Details

Title

Phosphorus removal by microelectrolysis and sedimentation in the integrated devices

Journal title

Archives of Environmental Protection

Yearbook

2021

Volume

vol. 47

Issue

No 1

Affiliation

Libecki, Bartosz : Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Poland ; Mikołajczyk, Tomasz : Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Poland

Authors

Keywords

ZVI ; phosphorus removal ; microelectrolysis ; coagulator

Divisions of PAS

Nauki Techniczne

Coverage

3-9

Publisher

Polish Academy of Sciences

Bibliography

  1. Deng, Y., Englehardt, J.D., Abdul-Aziz, S., Bataille, T., Cueto, J., De Leon, O., Wright, M.E., Gardinali, P., Narayanan, A., Polar, J. & Tomoyuki, S. (2013). Ambient iron-mediated aeration (IMA) for water reuse, Water Research, 47, pp. 850–858, DOI: 10.1016/j.watres.2012.11.005
  2. El Samrani, A.G., Lartiges, B.S., Montarges-Pelletier, E., Kazpard, V., Barres, O. & Ghanbaja, J. (2004).Clarification of municipal sewage with ferric chloride: the nature of coagulant species, Water Research, 38, pp. 756–768, DOI: 10.1016/jwatres.2003.10.002.
  3. Gromiec, M.J. & Gromiec, T.M. (2010). Controlling of eutrophication in aquatic environments, Journal of Water and Land Development, 14, pp. 29–35.
  4. Gu, A.Z., Liu, L., Neethling, J.B., Stensel, H.D. & Murthy, S. (2011). Treatability and fate of various phosphorus fractions in different wastewater treatment processes, Water Science and Technology, 63 (4), pp. 804–810, DOI: 10.2166/wst.2011.215.
  5. Lai, B., Zhou, Y. & Yang, P. (2012). Passivation of sponge iron and GAC in Fe0/GAC mixed-potential corrosion reactor, Industrial & Engineering Chemistry Research, 51(22), pp. 7777–7785, DOI: 10.1021/ie203019t.
  6. Lakshmanan, D., Clifford, D.A. & Samanta, G. (2009). Ferrous and ferric ion generation during iron electrocoagulation, Environmental Science and Technology, 43(10), pp. 3853–3859, DOI: 10.1021/es8036669.
  7. Li, C., Ma, J., Shen, J. & Wang, P. (2009). Removal phosphate from secondary effluent with Fe2+ enhanced by H2O2 at nature pH/neutral pH, Journal of Hazardous Materials, 166, pp. 891–896, DOI: 10.1016/j.jhazmat.2008.11.111.
  8. Libecki, B. (2018) Koagulator do oczyszczania ścieków (Coagulator for wastewater treatment) Patent Application, Polish Patent Office, application No: P.426089
  9. Ma, L. & Zhang, W.-X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron, Environmental Science and Technology, 42, pp. 5384–5389, DOI: 10.1021/es801743s.
  10. Mak, M.S.H., & Irene, M.C. (2009). Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron, Water Research, 43, pp. 4296–4304, DOI: 10.1016/j.watres.2009.06.022.
  11. Qin, Sh., Li, X., Zhang, T. & Ronga, W. (2011). Pretreatment of chemical cleaning wastewater by microelectrolysis process, Procedia Environmental Sciences, 10, pp. 1154–1158, DOI: 10.1016/j.proenv.2011.09.184.
  12. Sarin, P., Snoeyink, V.L., Lytle, D.A. & Kriven, W.M. (2004). Iron corrosion scales: model for scale growth, iron release, and colored water formation, Journal of Environmental Engineering, 4, pp. 364–373.
  13. Sleiman, N., Deluchat, V., Wazne, M., Mallet, M., Courtin-Nomade, A., Kazpard, V. & Baudu, M. (2016). Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism, Water Research, 99, pp. 56–65, DOI: 10.1016/j.watres.2016.04.054.
  14. Smoczyński, L., Muńska, K.T., Kosobucka, M. & Pierożyński, B. (2014). Phosphorus and COD removal from chemically coagulated wastewater, Environmental Protection Engineering, 40(3), pp. 63–73.
  15. Sterner, R.W. (2008). On the Phosphorus Limitation Paradigm for Lakes, International Review of Hydrobiology, 93, 4–5, pp. 433–445, DOI: 10.1002/iroh.200811068.
  16. Sun, Y., Li, J., Huang, T. & Guan, X. (2016). The influeces of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review, Water Research, 100, pp. 277–295, DOI: 10.1016/j.watres.2016.05.031.
  17. Tarkowska-Kukuryk, M. (2013). Effect of phosphorus loadings on macrophytes structure and trophic state of dam reservoir on a small lowland river (eastern Poland), Archives of Environmental Protection, 39, 3, pp. 33–46, DOI:10.2478/aep-2013-0029.
  18. Wan, W., Pepping, T.J., Banerji, T., Chaudhari, S. & Giammar, D.E. (2011). Effects of water chemistry on arsenic removal from drinking water by electrocoagulation, Water Research, 45(1), pp. 384–392, DOI: 10.1016/j.watres.2010.08.016.
  19. Wei, M.-Ch., Wang, K.-S., Hsiao, T.-E., Lin, I.-Ch., Wu, H.-J., Wu, Y.-L., Liu, P.-H. & Chang, S.-H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe0/air treatment: THMFP and biotoxicity evaluation, Journal of Hazardous Materials, 195(15) pp. 324–331, DOI: 10.1016/j.jhazmat.2011.08.044.
  20. Yang, X., Xue, Y. & Wang, W. (2009). Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis, Bioresources Technology, 2009, 100(2), pp. 649–653, DOI: 10.1016/j.biortech.2008.07.035.
  21. Yang, Z., Ma, Y., Liu, Y., Li, Q., Zhou, Z. & Ren, Z. (2017).Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system. Chemical Engineering Journal, 315, pp. 403–414, DOI: 10.1016/j.cej.2017.01.042.
  22. Yanhe, H., Han, L., Meili, L., Yimin, S., Cunzhen, L. & Jiaqing, Ch. (2016). Purification treatment of dyes wastewater with a novel micro-electrolysis reactor, Separation and Purification Technology, 170, pp. 241–247, DOI: 10.1016/j.seppur.2016.06.058.
  23. Yuan, S., Wu, Ch., Wan, J. & Lu, X. (2009). In situ removal of copper from sediments by a galvanic cell, Journal of Environmental Management, 90, 421–427, DOI: 10.1016/j.jenvman.2007.10.009.
  24. Zou, H. & Wang, Y. (2017). Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater, Archives of Environmental Protection, 43(4), 33–38, DOI: 10.1515/aep-2017-0037.

Date

2021.03.08

Type

Article

Identifier

DOI: 10.24425/aep.2021.136442

Source

Archives of Environmental Protection; 2021; vol. 47; No 1; 3-9

Open Access Policy


×