Details

Title

Spatial distribution of the water exchange through river cross-section – measurements and the numerical model

Journal title

Archives of Environmental Protection

Yearbook

2021

Volume

vol. 47

Numer

No 1

Affiliation

Grodzka-Łukaszewska, Maria : Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Poland ; Pawlak, Zofia : Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Poland ; Sinicyn, Grzegorz : Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Poland

Authors

Keywords

numerical modeling ; hyporheic zone ; hydraulic properties ; Gradient/flux measurement ; Groundwater/surface-water relations

Divisions of PAS

Nauki Techniczne

Coverage

69-79

Publisher

Polish Academy of Sciences

Bibliography

1. Anibas, C., Verbeiren, B., Buis, K., Chormański, J., De Doncker, L., Okruszko, T., Meire, P. & Batelaan, O. (2012). A hierarchical approach on groundwater-surface water interac-tion in wetlands along the upper Biebrza River, Poland. Hydrol. Earth Syst. Sci. , 16, pp. 2329–2346. https://doi.org/10.5194/hess-16-2329-2012
2. Baraniecka, M. D., (1976). Description of the detailed geological map of Poland 1:50 000 Sheet Otwock, (in Polish).
3. Boano, F., Camporeale, C., Revelli, R. & Ridolfi, L. (2006). Sinuosity-driven hyporheic exchange in meandering rivers. Geophys. Res. Lett. , 33. https://doi.org/10.1029/2006GL027630
4. Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L. & Wörman, A. (2014). Hypohreic flow and transport processes: Mechanisms models, and biogeo-chemical implications. Rev. Geophys. , 52, pp. 603–679. https://doi.org/10.1002/2012RG000417
5. Brunetti, E., Jones, J. P., Petitta, M. & Rudolph, D. L. (2013). Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy). Hydrogeol. J. , 21, pp. 401–423. https://doi.org/10.1007/s10040-012-0918-3
6. Brunke, M. & Gonser, T. (1997). The ecological significance of exchange processes be-tween rivers and groundwater. Freshw. Biol. , 37, pp. 1–33. https://doi.org/10.1046/j.1365-2427.1997.00143.x
7. Duda, R., Witczak, S. & Żurek, A. (2011). Map of Polish groundwater sensitivity to pol-lution 1: 500,000 - Methodology and textual explanations. Akademia Górniczo–Hutnicza im. Stanisława Staszica w Krakowie Wydział Geologii, Geofizyki i Ochrony Środowiska, ISBN: 13 978-83-88927-24-9 (in Polish).
8. Elango, L., Brindha, K., Kalpana, L. & Sunny, F. (2012) Groundwater flow and radionu-clide decay-chain transport modelling around a proposed uranium tailings pond in In-dia. Hydrogeol. J. , 20, pp. 797–812. https://doi.org/10.1007/s10040-012-0834-6
9. Grodzka-Łukaszewska, M., Nawalany, M. & Zijl, W. (2017). A Velocity-Oriented Ap-proach for Modflow. Transp. Porous Media, 119, pp. 373–390. https://doi.org/10.1007/s11242-017-0886-0
10. Grygoruk, M. & Acreman, M. (2015). Restoration and management of riparian and river-ine ecosystems: Ecohydrological experiences, tools and perspectives. Ecohydrol. Hydrobiol. , 15, pp. 109-110. https://doi.org/10.1016/j.ecohyd.2015.07.002
11. Harvey, J. & Gooseff, M. (2015). River corridor science: Hydrologic exchange and eco-logical consequences from bedforms to basins. Water Resour. Res., 51, pp. 6893–6922. https://doi.org/10.1002/2015WR017617
12. Hendriks, D. M. D., Okruszko, T., Acreman, M., Grygoruk, M., Duel, H., Buijse, T., Schutten, J., Mirosław-Świątek, D., Henriksen, H.J., Sanches-Navarro, R., Broers, H.P., Lewandowski, J., Old, G., Whiteman, M., Johns, T., Kaandorp, V., Baglioni, M., Holgersson, B. & Kowalczyk, A. (2015). Bringing groundwater to the surface; Groundwater-river interactions as driver for river ecology. D77 Policy Discuss. Pap. no 2
13. Hidayat, H. N. & Permana, M. G. (2018). Geothermal reservoir simulation of hot sedi-mentary aquifer system using FEFLOW®. IOP Conference Series: Earth and Envi-ronmental Science, 103, 12002, DOI: https://doi.org/10.1088/1755-1315/103/1/012002
14. IMGW-PIB 2016 Report on the implementation of flood hazard maps and flood risk maps, appendix 1, (in Polish)
15. Iqbal, Z., MacLean, R. T., Taylor, B. D., Hecker, F. J. & Bennett, D. R. (2002). Seepage losses from irrigation canals in southern Alberta. Can. Biosyst. Eng. / Le Genie des Biosyst. au Canada, 44, pp. 21–27
16. Israelsen, O. W. & Reeve, R. C. (1944). Bulletin No . 313 - Canal Lining Experiments in the Delta Area, Utah Canal Lining Experiments - the Delta Area, Utah. UAES Bull 52
17. Janik, B., Kowalik, A. & Marciniak, M. (1989). Infiltrometric measurements as an estima-tion base of the quota of river water in the feeding of the drainage intake Reda-Pieleszewo. Przegląd Geologiczny, 37, pp. 511–516 (in Polish).
18. Jekatierynczuk-Rudczyk, E. (2007). The hyporheic zone, its functioning and meaning. Kosmos. 56, pp. 181-196 (in Polish)
19. Kasperek, R., Mokwa1, M. & Wiatkowski, M. (2012). Modelling of pollution transport with sediment on the example of the Widawa river. Archives of Environmental Protection, 39, 2, pp.29-43, DOI: 10.2478/aep-2013-0017
20. Lee, D. R. (1977). A device for measuring seepage flux in lakes and estuaries1. Limnol. Oceanogr. , 22, pp. 140–147. https://doi.org/10.4319/lo.1977.22.1.0140
21. Magliozzi, C., Grabowski, R. C., Packman, A. I. & Krause, S. (2018) Toward a concep-tual framework of hyporheic exchange across spatial scales. Hydrol. Earth Syst. Sci., 22, pp. 6163–6185 https://doi.org/10.5194/hess-22-6163-2018
22. Marciniak, M. & Chudziak, Ł. (2015). A new method of measuring the hydraulic con-ductivity of the bottom sediment. Przegląd Geologiczny, 63, pp. 919-925 (in Polish)
23. Marciniak, M., Szczucińska, A. & Kaczmarek, M. (2017). Variability of the hydraulic conductivity in the hyporheic zone in the light of laboratory research). Przegląd Geologiczny, 65, pp. 1115-1120 (in Polish)
24. McDonald, M. G. & Harbaugh, A. W. (1984). A modular three-dimensional finite-difference ground-water flow model. U.S. Geological Surv.
25. Nawalany, M. (1993). Mathematical Modeling of River-Aquifer Interactions, Report SR 349. HR Wallingford.
26. Pandian, R. S., Nair, I. S. & Lakshmanan, E. (2016). Finite element modelling of a heavi-ly exploited coastal aquifer for assessing the response of groundwater level to the changes in pumping and rainfall variation due to climate change. Hydrol Res., 47, pp. 42–60. https://doi.org/10.2166/nh.2015.211
27. Peralta-Maraver, I., Reiss, J. & Robertson, A. L. (2018). Interplay of hydrology, commu-nity ecology and pollutant attenuation in the hyporheic zone. Sci. Total Environ., 610–611, pp. 267–275. https://doi.org/10.1016/j.scitotenv.2017.08.036
28. Pietrzak, K., Przybylski, B., & Repliński, M. (2018). Environmental impact assessment of the Environmental Protection Program for the Latowicz municipality until 2021 (in Polish).
29. Revelli, R., Boano, F., Camporeale, C. & Ridolfi, L. (2008). Intra-meander hyporheic flow in alluvial rivers. Water Resour. Res., 44. https://doi.org/10.1029/2008WR007081
30. Robinson, A. R., & Rohwer, C. (1959). Measuring seepage from irrigation channels. USDA Tech. Bull. 1203.
31. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych (Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential and chemi-cal status and on the classification of surface water bodies and environmental quality standards for priority substances) (in Polish)
32. Schmadel, N. M., Ward, A. S. & Wondzell, S. M. (2017). Hydrologic controls on hyporheic exchange in a headwatermountain stream. Water Resour. Res. , 53, pp. 6260-6278. https://doi.org/10.1002/2017WR020576
33. Siergieiev, D., Lundberg, A. & Widerlund, A. (2014). Hyporheic water exchange in a large hydropower-regulated boreal river – directions and rates. Hydrol. Res. , 45, pp. 334–348. https://doi.org/10.2166/nh.2013.011
34. Ward, A. S. (2016). The evolution and state of interdisciplinary hyporheic research. WIREs Water, 3, pp. 83–103. https://doi.org/10.1002/wat2.1120
35. Worstell, R. V. & Carpenter, C. D. (1969). Improved Seepage Meter Operation for Lo-cating Areas of High Water Loss in Canals and Ponds. 58th Annu. Oregon Reclam. Congr.
36. Zieliński, P. & Jekatierynczuk-Rudczyk, E. (2010). Dissolved organic matter transfor-mation in the hyporheic zone of a small lowland river. Oceanol. Hydrobiol. Stud. , 39, pp. 97–103. https://doi.org/10.2478/v10009-010-0021-9
38. Zijl, W. & Nawalany, M. (1993) Natural groundwater flow. Lewis Publishers

Date

2021.03.08

Type

Article

Identifier

DOI: 10.24425/aep.2021.136450

Source

Archives of Environmental Protection; 2021; vol. 47; No 1; 69-79

Open Access Policy


×