Szczegóły

Tytuł artykułu

Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2017

Numer

No 2

Autorzy

Słowa kluczowe

nanofluid ; rotating circular cylinder ; forced convection ; steady regime

Wydział PAN

Nauki Techniczne

Zakres

3-20

Wydawca

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Data

2017

Typ

Artykuły / Articles

Identyfikator

DOI: 10.1515/aoter-2017-0008 ; ISSN 1231-0956 ; eISSN 2083-6023

Źródło

Archives of Thermodynamics; 2017; No 2; 3-20

Referencje

Farooji (2012), Unconfined laminar nanofluid flow and heat transfer around a square cylinder, Int J Heat Mass Tran, 55, 1475. ; Stojkovic (2002), Effect of high rotation rates on the laminar flow around a circular cylinder, Phys Fluids, 14, 3160. ; Cieśliński (2015), Measurement of temperaturedependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids, Arch Thermodyn, 36, 35. ; Paramane (2009), Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in laminar flow regime, Int J Heat Mass Tran, 52, 3205. ; Valipour (2011), Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing nanofluid, Int Commun Heat Mass, 38, 1296. ; Chang (2005), Rheology of CuO nanoparticle suspension prepared by ASNSS, Rev Adv Mater Sci, 10, 128. ; Padrino (2006), Numerical study of the steady - state uniform flow past a rotating cylinder, Fluid Mech, 557, 191. ; Bouakkaz (2014), Numerical investigation of incompressible fluid flow and heat transfer around a rotating circular cylinder, Thermophys Aeromech, 21, 1. ; Yu (2003), The role of interfacial layers in the enhanced thermal conductivity of nanofluids : A renovated Maxwel l model, Nanopart Res, 5, 167. ; Vegad (2014), Heat transfer characteristics of low Reynolds number flow of nanofluid around a heated circular cylinder nd Innovations in Automation and Mechatronics Technology, Proc Int Conf Engineering, 14, 348. ; Mittal (2003), Flow past a rotating cylinder, Fluid Mech, 476, 303. ; Paramane (2010), Heat and fluid flow across a rotating cylinder dis - sipating uniform heat flux in laminar flow regime, Int J Heat Mass Tran, 53, 4672. ; Valipour (2014), A numerical study on convection around a square cylinder using AL nanofluid, Therm Sci, 18, 1305. ; Sufyan (2014), Heat transfer suppression in flow around a rotating circular cylinder at high Prandtl number, Sci Eng, 39, 8051. ; Sharma (2012), Heat transfer from a rotating circular cylinder in the steady regime : Effects of Prandtl number, Thermal Sci, 16, 79. ; Kang (1999), and Laminar flow past a rotating circular cylinder http dx, Phys Fluids doi org, 11, 3312, doi.org/10.1063/1.870190 ; El (2015), The effect of thermal radiation , heat generation and suction / injection on the mechanical pro properties prieties of unsteady continuous moving cylinder in a a nanofluid, Therm Sci, 19, 1591. ; Brinkman (1952), The viscosity of concentrated suspensions and solutions, Chem Phys, 20, 571.

Rada naukowa

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×