 

which is frequently used as a measure of attention control 
(e.g., Unsworth, Spillers, Brewer, & McMillan, 2011). 
Each variant consisted of 40 self-paced trials. Each test 
trial consisted of four events. First, a cue was presented 
for 1.5 s to prompt subjects to look at the side opposite 
to a rapidly flashing black square. Next, a fixation point 
was presented in the center of the screen for 1–2 s. Then, 
the flashing square was shown in the middle of the left 
or right side of the screen, about 16 cm from the fixation 
point, for 0.15 s. Finally, a small dark gray arrow (pointing 
left, down, or right; spatial version of the task), or a string 
(‘left’, ‘down’, ‘right’; letter version), was presented in the 
middle of the opposite side of the screen to the square for 
only 0.2 s before being replaced by a mask. The task was 
to look away from the flashing square in order to observe 
the direction of the arrow or the identity of the string and 
to press the associated key. The dependent variable in each 
task was mean accuracy.

Relation integration tasks
Participants’ relational integration ability was 

assessed using the modified, no-memory version of the 
alphanumeric monitoring task, originally devised by 
Oberauer et al. (2008). The stimulus for each trial on the 
task consisted of a 3x3 array of three-symbol strings. In the 
letter version of the task, the strings contained three letters 
from a set of ten consonants; in the number version they 
were three-digit numbers. Depending on the task variant, 
participants were asked to detect whether any of the rows 
or columns consisted of three strings ending with the same 
(the three-same variant) or different digit or letter (the 
three-different variant; for a more detailed description of 
this task see Chuderski, 2014). On half the trials, the array 
included one of the specified configurations; on these trials 
participants were required to press the space key to indicate 
that they had detected this configuration. On the rest of 
the trials, the array did not contain any of the specified 
configurations. Trials lasted 5.5 s and were followed by 
a 0.1 s blink separating subsequent arrays. Successive 
arrays contained between one and four unchanged strings. 
In each version (letter or digit stimuli) of each task variant 
there were forty test trials. The dependent variable was 
the mean percentage detection of matching configurations 
minus the mean percentage of false alarm errors (see 
Snodgrass & Corwin, 1988).

Procedure
The study consisted of two experiments (346 and 

264 people), separated in time by several months. Apart 
from the tasks above reported, depending on a subset 
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of participants from two to twelve other tasks (e.g., 
working memory, attention, and concept discovery tests) 
were applied, but only the eight tests reported here were 
administered to the whole sample. Participants were tested 
in a cognitive psychology lab, in groups from six to twelve 
people. Participants completed the tests over two sessions 
(including either working memory tasks or intelligence tests) 
separated by a short break; session order was randomized 
across participants. As the 346-people group solved both 
the Raven and analogies test under no time pressure (in 60 
and 45 minutes, respectively), whereas the remaining 264 
people fulfilled these tests under time pressure (in 20 and 
16 minutes, respectively), the standardized scores (i.e., SDs) 
were calculated for each group separately, in order to the test 
scores could be validly compared. Nevertheless, mean scores 
on speeded tests are generally close to scores on unspeeded 
tests (Hammel & Schmittmann, 2006).

Results

Table 1 presents descriptive statistics for measures 
used in the study. Table 2 shows their correlation matrix. 
For consecutive analyses, we standardized all the measures, 
and calculated four factors representing fluid intelligence 
(GF), short-term (primary) memory capacity (STM), 
control over antisaccades (CON), and relational integration 
(REL), using respective means of standardized measures 
(e.g., STM was a mean of standardized scores on the letter 
and color variants of the array-comparison tasks). The 
factors’ descriptive statistics are shown in Table 1.

In general, analyzing the SLODR effects can be 
validly achieved by neither standard regression methods 
(linear regression, linear structural equation models) 
nor standard factorial methods (e.g., exploratory and 
confirmatory factor analysis). For example, the testing, by 

Table 2. Correlation Matrix for Measures Used in the Study

Task 1 2 3 4 5 6 7 8

1. Color arrays .79

2. Letter arrays .52 .83

3. Arrow antisaccade .45 .44 .93

4. Letter antisaccade .44 .42 .79 .93

5. Three-same .29 .29 .24 .30 .88

6. Three-different .22 .21 .21 .26 .53 .86

7. Raven .40 .35 .36 .40 .46 .39 .84

8. Analogies .36 .31 .36 .43 .37 .35 .64 .76
Note. Reliabilities (Cronbach alpha) are presented in bold.

Table 1. Descriptive Statistics for Measures Used in the Study (N = 610)

Task M SD Range Skew Kurt.

Color arrays 3.18 1.39 -1.97–6.30 -0.54 0.12

Letter arrays 2.81 1.49 -2.05–6.40 -0.21 -0.35

Arrow antisaccade 0.68 0.25 0.02–1.00 -0.69 -0.65

Letter antisaccade 0.75 0.24 0.00–1.00 -1.13 0.27

Three–same 0.73 0.18 -0.15–1.00 -1.32 2.16

Three–different 0.37 0.24 -0.25–0.92 -0.35 -0.56

Raven (standardized) 0.00 1.00 -3.35–2.20 -0.62 0.41

Analogies (standardized) 0.00 1.00 -2.76–2.73 -0.12 -0.44

STM factor 0.01 0.99 -2.90–2.56 -0.38 -0.26

CON factor 0.00 1.00 -2.98–1.24 -0.89 -0.23

REL factor 0.01 1.00 -3.41–2.15 -0.54 -0.09

GF factor 0.00 0.90 -2.97–2.19 -0.35 -0.04
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using linear regression, of how well one variable predicts 
another variable at different levels of the latter variable 
means that the latter variable appears in both the left and 
the right part of the regression equation at the same time. 
Early studies solved this problem by splitting the sample 
(usually at median), ideally using an intelligence subtest 
that was not included in the test battery investigated, and 
by calculating the common variance separately for two 
subsamples (e.g., Detterman & Daniel, 1989). This method 
inherits all weaknesses of the split analyses, including 
decreased power/reliability, increased likelihood of 
statistical artifacts, and arbitrariness of the split criterion 
(MacCallum, Zhang, Preacher, & Rucker, 2002). Newer 
methods use sophisticated modeling, like factor mixture 
modeling (Reynolds et al., 2010). Although they escape the 
problems of splitting, these models are quite complicated, 
they rely on multiple assumptions, and their clear 
interpretation is difficult. Thus, SLODR analyses might 
benefit from avoiding both splitting and surplus complexity.

Here, in order to examine possible SLODR effects, 
we used as simplistic analytic methods as possible, and 
we relied primarily on data visualization. Consequently, 
we applied the LOWESS (locally weighted scatterplot 
smoothing; see Cleveland, 1981) method in order to 
visualize the locally defined regression line of each WM 
variable on GF. LOWESS results in data smoothing based 
on replacing all points with the average of the neighboring 
data points, according to the formula: 

...y i
N

y i N y i N y i N
2 1
1 1lowess =
+

+ + + - + + -^ ^ ^ ^^h h h hh

where N is the number of neighboring data points on 
either side of data point y(i), and 2N+1 is the span of 
smoothing. In our analysis, N was arbitrarily set to 203 (⅓ 
of the sample). This relatively simple method allows for 
the continuous tracing of any changes in the relationship 
between regressors and regressands without the need of 
presetting the shape of this relationship. LOWESS can be 
interpreted as the saturated regression model of data that 
gives the best possible fit (the highest value of R2). Then, 
we formally tested the regression models that assumed 
certain functional dependencies between a given WM 
factor and the GF factor, as suggested by the shape of the 
LOWESS line. All model parameters were fitted using the 

Levenberg-Marquardt algorithm. We used Akaike’s (1974) 
Information Criterion (AIC) as the goodness-of-fit measure. 
AIC differences surpassing 5 indicate a significant loss 
of fit, its differences below 3 suggest no significant loss 
of fit, and differences between 3 and 5 are interpreted as 
inconclusive. AIC favors parsimonious models (as long as 
they fit well) by penalizing models for the number of their 
parameters, that is, by increasing its value by 2 for each 
additional parameter.

Figure 1. Scatter plot and the best-fitting lines 
of regression of the fluid intelligence factor (GF) 
on the short-term memory factor (STM), for the LOWESS, 
linear, logarithmic, and quadratic models

The LOWESS line for the STM-GF relationship 
is presented in Figure 1. This line suggested that the 
relationship in question might be nonlinear, with some 
attenuation of the increase in GF with increasing STM for 
the people showing the largest STM scores. Thus, we tested 
three nonlinear regression models: the logarithmic (a+be-cx), 
the quadratic (a+bx+cx2), and the cubic (a+bx+cx2+dx3), 
and contrasted them with the linear model (a+bx). Figure 1 
shows the respective regression lines, and Table 3 includes 
the parameters values and fit statistics for each model. 
Substantially larger AIC values of the nonlinear models 
clearly show that their minimally better fit did not justify 
their greater complexity, in comparison to the – lowest in 
AIC value – linear model. As an additional check of the 
SLODR hypothesis, which originally pertained not to the 
shape of the best-fitting regression line, but to the amount 

Table 3. Model parameters and fit statistics (Sum of Squared Residuals, R2, and Akaike Information Criterion) 
for regressions of Gf on STM (N = 610)

Model a b c d SSR R2 AIC

LOWESS (saturated) – – – – 0.720 0.196 –

LINEAR 0.000 0.432 – – 0.727 0.186 20.70

LOGARITHMIC 1.720 -1.670 0.241 – 0.725 0.191 29.82

QUADRATIC 0.051 0.413 -0.051 – 0.725 0.191 29.82

CUBIC 0.049 0.396 -0.046 0.007 0.725 0.191 38.60
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of variance in ability explained by the regressor in the 
low- versus high-end of the distribution (what depends on 
the scattering of data around the line), we compared the R2 
statistic for the 305 below-median STM scorers (R2 = 0.195) 
versus the 305 above-median ones (R2 = 0.174). The 
difference between R2 values was negligible. Thus, although 
the LOWESS method suggested some minor differences for 
the STM-GF relationship between low- and high-scoring 
participants, the closer inspection revealed no significant 
SLODR effect for this relationship.

Figure 2. Scatter plot and the best-fitting lines 
of regression of the fluid intelligence factor (GF) 
on the attention control factor (CON), for the LOWESS, 
linear, logarithmic, and quadratic models

For the CON-GF relationship, the LOWESS line 
yielded an almost linear shape (see Figure 2). Especially, 
for the logarithmic model, the c value was fitted to zero, 
thus making it a linear model. Comparison of the linear, 
logarithmic, quadratic, and cubic models, left the former 
model being the one optimally combining the sufficient 
fit to data with the largest parsimony (see Table 4). Again, 
there was no visible difference in the R2 statistic between 
the 305 below-median CON scorers (R2 = 0.190) versus the 
305 above-median ones (R2 = 0.175).

Figure 3. Scatter plot and the best-fitting lines 
of regression of the fluid intelligence factor (GF) 
on the relational integration factor (REL), for the 
LOWESS, linear, logarithmic, and quadratic models

Table 5. Model parameters and fit statistics (Sum of Squared Residuals, R2, and Akaike Information Criterion) 
for regressions of Gf on REL (N = 610)

Model a b c d SSR R2 AIC

LOWESS (saturated) – – – – 0.701 0.236 –

LINEAR 0.000 0.481 – – 0.704 0.232 20.59

LOGARITHMIC 4190.61 -4190.61 0.000 – 0.704 0.232 29.66

QUADRATIC -0.027 0.496 0.027 – 0.704 0.233 29.66

CUBIC -0.026 0.501 0.025 -0.002 0.704 0.233 38.39

Table 4. Model parameters and fit statistics (Sum of Squared Residuals, R2, and Akaike Information Criterion) 
for regressions of Gf on CON (N = 610)

Model a b c d SSR R2 AIC

LOWESS (saturated) – – – – 0.728 0.190 –

LINEAR 0.000 0.429 – – 0.732 0.184 20.71

LOGARITHMIC 2076.62 -2076.62 0.000 – 0.732 0.184 29.84

QUADRATIC -0.017 0.444 0.017 – 0.732 0.184 29.84

CUBIC -0.016 0.446 0.014 -0.002 0.732 0.184 38.64
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Basically the same results were noted for the REL-GF 

relationship (see Figure 3 and Table 5), with the linear 
model providing the best account of data. In this case, 
either, no detectable difference in the R2 statistic between 
the 305 below-median REL scorers (R2 = 0.238) versus the 
305 above-median ones (R2 = 0.224) could be found.

Discussion

In contrast to numerous above cited studies, which 
confirmed that SLODR applies to various intellectual 
abilities, like crystallized/verbal/learning ability, creativity, 
and processing speed, this study demonstrated no SLODR 
effect for WM as measured with the three types of tasks 
that tapped: short-term storage, attention control, and 
relational integration. No evidence for any of the three 
hypotheses that were alternative to the null hypothesis 
could be found. The pattern of data was mutually coherent, 
and it cannot just result from an improper measurement of 
Gf and WM, as the sample was substantial, our measures 
yielded satisfactory reliability, and the mean zero-level 
correlation (rs around .4) between Gf and WM tests 
resembled correlations usually observed in Gf-WM studies 
(see metaanalysis in Chuderski, 2013).

In our view, these results can be best understood if 
fluid intelligence is conceptualized simply as (i.e., it is 
equated to) the (overall) effectiveness of working memory. 
Specifically, in terms of necessary cognitive processing, 
fluid intelligence primarily encompasses deriving proper 
relations from the data given, constructing the model 
of a situation using these relations (as well as some 
counterexample models; see Goodwin & Johnson-Laird, 
2005), and applying them to solve (usually novel and 
nontrivial) problems. For this reason, Gf is often termed 
reasoning ability, and is usually measured with deductive 
and inductive reasoning tests. Several existing models of 
such a kind of reasoning (e.g., Chuderski & Andrelczyk, 
2015; Halford, Wilson, & Phillips, 1998; Hummel & 
Holyoak, 2003; Ragni & Knauff, 2013) predict that its 
general effectiveness (although not necessarily its specific 
qualitative characteristics) is determined by available 
WMC to a substantial extent. Thus, if both regressor and 
regressand represent the same ability, there is no issue of 
a larger or smaller loading of one factor on another (a case 
addressed by SLODR), as they both represent the workings 
of the same cognitive mechanism (so no SLODR can arise). 

The above interpretation can potentially be questioned 
on the basis of only moderate correlations between Gf 
and WM measures. If we advocate for isomorphism 
between Gf and WM, then the observed Gf-WM 
correlations should approach unity. However, it must be 
acknowledged that single measures, or even compound 
measures averaging such simple measures, reflect a lot 
of noise and task-specific variance, and one should not 
expect perfect correlations in such a case. Moreover, we 
investigated the SLODR effect separately for each of three 
widely identified WM tasks (and not for general WMC 
representing the overall effectiveness of WM). Numerous 
studies demonstrated that when the strength of relationship 

between Gf and WMC is estimated on the level of general 
WM construct (a latent variable calculated from the wide 
range of WM tasks), instead of single WM tasks, the 
observed correlations often reach unity (Chuderski, 2013; 
Colom et al., 2008; Martinez et al., 2011; Oberauer et al., 
2005; Oberauer et al., 2008). Another question pertaining 
to the present study might ask whether the lack of SLODR 
effect observed in the case of WM and Gf will generalize 
onto g factor. Although both g and Gf seem to constitute 
very close constructs, and the lack of a respective SLODR 
effect is likely also in the case of g, answering this question 
requires a future study that will include a broader battery of 
intelligence tests.

Taking all of the above evidence into consideration, 
the present study brings a new line of evidence for 
the understanding of fluid intelligence in terms of the 
effectiveness of working memory processes (including 
active control and integration of information necessary 
for constructing adequate mental models) that subsume 
the correct abstract reasoning in novel situations. The fact 
that, unlike other potential mechanisms underlying Gf (e.g., 
processing speed), WMC is immune to the SLODR effect, 
strongly suggests that WM is more closely linked to Gf than 
are these other mechanisms. 
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